

27 July 2023

Ref: E35995BTlet-ASSMP

T&P Manly Land Pty Ltd c/- Time and Place

Attention: Marcus Lewin

Email: Marcus.Lewin@timeplace.com.au

**ACID SULFATE SOIL MANAGEMENT PLAN** PROPOSED MIXED USE DEVELOPMENT 35-39, 40, 41, 42 & 43 BELGRAVE STREET, MANLY, NSW

#### 1 INTRODUCTION

Time & Place on behalf of T&P Manly Land Pty Ltd ('the client') commissioned JK Environments (JKE) to prepare an acid sulfate soil management plan (ASSMP) for the proposed mixed use development at 35-39, 40, 41, 42 & 43 Belgrave Street, Manly, NSW. The site is identified as SP 14133 (35-39 Belgrave Street), Lot 1 in DP100633 (40 Belgrave Street), Lot 1 in DP104766 (41 Belgrave Street), Lot 1 in DP34395 (42 Belgrave Street), and Lot 1 in DP719821 (43 Belgrave Street). The site location is shown on Figure 1 and the ASSMP applies to the entire site as shown on Figure 2 in Appendix A.

This letter has been prepared to support the lodgement of a Development Application (DA) with Northern Beaches Council. This ASSMP is to be implemented during the development works.

The objective of the ASSMP is to reduce the potential environmental impacts associated with disturbance of potential acid sulfate soils (PASS). JKE has previously undertaken a Preliminary Site Investigation (PSI) at the site (Ref: E35995BTrptRev1, dated 30 June 2023)1, which included a preliminary acid sulfate soil (ASS) assessment. Relevant information is summarised and presented in this report.

General information on ASS/PASS is presented in Appendix C.

#### 1.1 **Proposed Development Details**

The proposed development is at concept design stage and will likely comprise the construction of a four or five storey building overlying two basement levels. We anticipate that excavation to a maximum depth of approximately 7m below existing surface levels would be required to achieve the lowest basement level.

<sup>1</sup>JKE, (2023). Report to T&P Manly Land Pty Ltd on Preliminary Site Investigation (PSI) for Proposed Mixed Use Development at 35-39, 40, 41, 42 & 43 Belgrave Street, Manly, NSW. (referred to as PSI)





#### 1.2 Guidelines

The ASS investigation and preparation of this report were undertaken with reference to the Acid Sulfate Soil Management Advisory Committee (ASSMAC) Acid Sulfate Soil Manual (1998)<sup>2</sup> Queensland Acid Sulfate Soil Technical Manual v 3.8 (2002) and to the National Acid Sulfate Soils Guidance (2018) documents.

#### 2 SITE INFORMATION

#### 2.1 Site Information and Description

Table 2-1: Site Identification

| Site Address:                                                  | 35-39, 40, 41, 42 & 43 Belgrave Street, Manly, NSW                                                                                                                                          |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lot & Deposited Plan:                                          | SP 14133 (35-39 Belgrave Street) Lot 1 in DP100633 (40 Belgrave Street) Lot 1 in DP104766 (41 Belgrave Street) Lot 1 in DP34395 (42 Belgrave Street) Lot 1 in DP719821 (43 Belgrave Street) |
| Current Land Use:                                              | Mixed use (residential and commercial)                                                                                                                                                      |
| Site Area (m²):                                                | 1,100                                                                                                                                                                                       |
| Site Elevation (metres Australian Height Datum – mAHD approx.) | 10-11                                                                                                                                                                                       |
| Geographical Location (approx.):                               | Latitude: -33.795884276<br>Longitude: 151.28556130                                                                                                                                          |
| Site Plans:                                                    | Appendix A                                                                                                                                                                                  |

#### 2.2 Site Description

The site is located in a mixed use (commercial/recreational) area of Manly and is bound by Belgrave Street to the west, Raglan Street to the north and Whistler Street to the east (see Figure 1). The site is located approximately 250m west of Manly Beach. The site is located within relatively flat terrain beyond the toe of an east facing hillside. Manly Beach and Manly Cove are located approximately 200m to the east and 400m to the south-west of the site, respectively.

At the time of the PSI, the site was occupied by numerous retail/shop fronts including a massage parlour, a chicken shop, a dry cleaner, a barber, a red cross shop (second hand clothing, etc.), and a tailer. The site also included a medical centre at the northern end with accountants and solicitors' offices upstairs. Residential units were also observed on the first floor of the other buildings on the site. Predominantly, areas outside of the building footprints comprised concrete pavements.

<sup>&</sup>lt;sup>2</sup> Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual (ASS Manual 1998)





At the time of the site inspection, the site buildings formed most boundaries. The majority of the site surface outside of the building footprints was paved. The site levels were generally in keeping with the surrounding development. It is considered likely that some filling of the site would have been undertaken for levelling purposes. This was confirmed by the boreholes drilled for the PSI.

Surface water at the site was expected to flow into stormwater drains along Whistler, Raglan and/or Belgrave Streets to the east, north and west respectively. Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds. The site was entirely paved with no vegetation observed.

#### 2.3 Summary of Regional Geology, Soils and Hydrogeology

#### 2.3.1 Regional Geology

As documented in the PSI, regional geological information indicated that the site is underlain by Holocene aged costal deposits of marine and aeolian coastal sand dunes.

Boreholes drilled for the investigation encountered fill to depths of approximately 0.6m to 1.3m below ground level (BGL), underlain by sandy marine soils to the maximum depth of the investigation at 3mBGL.

#### 2.3.2 Acid Sulfate Soil (ASS) Risk and Planning

As documented in the PSI report:

- A review of the ASS risk map prepared by Department of Land and Water Conservation (1997)
  indicated that the site is located in an area classed as having a 'low probability' of ASS occurrence at
  depths of greater than 3m below the ground surface;
- ASS information presented in the Lotsearch report (attached to the PSI) indicated that the site is located within a Class 4 ASS risk area. Works in a Class 4 risk area that could pose an environmental risk in terms of ASS include works at depths beyond 2m below existing ground level or works by which the water table is likely to be lowered beyond 2m below existing ground level; and
- The PSI identified PASS conditions at the site. Further details are discussed in Section 3.

#### 2.3.3 Hydrology and Receiving Water Bodies

Hydrological information reviewed for the PSI indicated that there was a total of 53 registered bores within the search buffer of 2,000m. The nearest registered bore was located approximately 60m from the site. This was utilised for monitoring purposes. The majority of the bores were registered for water supply purposes, the closest of which was located approximately 440m to north of the site.

The information reviewed for the PSI indicates that the subsurface conditions at the site are expected to consist of high permeability (marine) soils overlying relatively deep bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable under these conditions, however the use of groundwater is not proposed as part of the development. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.





The site location and regional topography indicates that excess surface water flows have the potential to enter Manly Beach located approximately 200m east of the site. This is considered to be a potential receptor given the regional geology and proximity of the water body.

#### 3 CONCEPTUAL SITE MODEL FOR PASS MATERIALS

The PSI included soil sampling from two boreholes (BH1 and BH5). The associated borehole logs are attached in Appendix C and the laboratory report summary tables are attached in Appendix D. In summary:

- None of the pH<sub>F</sub> results were below pH 4 and therefore none of the samples were indicative of actual ASS (AASS);
- The pH<sub>FOX</sub> results ranged from pH 5.6 to pH 6.2. Reaction rates of the samples were generally in the low range with the deeper samples from BH2 in the medium range;
- None of the net acidity results exceeded the action criteria in the samples analysed; and
- Although at a low concentration, oxidisable sulfur (indicated by the chromium reducible sulfur % S<sub>CR</sub>)
   was reported in one sample analysed, suggesting that PASS may be present at the site.

Considering the above, for the purpose of management under this ASSMP, all natural soils are considered to be PASS unless demonstrated otherwise via additional sampling and analysis.

Reference should be made to the ASS laboratory summary table from the PSI which is attached in Appendix D.

#### 4 MANAGEMENT PLAN

#### 4.1 Application

Management requirements are triggered under this ASSMP for all soil disturbance that results in exposure of PASS to air. For this project, this may include (but is not limited to) excavation or exposure of the natural soils.

Notwithstanding the above, we recommend that a detailed investigation occurs following demolition to better delineate the extent of the PASS and characterise the groundwater for PASS management purposes. This investigation should broadly be designed as follows (in consultation with the project environmental consultant):

- Once the depths and construction methodologies are finalised for the building foundations and basement shoring system, an additional investigation should be designed to gather additional soil data, particularly in the north and eastern areas of the site;
- Soil sampling should occur using suitable drilling methodologies, with sampling occurring to at least
   1m beyond the maximum depth where piling spoil will be generated (or to the top of bedrock, whichever is shallower);
- Soil samples are to be collected at approximately 0.5m intervals down the soil profile, to the termination depth of the borehole;
- Each soil sample is to be analysed for  $pH_F$  and  $pH_{FOX}$ , with these results subsequently assessed to identify the samples for further  $S_{CR}$  analysis;





- Groundwater samples are also to be collected from each existing groundwater monitoring well using low flow sampling techniques (following well development and purging) and analysed for<sup>3</sup>:
  - pH; alkalinity; acidity;
  - Sulfate and chloride;
  - electrical conductivity (EC); calcium;
  - Turbidity, total dissolved solids (TDS), total suspended solids (TSS), total organic carbon (TOC) and sodium absorption ratio (SAR);
  - o Ionic balance, which includes major anions and the cation suite (including hardness);
  - Metals including Aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, zinc; and
  - Nutrient suite, including ammonia, nitrate, total nitrogen, oxidised nitrogen, total phosphorus and reactive phosphorus.
- A report is to be prepared on completion and the ASSMP is to be updated where required (the report
  must also consider the results of the preliminary assessment as reported in the PSI). This must be
  submitted to the certifier and to the consent authority (Northern Beaches Council) prior to
  commencement of works that disturb or expose PASS

#### 4.2 Roles and Responsibilities

The primary role and responsibility for implementing this ASSMP is the construction/excavation contractor. The construction/excavation contractor is responsible for obtaining a copy of this ASSMP and taking reasonable steps so that it is adequately implemented.

The construction/excavation contractor (or the client) is to engage a validation consultant to monitor the works and validate the implementation of the ASSMP. The construction/excavation contractor and validation consultant are also to refer to any specific requirements of Northern Beaches Council, as documented in the development consent to be provided. The consent authority must also specify whether any other plans or permits are required prior to the commencement of any works under this ASSMP, and the construction/excavation contractor/client is to ensure such plans/permits are obtained.

#### 4.3 Preferred Strategies for Management

The preferred strategy for managing environmental risks associated with PASS is to eliminate disturbance of the PASS. Where this cannot occur, disturbance is to be limited to the extent practicable and the disturbance is to be managed under this ASSMP.

Based on the proposed development details, we anticipate that disturbance of the PASS cannot be avoided given that the excavation for the proposed basement will extend to the approximate depth where PASS is expected to occur, and piling spoil is expected to be generated from below this depth. The following works have been identified that would involve the disturbance of PASS:

Excavation for the proposed basement; and

<sup>&</sup>lt;sup>3</sup> We note that it would be prudent to expand the above groundwater analytical suite to align with the mandatory groundwater screening requirements for construction dewatering applications





Piling and basement cut-off wall construction works generating spoil.

We understand that the basement cut-off wall will likely include a diaphragm wall extending down to bedrock. Construction of the diaphragm wall will generate spoil via excavation/displacement using rope clam shell grabs, hydraulic clam shell grabs or hydromill cutters. For simplicity herein, we have referred to this material and any material generated during alternative piling processes for the main structure collectively as spoil or piling spoil.

The strategy for managing PASS material generated during piling works will include ex-situ treatment, followed by waste classification and off-site disposal. The strategy for excavation of PASS material as part of basement construction (where applicable) will include in-situ and ex-situ treatment, followed by waste classification and off-site disposal.

Once the design and construction methodologies are finalised, the validation consultant is to undertake a review of these details in consultation with the client/construction/excavation contractor. If the scope of the ASSMP is not considered to be adequate to address the potential environmental risks associated with the disturbance of PASS materials during the development, an addendum or revised ASSMP is to be prepared (reference should also be made to Section 4.5 of this ASSMP in this regard). This must be submitted to the certifier and the consent authority (Northern Beaches Council) prior to commencement of works that disturb or expose PASS.

JKE is aware that some licenced facilities may be able to accept untreated PASS, provided that the material is managed appropriately and can meet the strict monitoring and pH testing requirements of the facility. This approach would most likely only be applicable to the natural PASS waste stream and would not apply for mixtures of PASS and fill (such as that material generated during piling which is expected to include a fill, natural non-PASS soils and PASS mixture). The client should make further enquiries in this regard to identify facilities that can accept untreated PASS and establish whether it is more cost effective to manage some of the PASS in this way. Should this alternative method be attempted, an addendum to this ASSMP is to be prepared by a suitably qualified consultant to reflect the specific handling, management and monitoring requirements of the receiving facility.

#### 4.4 Management of PASS

#### 4.4.1 Piling Spoil PASS (ex-situ treatment)

PASS material generated during piling works will be managed by the addition of lime to neutralise acid that may be produced during and after piling works. The treated material is then to be assigned a waste classification in accordance with the NSW EPA Waste Classification Guidelines - Part 1: Classifying Waste (2014)<sup>4</sup> and NSW EPA Waste Classification Guidelines - Part 4: Acid Sulfate Soils (2014)<sup>5</sup>, and disposed off-site to landfill.

<sup>&</sup>lt;sup>5</sup> NSW EPA, (2014). Waste Classification Guidelines, Part 4: Acid Sulfate Soils. (referred to as Part 4 of the Waste Classification Guidelines 2014)



<sup>&</sup>lt;sup>4</sup> NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Part 1 of the Waste Classification Guidelines 2014)



A slightly alkaline, low solubility product such as agricultural lime should be used. This form of lime is chemically stable and any excess lime takes a significant period of time (years) to influence soil pH beyond the depth of application. The lime particles eventually become coated with an insoluble layer of ferrihydrite (Fe[OH]3) that inhibits further reaction. Long term alteration of groundwater conditions is not expected to occur as a result of the use of lime above the groundwater mark during the proposed development works. Controlled applications of agricultural limes are generally not harmful to plants, humans and most aquatic species and, therefore, are considered suitable for use on the soils for this project.

The construction contractor is to ensure that an appropriate Work Health and Safety Plan (WHSP) and Construction Environmental Management Plan (CEMP) is prepared prior to the use of lime and commencement of construction/management works.

Reference is to be made to the following table for the ex-situ treatment and management procedure:

Table 4-1: Ex-situ Treatment/Management of PASS – Piling Spoil

| Procedure                                           | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1: Lime selection and Liming Rate Calculations | A suitable lime product is to be selected as discussed above. A neutralising value (NV), effective neutralising value (ENV) and overall liming rate for ex-situ treatment of PASS is to be calculated based on the type of lime (and its properties) selected, the acid base accounting results presented in the PSI report and in accordance with the ASS Manual 1998.  The initial lime calculations from the acid base accounting laboratory results indicated that the soils tested do not require liming. This must be confirmed via treatment trials during the initial stage of excavation works, and refined as required.                                                                                                                                                                                                                 |
| Step 2: Set up treatment area/s                     | A treatment area for the mixing of piling spoil with agricultural lime should be established. Treatment must occur either within a leak-proof containment area such as a bunded area on hardstand, or in a designated area where the ground surface is protected by a guard layer of lime. The pad of lime should be at least 100mm thick and this thickness should be maintained for the duration of treatment works. The purpose of this guard layer is to minimise the risk of acidic water leaching from the base of the treatment area into the shallow groundwater table.  Dependent upon the rate of spoil generation, several bunded treatment areas may be necessary for stockpiling and treatment. An earthworks strategy should be prepared to ensure that sufficient space is available on-site to accommodate treatment of the PASS. |
| Step 3: Manage water run-off                        | During piling, PASS material is expected to be generated from at or below the water table and the treated material is likely to be wet. The treatment area should be designed to retain any water run-off from the treated materials. This could consist of a compacted clay bund (constructed of non-PASS material) and/or sandbags filled with a mixture of lime and sand.  PASS material is expected to be generated from at or below the water table and the treated material is likely to be wet. The treatment area must be designed to retain any water run-off from the treated materials. This could consist of sandbags filled with a mixture of lime and sand. Reference should also be made to Section 4.5 for additional details of the water management measures required.                                                          |



| Procedure                                   | <b>Details</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Step 4: Excavation & handling               | During piling works, separation of PASS and non-PASS material is unlikely to be possible. In this case all piling spoil should be treated as PASS. PASS generated during piling works should be immediately transferred to the designated treatment area and spread out in 150mm thick layers. If possible, the layers should be allowed to dry in order to aid the mixing process. The layers should then be interspersed with the appropriate amount of lime to aid in the effective mixing of lime and soil. Lime should be applied to the excavated material within the treatment area as soon as possible.                                           |  |  |  |  |  |  |
|                                             | If circumstances prevent the spreading and treatment of the material, the surface area of the stockpile should be minimised by forming a relatively high coned shape and avoiding 'spreading-out' of the stockpile. This will limit the surface area exposed to oxidation. Water infiltration should be minimised by covering the stockpile during wet weather as noted in Step 3. This will limit the formation and transport of acid leachate due to rainfall. The stockpile should be bunded to prevent erosion of the PASS and any movement of potentially acid leachate. Upstream surface runoff water should also be diverted around the stockpile. |  |  |  |  |  |  |
|                                             | It is noted that contaminants have been identified in the overlying fill soil (i.e. in soils above the PASS) as documented in the PSI report. Any additional requirements outlined by the project environmental consultant for managing such contamination must also be considered during piling given that the piling spoil to be generated will likely include (unless adequate segregation occurs) a mixture of the fill and PASS (i.e. piling is likely to extend through the fill and into the PASS, generating a mixed waste stream).                                                                                                               |  |  |  |  |  |  |
|                                             | An earthworks strategy should be developed to manage the stockpiles. It is noted that the validation testing (see Step 5 below) can take several days, therefore suitable allowances should be incorporated into the project timeline.                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Step 5: Lime treatment & validation testing | An excavator or other suitable equipment (as deemed appropriate by the construction contractor) should be used to thoroughly mix the lime through the soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                             | Once treatment occurs, samples are to be collected from the treated soil at the rates required in the National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual (2018). A minimum of one sample is recommended per batch of treated soil prior to off-site disposal, and the overall validation frequency must be as follows:  • <250m³, two samples • 251-500m³, three samples                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                             | <ul> <li>1,000m³, four samples</li> <li>&gt;1,000 m³, four samples plus one sample per additional 500m³</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                             | Field pH may be used as a preliminary indicator where deemed appropriate by the validation consultant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                             | Validation testing is to occur at a NATA accredited laboratory and will include acid base accounting using the chromium reducible sulfur method described in the <i>National Acid Sulfate Soil Guidance: National acid sulfate soils identification and laboratory methods manual</i> (2018). For piling spoil, if the works occur progressively, a minimum of one sample is required per batch of treated soil prior to off-site disposal, with no less than four samples in total for the project up to 500m <sup>3</sup> of material to be treated.                                                                                                    |  |  |  |  |  |  |
|                                             | The validation net acidity results should be zero or less than the laboratory practical quantitation limits (PQL), depending on how the laboratory report their results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |



| Procedure                                         | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                   | It is noted that the validation testing takes 3-4 days, therefore suitable allowances should be incorporated into the project timeline and earthworks plan.                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Step 6: Waste classification and offsite disposal | Following treatment, the material should be tested and assigned a waste classification in accordance with the Parts 1 and 4 of the Waste Classification Guidelines 2014. All neutralised material should be disposed of off-site to a facility licensed by the NSW EPA to accept treated PASS.  The waste classification of a mixed fill and PASS waste stream must appropriately consider the available data from the overlying fill (e.g. that in the PSI report and any additional data that is collected).  Waste disposal is to be tracked and kept on record. |  |  |  |  |  |  |  |

#### 4.4.2 PASS Disturbed/Exposed During Basement Excavation (in-situ/ex-situ treatment)

Notwithstanding the potential findings of further investigation (as outlined in Section 4.1), bulk excavation and detailed excavation (e.g. lift pits) for the proposed basement is anticipated to extend to, or possibly into, the PASS. Reference is to be made to the following table for the treatment and management procedure:

Table 4-2: In-situ/Ex-situ Treatment/Management of PASS – Basement Excavation

| Procedure                                           | <b>Details</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1: Lime selection and Liming Rate Calculations | A suitable lime product is to be selected as discussed in Section 4.4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Step 2: Set up treatment area/s                     | Treatment of bulk quantities of PASS with lime will take place within the footprint of the proposed basement area during excavation, following removal of the overlying fill material                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | and non-PASS natural soils. It is assumed that the basement shoring system will have been installed around this area and that the area will be dewatered prior to excavation.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step 3: Manage water run-off                        | The treatment area will be within the basement footprint which will retain any water runoff from the treated materials. Further reference should be made to Section 4.5 for details of the groundwater management measures required.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Step 4: Excavation & handling                       | It is expected that the initial surface of PASS material will become exposed from approximately 0.6mBGL to 1.3mBGL and may extend to further depths. Treatment trials are required to confirm liming rates for this material. Lime (as required) should be applied to any exposed PASS surfaces within the treatment area as soon as possible.                                                                                                                                                                                                                                                                                       |
|                                                     | The treatment of PASS within the basement excavation footprint will occur in 100mm layers (or similar, based on what is appropriate to achieve adequate neutralisation and materials handling). An appropriate amount of lime is to be applied to each layer, per square metre based on the volume/tonnage of soil to be treated in each layer. The layer is to be pushed or scraped up to appropriately mix in the lime, then the material is to be consolidated into one corner of the excavation to facilitate the validation testing. This process is to be repeated for each layer until the bulk excavation depth is achieved. |



| Procedure                                         | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | If there are any localised/detailed excavations where excavation/treatment in layers is not practicable, material from these areas is to be excavated and treated using the ex-situ treatment methods described previously in Table 4-1.                                                                                                                                                                                                                                                                                    |
|                                                   | An earthworks strategy should be prepared incorporating the above procedure to ensure that adequate mixing of the neutralising agent (i.e. lime) and of the PASS material is achieved. It is noted that the validation testing (see Step 5 below) takes several days, therefore suitable allowances should be incorporated into the project timeline.                                                                                                                                                                       |
| Step 5: Lime treatment & validation testing       | An excavator or other suitable equipment (as deemed appropriate by the construction contractor) should be used to thoroughly mix the lime through the soil.                                                                                                                                                                                                                                                                                                                                                                 |
|                                                   | Once treatment occurs, samples are to be collected from the treated soil at the rates required in the National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual (2018). A minimum of one sample is recommended per batch of treated soil prior to off-site disposal, and the overall validation frequency must be as follows:  • <250m³, two samples  • 251-500m³, three samples  • 1,000m³, four samples  • >1,000 m³, four samples plus one sample per additional 500m³ |
|                                                   | Field pH may be used as a preliminary indicator where deemed appropriate by the validation consultant.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | Validation testing is to occur at a NATA accredited laboratory and will include acid base accounting using the chromium reducible sulfur method described in the <i>National Acid Sulfate Soil Guidance: National acid sulfate soils identification and laboratory methods manual</i> (2018). The validation net acidity results should be zero or less than the laboratory practical quantitation limits (PQL) (depending on how the laboratory report their results).                                                     |
|                                                   | It is noted that the validation testing takes 3-4 days, therefore suitable allowances should be incorporated into the project timeline and earthworks plan.                                                                                                                                                                                                                                                                                                                                                                 |
| Step 6: Waste classification and offsite disposal | Following treatment, the material should be tested and assigned a waste classification in accordance with the Parts 1 and 4 of the Waste Classification Guidelines 2014. All neutralised material should be disposed of off-site to a facility licensed by the NSW EPA to accept treated PASS. Waste disposal is to be tracked and kept on record.                                                                                                                                                                          |

#### 4.5 Groundwater Seepage and Dewatering

For this project, an engineered retention system will be installed prior to commencement of excavation for the proposed basement and piling (e.g. anchored or propped secant pile shoring walls) will occur so that the basement shoring would be a 'watertight' structure. Given the likelihood of shallow groundwater at the site, temporary dewatering is considered to be required to complete the basement excavation.

Based on the JK Geotechnics geotechnical report, it is assumed that the basement shoring system will need to extend to sufficient depth below bulk excavation level to limit groundwater drawdown outside the basement footprint and minimise settlement impacts beyond the site boundary (i.e. into bedrock). On this





basis, the potential to dewater PASS outside the basement excavation, to the extent that could cause prolonged oxidation and generation of acidic material, is considered to be low.

The details of dewatering are yet to be confirmed. Once the details of dewatering are confirmed, an *Acid Sulfate Soil Dewatering Management Plan* (ASSDMP) is to be prepared by the validation consultant. This is to be designed with reference to the *National Acid Sulfate Soil Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments* (2018) and consider the site-specific requirements of the dewatering.

The dewatering plan is to be submitted to the relevant consent authorities (e.g. Northern Beaches Council and NSW Office of Water/Water NSW) for approval prior to the commencement of works. We note that Water NSW should be contacted for advice in relation to obtaining relevant approvals for dewatering, prior to preparation of the management plan.

#### 4.6 Contingency Plan

In the event the results of soil neutralisation or groundwater monitoring tests (to be outlined in the ASSDMP) indicate a significant change in acidic conditions, the contingency plan should be implemented. Reference is to be made to the contingency plan below and to any other contingency plans documented in the *Acid Sulfate Soil Dewatering Management Plan* to be prepared for the project.

If soil monitoring indicates the presence of significantly more acidic material than expected, all excavation works should be placed on hold (where it is safe to do so) until further action is taken to limit the oxidation of PASS in the area of disturbance. Contingency works will be undertaken as follows:

- The pH of soils exposed to oxygen within the excavation will be measured to establish the source of the acidic conditions;
- Under the direction of the validation consultant, material found to be acidic may be selectively excavated and neutralised in accordance with the ex-situ treatment methods in Section 4.4.2 (Table 4-1). Exposed surfaces should be immediately 'dusted' with lime; and
- Where suitable, in-situ treatment involving lime addition and shallow in-situ mixing may be adopted.

Reference must also be made to the contingency plan to be outlined in the ASSDMP.

#### 4.7 Documentation

On completion of the works requiring management under this ASSMP, a validation report is to be prepared by the validation consultant. The validation report is to document the works completed, present the validation testing results and comment on the adequacy of the overall compliance with the ASSMP. Any other specific conditions imposed by Northern Beaches Council on the development consent must also be adequately addressed.





#### 5 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified AASS or PASS issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
   These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose;
- Copyright in this report is the property of JKE. JKE has used a degree of care, skill and diligence normally
  exercised by consulting professionals in similar circumstances and locality. No other warranty
  expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the
  client alone shall have a licence to use this report;
- If the client, or any person, provides a copy of this report to any third party, such third party must not rely on this report except with the express written consent of JKE; and
- Any third party who seeks to rely on this report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.



If you have any questions concerning the contents of this letter please do not hesitate to contact us.

**Kind Regards** 

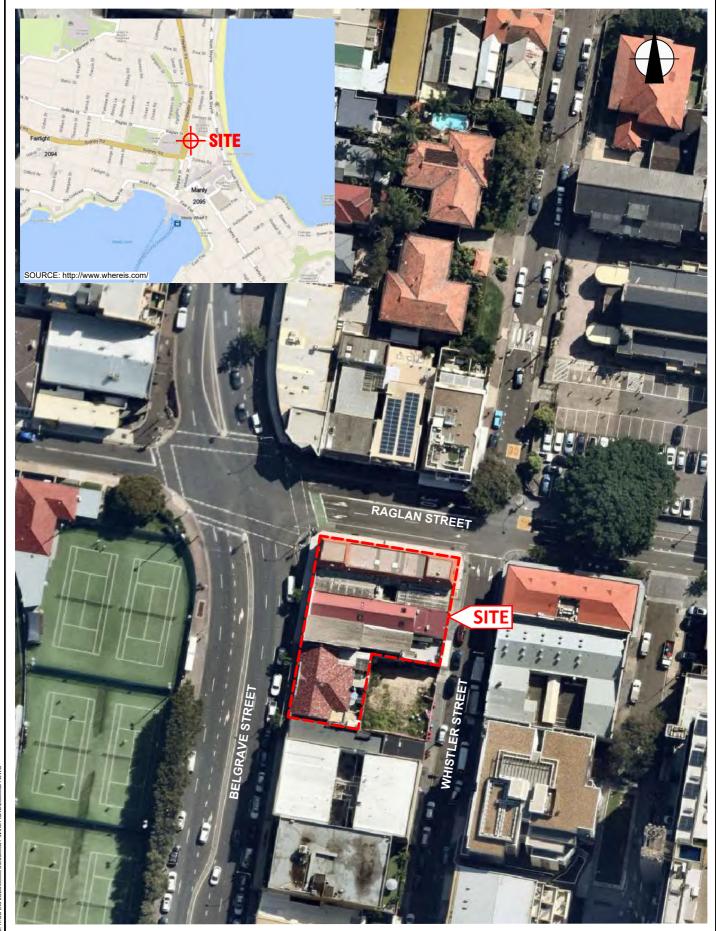
Katrina Taylo

Associate | Environmental Scientist

Vitta Boggaram
Principal Associate

**Appendices:** 

**Appendix A: Report Figures** 


Appendix B: Laboratory Results Summary Tables
Appendix C: Information on Acid Sulfate Soils

**Appendix D: Borehole Logs** 

**Appendix E: Laboratory Reports & COC Documents** 



**Appendix A: Report Figures** 



AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

This plan should be read in conjunction with the Environmental report.

SITE LOCATION PLAN

Location: 35-39, 40, 41, 42 & 43 BELGRAVE STREET, MANLY, NSW

Project No: E35999BT

**JK**Environments

Figure No:







**Appendix B: Laboratory Results Summary Tables** 



#### ABBREVIATIONS AND EXPLANATIONS FOR ACID SULFATE SOIL TABLE

#### Abbreviations used in the Tables:

ANC<sub>BT</sub> Acid Neutralising Capacity - Back Titration

ANCE Excess Acid Neutralising Capacity

CaCO<sub>3</sub> Calcium Carbonate

kg kilogram

mol H<sup>+</sup>/t moles hydrogen per tonne

**pHF** Field pH

pHFOX Field peroxide pHpH<sub>KCI</sub> Pottasium chloride pH

S Sulfur

**SCr** The symbol given to the result from the Chromium Reducible Sulfur method

**S**<sub>NAS</sub> Net Acid Soluble Sulfur **% w/w** Percentage by mass

Results have been assessed against the criteria specified in Table 1.1 of National Acid sulfate Soil Guidance - National acid sulfate soil identification and laboratory method manual. Water Quality Australia. June 2018



# TABLE A SUMMARY OF LABORATORY RESULTS - ACID SULFATE SOIL ANALYSIS

| Soil Texture:                                  | Coarse        | Analysis             |     | рН                | <sub>F</sub> and pH <sub>FOX</sub> |                                     |                   | Actual Acidity<br>(Titratable<br>Actual Acidity -<br>TAA) | Potential Sulfidic Acidity |                                 | Potential Sulfidic Acidity |           | Retained<br>Acidity     | Acid Neutralising<br>Capacity (ANC <sub>BT</sub> ) | a-Net Acidity    | s-Net Acidity<br>without ANCE | Liming Rate - without<br>ANCE |
|------------------------------------------------|---------------|----------------------|-----|-------------------|------------------------------------|-------------------------------------|-------------------|-----------------------------------------------------------|----------------------------|---------------------------------|----------------------------|-----------|-------------------------|----------------------------------------------------|------------------|-------------------------------|-------------------------------|
|                                                |               |                      | pH₅ | pH <sub>FOX</sub> | Reaction                           | pH <sub>F</sub> - pH <sub>FOX</sub> | pH <sub>KCL</sub> | (mol H <sup>+</sup> /t)                                   | (% SCr)                    | (% SCr) (mol H <sup>+</sup> /t) |                            | (% CaCO₃) | (mol H <sup>+</sup> /t) | (%w/w S)                                           | (kg CaCO₃/tonne) |                               |                               |
| National Acid Sulfate Soils<br>Guidance (2018) |               | -                    | -   | -                 | -                                  | -                                   | -                 | -                                                         | -                          | -                               | -                          | 18        | 0.03                    | -                                                  |                  |                               |                               |
|                                                | Sample Depth  |                      |     |                   |                                    |                                     |                   |                                                           |                            |                                 |                            |           |                         |                                                    |                  |                               |                               |
| Reference                                      | (m)           | Sample Description   |     |                   |                                    |                                     |                   |                                                           |                            |                                 |                            |           |                         |                                                    |                  |                               |                               |
| BH1                                            | 0-0.1         | F: Silty Sand        | 7.1 | 5.8               | Low reaction                       | 1.3                                 | -                 | -                                                         | -                          | -                               | -                          | -         | -                       | -                                                  | -                |                               |                               |
| BH1                                            | 0.6-0.8       | Silty Sand           | 8.2 | 6                 | Low reaction                       | 2.2                                 | 8.9               | <5                                                        | < 0.005                    | <3                              | [NT]                       | < 0.05    | <5                      | <0.005                                             | <0.75            |                               |                               |
| BH1                                            | 2-2.2         | Silty Sand           | 7.9 | 6.2               | Low reaction                       | 1.7                                 | 7.9               | <5                                                        | < 0.005                    | <3                              | [NT]                       | 0.05      | <5                      | <0.005                                             | <0.75            |                               |                               |
| BH2                                            | 0.1-0.2       | F: Silty Clayey Sand | 7.6 | 5.9               | Low reaction                       | 1.7                                 | 8.3               | <5                                                        | 0.01                       | 8                               | [NT]                       | < 0.05    | 7.5                     | 0.01                                               | <0.75            |                               |                               |
| BH2                                            | 1.3-1.5       | Silty Sand           | 7.1 | 5.7               | Medium reaction                    | 1.4                                 | -                 | -                                                         | -                          | -                               | -                          | -         | -                       | -                                                  | -                |                               |                               |
| BH2                                            | 2.5-2.7       | Silty Sand           | 7   | 5.6               | Medium reaction                    | 1.4                                 | 7.4               | <5                                                        | <0.005                     | <3                              | [NT]                       | <0.05     | <5                      | <0.005                                             | <0.75            |                               |                               |
| Total Number                                   | of Samples    |                      | 6   | 6                 | 6                                  | 6                                   | 4                 | 4                                                         | 4                          | 4                               | -                          | 4         | 4                       | 4                                                  | 4                |                               |                               |
| Minimum Valu                                   | Minimum Value |                      | 7.0 | 5.6               | Low reaction                       | 1.3                                 | 7.4               | <5                                                        | <0.005                     | 8                               | -                          | 0.05      | <5                      | <0.005                                             | <0.75            |                               |                               |
| Maximum Val                                    | ue            |                      | 8.2 | 6.2               | Medium reaction                    | 2.2                                 | 8.9               | <5                                                        | 0.01                       | 8                               | -                          | 0.05      | 7.5                     | 0.01                                               | <0.75            |                               |                               |

Values Exceeding Action Criteria



**Appendix C: Information on Acid Sulfate Soils** 



#### A. Background

Acid Sulfate Soil (ASS) is formed from iron rich alluvial sediments and sulfate (found in seawater) in the presence of sulfate reducing bacteria and plentiful organic matter. These conditions are generally found in mangroves, salt marsh vegetation or tidal areas and at the bottom of coastal rivers and lakes. ASS materials are distinguished from other soil or sediment materials (referred to as 'soil materials' throughout the National Acid Sulfate Soils Guidance) by having properties and behaviour that have either:

- 1) Been affected considerably by the oxidation of Reduced Inorganic Sulfur (RIS), or
- 2) The capacity to be affected considerably by the oxidation of their RIS constituents.

Acid sulfate soil materials include potential acid sulfate soils (PASS or sulfidic soil materials) and actual acid sulfate soils (AASS or sulfuric soil materials). These are often found in the same profile, with AASS overlying PASS. PASS and AASS are defined further below:

- PASS are soil materials which contain RIS such as pyrite. The field pH of these soils in their undisturbed state is usually more than pH 4 and is commonly neutral to alkaline (pH 7–9). These soil materials are invariably saturated with water in their natural state. Their texture may be peat, clay, loam, silt or sand and is often dark grey in colour and soft in consistence, but these materials may also exhibit colours that are dark brown, or medium to pale grey to white; and
- AASS are soil materials which contained RIS such as pyrite that have undergone oxidation. This oxidation
  results in low pH (that is pH less than 4) and often a yellow (jarosite) and/or orange to red mottling (ferric
  iron oxides) in the soil profile. Actual ASS contains Actual Acidity, and commonly also contains RIS (the
  source of Potential Sulfuric Acidity) as well as Retained Acidity.

#### B. The ASS Planning Maps

The ASS planning maps provide an indication of the relative potential for disturbance of ASS to occur at locations within the council area. These maps do not provide an indication of the actual occurrence of ASS at a site or the likely severity of the conditions.

The maps are divided into five classes dependent upon the type of activities/works that if undertaken, may represent an environmental risk through the development of acidic conditions associated with ASS:

Table 1: Risk Classes

| Risk Class | Description                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 1    | All works.                                                                                                                                             |
| Class 2    | All works below existing ground level and works by which the water table is likely to be lowered.                                                      |
| Class 3    | Works at depths beyond 1m below existing ground level or works by which the water table is likely to be lowered beyond 1m below existing ground level. |
| Class 4    | Works at depths beyond 2m below existing ground level or works by which the water table is likely to be lowered beyond 2m below existing ground level. |
| Class 5    | Works within 500m of adjacent Class 1, 2, 3, 4 land which are likely to lower the water table below 1m AHD on the adjacent land.                       |



#### C. The ASS Risk Maps

The ASS risk maps provide an indication of the probability of occurrence of ASS materials at a particular location based on interpretation from geological and soil landscape maps. The maps provide classes based on high probability, low probability, no known occurrence and areas of disturbed terrain (site specific assessment necessary) and the likely depth at which ASS materials are likely to be encountered.

#### D. <u>Interpretation of ASS Field Tests</u>

Tables A1 and A2 below provide some guidance on the interpretation of pH<sub>F</sub> and pH<sub>FOX</sub> test results, as detailed in the *National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual* (2018):

Table A1: Interpretation of some pHF test ranges

| pH value                                                                   | Result                                                                                                        | Comments                                                                                                                                                                   |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH <sub>F</sub> ≤ 4, jarosite not<br>observed in the soil<br>layer/horizon | May indicate an AASS indicating previous oxidation of RIS or may indicate naturally occurring, non ASS soils. | Generally not conclusive as naturally occurring, non ASS soils, such as many organic soils (for example peats) and heavily leached soils, often also return $pH_F \le 4$ . |
| pH <sub>F</sub> ≤ 4, jarosite<br>observed in the soil<br>layer/horizon     | The soil material is an AASS.                                                                                 | Jarosite and other iron precipitate minerals in ASS such as schwertmannite require a pH < 4 to form and indicate prior oxidation of RIS.                                   |
| pH <sub>F</sub> > 7                                                        | Expected in waterlogged, unoxidised, or poorly drained soils.                                                 | Marine muds commonly have a pH > 7 which reflects a seawater (pH 8.2) influence. Oxidation of samples with $H_2O_2$ can help indicate if the soil materials contain RIS.   |

Source: Adapted from DER (2015a).

Table A2: Interpretation of pH<sub>FOX</sub> test results

| pH value and reaction                                                                                    | Result                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strong reaction of soil with H <sub>2</sub> O <sub>2</sub> (that is X or V)                              | Useful indicator of the presence of RIS but cannot be used alone | Organic rich substrates such as peat and coffee rock, and soil constituents like manganese oxides, can also cause a reaction. Care must be exercised in interpreting these results. Laboratory analyses are required to confirm if appreciable RIS is present.                                                                                                                                                                                                                                                                                                    |
| $pH_{FOX}$ value at least one unit below field $pH_F$ and strong reaction with $H_2O_2$ (that is X or V) | May indicate PASS                                                | The difference between pH $_{\rm F}$ and pH $_{\rm FOX}$ is termed the $\Delta$ pH. Generally the larger the $\Delta$ pH the more indicative of PASS. The lower the final pH $_{\rm FOX}$ the better the likelihood of an appreciable RIS content. For example, a change from pH $_{\rm F}$ of 8 to pH $_{\rm FOX}$ of 7 (that is a $\Delta$ pH of 1) would not indicate PASS, however, a unit change from pH $_{\rm F}$ of 3.5 to pH $_{\rm FOX}$ of 2.5 would be indicative of PASS. Laboratory analyses are required to confirm if appreciable RIS is present. |
| $pH_{FOX}$ < 3, large ΔpH and a strong reaction with $H_2O_2$ (that is X or V)                           | Strongly indicates PASS                                          | The lower the pH $_{FOX}$ below 3, the greater the likelihood that appreciable RIS is present. A combination of all three parameters – pH $_{FOX}$ , $\Delta$ pH and reaction strength – gives the best indication of PASS. Laboratory analyses are required to confirm that appreciable RIS is present.                                                                                                                                                                                                                                                          |



| pH value and reaction                                                                               | Result       | Comments                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| A pH <sub>FOX</sub> 3–4 and Low,<br>Medium or Strong<br>reaction with H <sub>2</sub> O <sub>2</sub> | Inconclusive | RIS may be present; however, organic matter may also be responsible for the decrease in pH. Laboratory analyses are required to confirm the presence of RIS.                                                                                                                                                                                                              |  |  |  |  |  |
| pH <sub>FOX</sub> 4–5                                                                               | Inconclusive | RIS may be present in small quantities, or poorly reactive under rapid oxidation, or the sample may contain shell/carbonate which neutralises some or all acid produced on oxidation. Equally, the pH <sub>FOX</sub> value may be due to the production of organic acids with no RIS present.  Laboratory analyses are required to confirm if appreciable RIS is present. |  |  |  |  |  |
| $pH_{FOX} > 5$ , small or no $ΔpH$ , but Low, Medium or Strong reaction with $H_2O_2$               | Inconclusive | For neutral to alkaline pHF with shell or white concretions, the fizz test with 1 M HCl can be used to identify the presence of carbonates. Laboratory analyses are required to confirm if appreciable RIS is present and further testing is required to confirm that effective self-neutralising materials are present.                                                  |  |  |  |  |  |

Source: Adapted from DER (2015a).



**Appendix D: Borehole Logs** 

# **JK**Environments ENVIRONMENTAL LOG



Environmental logs are not to be used for geotechnical purposes

Client: TIME AND PLACE

**Project**: PROPOSED MIXED USE DEVELOPMENT

Location: 43 BELGRAVE STREET, MANLY, NSW

Job No.: E35999BT Method: HAND AUGER R.L. Surface: N/A

| <b>Date:</b> 20/4/2                       | 23          |           |             | Datum: -                  |                                                                                                  |                                      |                           |                                         |         |
|-------------------------------------------|-------------|-----------|-------------|---------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|---------|
| Plant Type:                               | -           |           |             | Logg                      | ged/Checked by: O.B./T.H.                                                                        |                                      |                           |                                         |         |
| Groundwater Record ES ASS ASS SAMPLES SAL | Field Tests | Depth (m) | Graphic Log | Unified<br>Classification | DESCRIPTION                                                                                      | Moisture<br>Condition/<br>Weathering | Strength/<br>Rel. Density | Hand<br>Penetrometer<br>Readings (kPa.) | Remarks |
| DRY ON<br>COMPLE-<br>TION                 |             | 0 -       |             |                           | FILL: Silty sand, fine to medium grained, dark grey mottled yellow brown, with sandstone gravel. | D                                    |                           |                                         | -       |
|                                           |             | 1         |             | SM                        | Silty SAND: fine to medium grained, light brown mottled dark brown.                              | D                                    |                           |                                         | MARINE  |
|                                           |             | 2         |             |                           | as above, but orange brown.  END OF BOREHOLE AT 3.0m                                             | D                                    |                           |                                         | -       |
|                                           |             | 3.5 _     | -           |                           |                                                                                                  |                                      |                           |                                         | -       |

PYRIGHT

# **JK**Environments ENVIRONMENTAL LOG



Environmental logs are not to be used for geotechnical purposes

Client: TIME AND PLACE

**Project**: PROPOSED MIXED USE DEVELOPMENT

Location: 43 BELGRAVE STREET, MANLY, NSW

Job No.: E35999BT Method: HAND AUGER R.L. Surface: N/A

| <b>JOD NO</b> 2000                   | , o b i                   |             | Metriod. HAND AGGER R.E.  |                                                                                         |                                      |                           |                                         |                                |
|--------------------------------------|---------------------------|-------------|---------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|--------------------------------|
| <b>Date</b> : 20/4/23                |                           |             |                           |                                                                                         |                                      | D                         | atum: -                                 | -                              |
| Plant Type: -                        |                           |             | Logg                      | ged/Checked by: O.B./T.H.                                                               |                                      |                           |                                         |                                |
| Groundwater Record ES ASS ASB SAL DB | Field Lests Depth (m)     | Graphic Log | Unified<br>Classification | DESCRIPTION                                                                             | Moisture<br>Condition/<br>Weathering | Strength/<br>Rel. Density | Hand<br>Penetrometer<br>Readings (kPa.) | Remarks                        |
| ■ DRY ON                             | 0                         | A A         |                           | CONCRETE: 100mm.t                                                                       | 207                                  | 0, E                      |                                         | _                              |
| TION                                 | 0.5 -                     |             | -                         | FILL: Silty clayey sand, fine to medium grained, dark brown, trace of sandstone gravel. | D                                    |                           |                                         |                                |
|                                      | 1.5 — 1.5 — 2 — 2 — 2.5 — |             | SM                        | Silty SAND: fine to medium grained, light brown mottled orange and dark brown.          | D                                    |                           |                                         | MARINE  MARINE  MARINE  MARINE |
|                                      | -<br>-<br>-<br>-          | NUMB24      |                           | END OF BOREHOLE AT 3.0m                                                                 |                                      |                           | _                                       | -<br>-<br>-                    |
| ;                                    | 3.5                       |             |                           |                                                                                         |                                      |                           |                                         |                                |

PYRIGHT



### **ENVIRONMENTAL LOGS EXPLANATION NOTES**

#### INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

#### **DESCRIPTION AND CLASSIFICATION METHODS**

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

| Soil Classification | Particle Size    |
|---------------------|------------------|
| Clay                | < 0.002mm        |
| Silt                | 0.002 to 0.075mm |
| Sand                | 0.075 to 2.36mm  |
| Gravel              | 2.36 to 63mm     |
| Cobbles             | 63 to 200mm      |
| Boulders            | > 200mm          |

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

| Relative Density  | SPT 'N' Value<br>(blows/300mm) |
|-------------------|--------------------------------|
| Very loose (VL)   | < 4                            |
| Loose (L)         | 4 to 10                        |
| Medium dense (MD) | 10 to 30                       |
| Dense (D)         | 30 to 50                       |
| Very Dense (VD)   | > 50                           |

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

| Classification   | Unconfined<br>Compressive<br>Strength (kPa) | Indicative Undrained<br>Shear Strength (kPa) |
|------------------|---------------------------------------------|----------------------------------------------|
| Very Soft (VS)   | ≤25                                         | ≤ 12                                         |
| Soft (S)         | > 25 and ≤ 50                               | > 12 and ≤ 25                                |
| Firm (F)         | > 50 and ≤ 100                              | > 25 and ≤ 50                                |
| Stiff (St)       | > 100 and ≤ 200                             | > 50 and ≤ 100                               |
| Very Stiff (VSt) | > 200 and ≤ 400                             | > 100 and ≤ 200                              |
| Hard (Hd)        | > 400                                       | > 200                                        |
| Friable (Fr)     | Strength not attainable                     | – soil crumbles                              |

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

#### **INVESTIGATION METHODS**

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

**Test Pits:** These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the



structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

**Rock Augering:** Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

**Wash Boring:** The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

**Mud Stabilised Drilling:** Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

**Continuous Core Drilling:** A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

**Standard Penetration Tests:** Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid  $60^{\circ}$  tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

#### LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.





#### **GROUNDWATER**

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

#### FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

#### LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.





## **SYMBOL LEGENDS**

| SOIL                          |                                    | ROCK              |
|-------------------------------|------------------------------------|-------------------|
|                               | FILL                               | CONGLOMERATE      |
| <u> </u>                      | TOPSOIL                            | SANDSTONE         |
|                               | CLAY (CL, CI, CH)                  | SHALE/MUDSTONE    |
|                               | SILT (ML, MH)                      | SILTSTONE         |
|                               | SAND (SP, SW)                      | CLAYSTONE         |
|                               | GRAVEL (GP, GW)                    | COAL              |
|                               | SANDY CLAY (CL, CI, CH)            | LAMINITE          |
|                               | SILTY CLAY (CL, CI, CH)            | LIMESTONE         |
|                               | CLAYEY SAND (SC)                   | PHYLLITE, SCHIST  |
|                               | SILTY SAND (SM)                    | TUFF              |
|                               | GRAVELLY CLAY (CL, CI, CH)         | GRANITE, GABBRO   |
|                               | CLAYEY GRAVEL (GC)                 | DOLERITE, DIORITE |
|                               | SANDY SILT (ML, MH)                | BASALT, ANDESITE  |
| ፍድ ብድ ብ<br>ዩ ብን ብድ<br>የን ብድ ብ | PEAT AND HIGHLY ORGANIC SOILS (Pt) | QUARTZITE         |
|                               | OTHER MATERIALS                    |                   |
|                               | BRICKS OR PAVER                    | S                 |

CONCRETE

ASPHALTIC CONCRETE



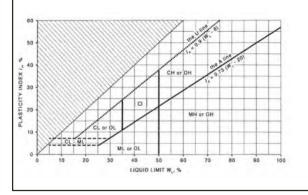
#### **CLASSIFICATION OF COARSE AND FINE GRAINED SOILS**

| Ma                                                                                             | Group  Major Divisions Symbol Typical Names    |    | ·                                                                    |                                                                                                                                        | Laboratory Classification     |                                              |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------|----|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|--|
| ianis                                                                                          | GRAVEL (more than half                         | GW | Gravel and gravel-sand mixtures, little or no fines                  | Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength    | ≤ 5% fines                    | C <sub>u</sub> >4<br>1 <c<sub>c&lt;3</c<sub> |  |
| rsize fract                                                                                    | of coarse<br>fraction is larger<br>than 2.36mm | GP | Gravel and gravel-sand mixtures, little or no fines, uniform gravels | Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength | ≤ 5% fines                    | Fails to comply with above                   |  |
| luding ove                                                                                     |                                                | GM | Gravel-silt mixtures and gravel-<br>sand-silt mixtures               | 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength                                                        | ≥ 12% fines, fines are silty  | Fines behave as silt                         |  |
| of sail exclu                                                                                  |                                                | GC | Gravel-clay mixtures and gravel-<br>sand-clay mixtures               | 'Dirty' materials with excess of plastic fines, medium to high dry strength                                                            | ≥ 12% fines, fines are clayey | Fines behave as clay                         |  |
| than 65%<br>eater thar                                                                         | SAND (more<br>than half                        | SW | Sand and gravel-sand mixtures, little or no fines                    | Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength    | ≤ 5% fines                    | Cu > 6<br>1 < Cc < 3                         |  |
| ioi (mare                                                                                      | of coarse<br>fraction<br>is smaller than       | SP | Sand and gravel-sand mixtures, little or no fines                    | Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength | ≤ 5% fines                    | Fails to comply with above                   |  |
| Carse grained soil (more than 65% of soil excluding oversize fraction is greater than 0.075mm) | 2.36mm)                                        | SM | Sand-silt mixtures                                                   | 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength                                                        | ≥ 12% fines, fines are silty  |                                              |  |
| Coars                                                                                          |                                                | SC | Sand-clay mixtures                                                   | 'Dirty' materials with excess of plastic fines, medium to high dry strength                                                            | ≥ 12% fines, fines are clayey | N/A                                          |  |

|                                                                                   |                                 | Group  |                                                                                                      |                   |                   | Laboratory<br>Classification |              |
|-----------------------------------------------------------------------------------|---------------------------------|--------|------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------------------------|--------------|
| Majo                                                                              | Major Divisions Syn             |        | Typical Names                                                                                        | Dry Strength      | Dilatancy         | Toughness                    | % < 0.075mm  |
| duding<br>m)                                                                      | SILT and CLAY<br>(low to medium | ML     | Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity | None to low       | Slow to rapid     | Low                          | Below A line |
| ainedsoils (more than 35% of soil excl<br>oversize fraction is less than 0.075mm) | plasticity)                     | CL, CI | Inorganic clay of low to medium plasticity, gravelly clay, sandy clay                                | Medium to high    | None to slow      | Medium                       | Above A line |
| an 35%<br>ssthan                                                                  |                                 | OL     | Organic silt                                                                                         | Low to medium     | Slow              | Low                          | Below A line |
| orethic<br>on is le                                                               | SILT and CLAY                   | МН     | Inorganicsilt                                                                                        | Low to medium     | None to slow      | Low to medium                | Below A line |
| soils (m<br>e fracti                                                              | (high plasticity)               | СН     | Inorganic clay of high plasticity                                                                    | High to very high | None              | High                         | Above A line |
| iregainedsoils (morethan 35% of soil e<br>oversize fraction is less than 0,075m   |                                 | OH     | Organic clay of medium to high plasticity, organic silt                                              | Medium to high    | None to very slow | Low to medium                | Below A line |
| .=                                                                                | Highly organic soil             | Pt     | Peat, highly organic soil                                                                            | -                 | -                 | -                            | -            |

#### **Laboratory Classification Criteria**

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature  $1 < C_c < 3$ . Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and  $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$ 

Where  $D_{10}$ ,  $D_{30}$  and  $D_{60}$  are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

#### NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C<sub>c</sub>) and uniformity (C<sub>u</sub>) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

# Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour





## **LOG SYMBOLS**

| Log Column                                 | Symbol                        | Definition                                                                                                                           |                                                                                                                |                                                                                                                            |  |  |  |
|--------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Groundwater Record                         |                               | Standing water level                                                                                                                 | Time delay following compl                                                                                     | etion of drilling/excavation may be shown.                                                                                 |  |  |  |
|                                            | _ <del></del>                 | Extent of borehole/t                                                                                                                 | est pit collapse shortly after o                                                                               | drilling/excavation.                                                                                                       |  |  |  |
|                                            | <b>-</b>                      | Groundwater seepag                                                                                                                   | Groundwater seepage into borehole or test pit noted during drilling or excavation.                             |                                                                                                                            |  |  |  |
| Samples                                    | ES                            | *                                                                                                                                    | epth indicated, for environm                                                                                   |                                                                                                                            |  |  |  |
|                                            | U50<br>DB                     |                                                                                                                                      | diameter tube sample taken<br>e taken over depth indicated                                                     |                                                                                                                            |  |  |  |
|                                            | DS DS                         |                                                                                                                                      | sample taken over depth ind                                                                                    |                                                                                                                            |  |  |  |
|                                            | ASB                           | _                                                                                                                                    | er depth indicated, for asbes                                                                                  |                                                                                                                            |  |  |  |
|                                            | ASS                           | *                                                                                                                                    | er depth indicated, for asid s                                                                                 |                                                                                                                            |  |  |  |
|                                            | SAL                           | *                                                                                                                                    | er depth indicated, for salinit                                                                                |                                                                                                                            |  |  |  |
|                                            | PFAS                          |                                                                                                                                      |                                                                                                                | sis of Per- and Polyfluoroalkyl Substances.                                                                                |  |  |  |
| Ciald Tasks                                | N 17                          | ·                                                                                                                                    |                                                                                                                |                                                                                                                            |  |  |  |
| Field Tests                                | N = 17<br>4, 7, 10            | figures show blows p                                                                                                                 |                                                                                                                | tween depths indicated by lines. Individual isal' refers to apparent hammer refusal within                                 |  |  |  |
|                                            | N <sub>c</sub> = 5<br>7<br>3R | figures show blows p                                                                                                                 | er 150mm penetration for 60                                                                                    | netween depths indicated by lines. Individual 0° solid cone driven by SPT hammer. 'R' refers anding 150mm depth increment. |  |  |  |
|                                            | VNS = 25                      | Vano shoar roading i                                                                                                                 | a kDa of undrained shear stre                                                                                  | angth                                                                                                                      |  |  |  |
|                                            | PID = 100                     | Vane shear reading in kPa of undrained shear strength.  Photoionisation detector reading in ppm (soil sample headspace test).        |                                                                                                                |                                                                                                                            |  |  |  |
| Maistura Canditian                         |                               |                                                                                                                                      |                                                                                                                |                                                                                                                            |  |  |  |
| Moisture Condition<br>(Fine Grained Soils) | w>PL<br>w≈PL                  | Moisture content estimated to be greater than plastic limit.  Moisture content estimated to be approximately equal to plastic limit. |                                                                                                                |                                                                                                                            |  |  |  |
| (i ine diamed dails)                       | w < PL                        | Moisture content estimated to be approximately equal to plastic limit.  Moisture content estimated to be less than plastic limit.    |                                                                                                                |                                                                                                                            |  |  |  |
|                                            | w≈LL                          |                                                                                                                                      | Moisture content estimated to be less than plastic limit.  Moisture content estimated to be near liquid limit. |                                                                                                                            |  |  |  |
|                                            | w > LL                        | Moisture content estimated to be wet of liquid limit.                                                                                |                                                                                                                |                                                                                                                            |  |  |  |
| (Coarse Grained Soils)                     | D                             | DRY – runs freely through fingers.                                                                                                   |                                                                                                                |                                                                                                                            |  |  |  |
| ,                                          | M                             |                                                                                                                                      |                                                                                                                |                                                                                                                            |  |  |  |
|                                            | W                             |                                                                                                                                      |                                                                                                                |                                                                                                                            |  |  |  |
| Strength (Consistency)                     | VS                            | VERY SOFT — un                                                                                                                       | confined compressive streng                                                                                    | rth ≤ 25kPa.                                                                                                               |  |  |  |
| Cohesive Soils                             | S                             | SOFT – un                                                                                                                            | confined compressive streng                                                                                    | yth > 25kPa and ≤ 50kPa.                                                                                                   |  |  |  |
|                                            | F                             | FIRM – un                                                                                                                            | confined compressive streng                                                                                    | gth > 50kPa and ≤ 100kPa.                                                                                                  |  |  |  |
|                                            | St                            | STIFF – un                                                                                                                           | confined compressive streng                                                                                    | yth > 100kPa and ≤ 200kPa.                                                                                                 |  |  |  |
|                                            | VSt                           | VERY STIFF – un                                                                                                                      | confined compressive streng                                                                                    | yth > 200kPa and ≤ 400kPa.                                                                                                 |  |  |  |
|                                            | Hd                            | HARD – un                                                                                                                            | confined compressive streng                                                                                    | yth > 400kPa.                                                                                                              |  |  |  |
|                                            | Fr                            | FRIABLE – str                                                                                                                        | ength not attainable, soil cru                                                                                 | mbles.                                                                                                                     |  |  |  |
|                                            | ( )                           | Bracketed symbol in assessment.                                                                                                      | ndicates estimated consiste                                                                                    | ncy based on tactile examination or other                                                                                  |  |  |  |
| Density Index/<br>Relative Density         |                               |                                                                                                                                      | Density Index (I <sub>D</sub> )<br>Range (%)                                                                   | SPT 'N' Value Range<br>(Blows/300mm)                                                                                       |  |  |  |
| (Cohesionless Soils)                       | VL                            | VERY LOOSE                                                                                                                           | ≤ 15                                                                                                           | 0-4                                                                                                                        |  |  |  |
|                                            | L                             | LOOSE                                                                                                                                | > 15 and ≤ 35                                                                                                  | 4-10                                                                                                                       |  |  |  |
|                                            | MD                            | MEDIUM DENSE                                                                                                                         | > 35 and ≤ 65                                                                                                  | 10 – 30                                                                                                                    |  |  |  |
|                                            | D                             | DENSE                                                                                                                                | > 65 and ≤ 85                                                                                                  | 30 – 50                                                                                                                    |  |  |  |
|                                            | VD                            | VERY DENSE                                                                                                                           | > 85                                                                                                           | >50                                                                                                                        |  |  |  |
|                                            | ( )                           |                                                                                                                                      |                                                                                                                | sed on ease of drilling or other assessment.                                                                               |  |  |  |
|                                            | <u> </u>                      | 111111111111111111111111111111111111111                                                                                              |                                                                                                                |                                                                                                                            |  |  |  |



| Log Column                    | Symbol                 | Definition                        |                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------|------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Hand Penetrometer<br>Readings | 300<br>250             |                                   | Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.                                                                                                       |  |  |  |
| Remarks                       | 'V' bit                | Hardened steel                    | 'V' shaped bit.                                                                                                                                                                                                                                                           |  |  |  |
|                               | 'TC' bit               | Twin pronged tu                   | ungsten carbide bit.                                                                                                                                                                                                                                                      |  |  |  |
|                               | <b>T</b> <sub>60</sub> | Penetration of a without rotation | uger string in mm under static load of rig applied by drill head hydraulics n of augers.                                                                                                                                                                                  |  |  |  |
|                               | Soil Origin            | The geological o                  | rigin of the soil can generally be described as:                                                                                                                                                                                                                          |  |  |  |
|                               |                        | RESIDUAL                          | <ul> <li>soil formed directly from insitu weathering of the underlying rock.</li> <li>No visible structure or fabric of the parent rock.</li> </ul>                                                                                                                       |  |  |  |
|                               |                        | EXTREMELY<br>WEATHERED            | <ul> <li>soil formed directly from insitu weathering of the underlying rock.</li> <li>Material is of soil strength but retains the structure and/or fabric of the parent rock.</li> </ul>                                                                                 |  |  |  |
|                               |                        | ALLUVIAL                          | – soil deposited by creeks and rivers.                                                                                                                                                                                                                                    |  |  |  |
|                               |                        | ESTUARINE                         | <ul> <li>soil deposited in coastal estuaries, including sediments caused by<br/>inflowing creeks and rivers, and tidal currents.</li> </ul>                                                                                                                               |  |  |  |
|                               |                        | MARINE                            | <ul> <li>soil deposited in a marine environment.</li> </ul>                                                                                                                                                                                                               |  |  |  |
|                               |                        | AEOLIAN                           | <ul> <li>soil carried and deposited by wind.</li> </ul>                                                                                                                                                                                                                   |  |  |  |
|                               |                        | COLLUVIAL                         | <ul> <li>soil and rock debris transported downslope by gravity, with or without<br/>the assistance of flowing water. Colluvium is usually a thick deposit<br/>formed from a landslide. The description 'slopewash' is used for thinner<br/>surficial deposits.</li> </ul> |  |  |  |
|                               |                        | LITTORAL                          | – beach deposited soil.                                                                                                                                                                                                                                                   |  |  |  |



# **Classification of Material Weathering**

| Term                 | Term                    |       | viation | Definition                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|-------------------------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residual Soil        |                         | R     | ss.     | Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.                                                                                                                                                                        |
| Extremely Weathered  |                         | X     | W       | Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.                                                                                                                                                                                                                                 |
| Highly Weathered     | Distinctly<br>Weathered | HW DW |         | The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores. |
| Moderately Weathered | (Note 1)                |       |         | The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.                                                                                                                                                                 |
| Slightly Weathered   |                         | S     | W       | Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.                                                                                                                                                                                                                                                        |
| Fresh                |                         | F     | R       | Rock shows no sign of decomposition of individual minerals or colour changes.                                                                                                                                                                                                                                                                                                           |

**NOTE 1:** The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

# **Rock Material Strength Classification**

|                            |              |                                           |                                                          | Guide to Strength                                                                                                                                                                                                                                                         |
|----------------------------|--------------|-------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                       | Abbreviation | Uniaxial<br>Compressive<br>Strength (MPa) | Point Load<br>Strength Index<br>Is <sub>(50)</sub> (MPa) | Field Assessment                                                                                                                                                                                                                                                          |
| Very Low<br>Strength       | VL           | 0.6 to 2                                  | 0.03 to 0.1                                              | Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.                                                                                 |
| Low Strength               | L            | 2 to 6                                    | 0.1 to 0.3                                               | Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling. |
| Medium<br>Strength         | M            | 6 to 20                                   | 0.3 to 1                                                 | Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.                                                                                                                                                                   |
| High Strength              | н            | 20 to 60                                  | 1 to 3                                                   | A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.                                                                                                                        |
| Very High<br>Strength      | VH           | 60 to 200                                 | 3 to 10                                                  | Hand specimen breaks with pick after more than one blow; rock rings under hammer.                                                                                                                                                                                         |
| Extremely<br>High Strength | EH           | > 200                                     | > 10                                                     | Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.                                                                                                                                                              |



**Appendix E: Laboratory Reports & COC Documents** 



Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 321520**

| Client Details |                                      |
|----------------|--------------------------------------|
| Client         | JK Environments                      |
| Attention      | Katrina Taylor                       |
| Address        | PO Box 976, North Ryde BC, NSW, 1670 |

| Sample Details                       |                  |
|--------------------------------------|------------------|
| Your Reference                       | <u>E35999BT</u>  |
| Number of Samples                    | 13 Soil, 1 Water |
| Date samples received                | 21/04/2023       |
| Date completed instructions received | 21/04/2023       |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |
|------------------------------------------------------------------------------------------------------|------------|--|
| Date results requested by                                                                            | 01/05/2023 |  |
| Date of Issue                                                                                        | 01/05/2023 |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |

#### **Asbestos Approved By**

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

#### **Results Approved By**

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Kyle Gavrily, Senior Chemist Liam Timmins, Organics Supervisor Lucy Zhu, Asbestos Supervisor **Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 321520 Revision No: R00



| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |            |            |            |  |  |
|------------------------------------------------------|-------|------------|------------|------------|------------|------------|--|--|
| Our Reference                                        |       | 321520-1   | 321520-4   | 321520-6   | 321520-8   | 321520-11  |  |  |
| Your Reference                                       | UNITS | BH1        | BH1        | BH2        | BH2        | TB1        |  |  |
| Depth                                                |       | 0-0.1      | 2-2.2      | 0.1-0.2    | 1.3-1.5    | -          |  |  |
| Date Sampled                                         |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |  |  |
| Type of sample                                       |       | Soil       | Soil       | Soil       | Soil       | Soil       |  |  |
| Date extracted                                       | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 |  |  |
| Date analysed                                        | -     | 27/04/2023 | 27/04/2023 | 27/04/2023 | 27/04/2023 | 27/04/2023 |  |  |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | <25        | <25        | <25        | <25        | <25        |  |  |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | <25        | <25        | <25        | <25        | <25        |  |  |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        | <25        | <25        | <25        | <25        |  |  |
| Benzene                                              | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |  |  |
| Toluene                                              | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |  |  |
| Ethylbenzene                                         | mg/kg | <1         | <1         | <1         | <1         | <1         |  |  |
| m+p-xylene                                           | mg/kg | <2         | <2         | <2         | <2         | <2         |  |  |
| o-Xylene                                             | mg/kg | <1         | <1         | <1         | <1         | <1         |  |  |
| Naphthalene                                          | mg/kg | <1         | <1         | <1         | <1         | <1         |  |  |
| Total +ve Xylenes                                    | mg/kg | <1         | <1         | <1         | <1         | <1         |  |  |
| Surrogate aaa-Trifluorotoluene                       | %     | 102        | 104        | 106        | 104        | 99         |  |  |

| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |
|------------------------------------------------------|-------|------------|------------|
| Our Reference                                        |       | 321520-12  | 321520-14  |
| Your Reference                                       | UNITS | TS1        | S Dup1     |
| Depth                                                |       | -          | -          |
| Date Sampled                                         |       | 20/04/2023 | 20/04/2023 |
| Type of sample                                       |       | Soil       | Soil       |
| Date extracted                                       | -     | 26/04/2023 | 26/04/2023 |
| Date analysed                                        | -     | 27/04/2023 | 27/04/2023 |
| TRH C <sub>6</sub> - C <sub>9</sub>                  | mg/kg | [NA]       | <25        |
| TRH C <sub>6</sub> - C <sub>10</sub>                 | mg/kg | [NA]       | <25        |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | [NA]       | <25        |
| Benzene                                              | mg/kg | 100%       | <0.2       |
| Toluene                                              | mg/kg | 108%       | <0.5       |
| Ethylbenzene                                         | mg/kg | 110%       | <1         |
| m+p-xylene                                           | mg/kg | 111%       | <2         |
| o-Xylene                                             | mg/kg | 110%       | <1         |
| Naphthalene                                          | mg/kg | [NA]       | <1         |
| Total +ve Xylenes                                    | mg/kg | [NA]       | <1         |
| Surrogate aaa-Trifluorotoluene                       | %     | 112        | 101        |

| svTRH (C10-C40) in Soil                                      |       |            |            |            |            |            |
|--------------------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                                |       | 321520-1   | 321520-4   | 321520-6   | 321520-8   | 321520-11  |
| Your Reference                                               | UNITS | BH1        | BH1        | BH2        | BH2        | TB1        |
| Depth                                                        |       | 0-0.1      | 2-2.2      | 0.1-0.2    | 1.3-1.5    | -          |
| Date Sampled                                                 |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                                               |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                                               | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed                                                | -     | 28/04/2023 | 28/04/2023 | 28/04/2023 | 28/04/2023 | 28/04/2023 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100       | <100       | <100       | <100       | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100       | <100       | <100       | <100       | <100       |
| Total +ve TRH (C10-C36)                                      | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub>                        | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100       | <100       | 130        | <100       | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | <100       | <100       | <100       | <100       | <100       |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50        | <50        | 130        | <50        | <50        |
| Surrogate o-Terphenyl                                        | %     | 121        | 107        | 111        | 108        | 108        |

| svTRH (C10-C40) in Soil                                      |       |            |
|--------------------------------------------------------------|-------|------------|
| Our Reference                                                |       | 321520-14  |
| Your Reference                                               | UNITS | S Dup1     |
| Depth                                                        |       | -          |
| Date Sampled                                                 |       | 20/04/2023 |
| Type of sample                                               |       | Soil       |
| Date extracted                                               | -     | 26/04/2023 |
| Date analysed                                                | -     | 28/04/2023 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100       |
| Total +ve TRH (C10-C36)                                      | mg/kg | <50        |
| TRH >C <sub>10</sub> -C <sub>16</sub>                        | mg/kg | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | <100       |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50        |
| Surrogate o-Terphenyl                                        | %     | 107        |

| PAHs in Soil                   |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                  |       | 321520-1   | 321520-4   | 321520-6   | 321520-8   | 321520-11  |
| Your Reference                 | UNITS | BH1        | BH1        | BH2        | BH2        | TB1        |
| Depth                          |       | 0-0.1      | 2-2.2      | 0.1-0.2    | 1.3-1.5    | -          |
| Date Sampled                   |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed                  | -     | 27/04/2023 | 27/04/2023 | 27/04/2023 | 27/04/2023 | 27/04/2023 |
| Naphthalene                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       | 0.3        | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene                   | mg/kg | 0.1        | <0.1       | 1.7        | <0.1       | <0.1       |
| Anthracene                     | mg/kg | <0.1       | <0.1       | 0.4        | <0.1       | <0.1       |
| Fluoranthene                   | mg/kg | 0.3        | <0.1       | 3.9        | 0.1        | <0.1       |
| Pyrene                         | mg/kg | 0.3        | <0.1       | 3.7        | 0.1        | <0.1       |
| Benzo(a)anthracene             | mg/kg | 0.2        | <0.1       | 2.7        | <0.1       | <0.1       |
| Chrysene                       | mg/kg | 0.1        | <0.1       | 1.4        | <0.1       | <0.1       |
| Benzo(b,j+k)fluoranthene       | mg/kg | 0.4        | <0.2       | 3.3        | <0.2       | <0.2       |
| Benzo(a)pyrene                 | mg/kg | 0.2        | <0.05      | 1.5        | 0.05       | <0.05      |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       | 0.6        | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | 0.2        | <0.1       | 0.8        | <0.1       | <0.1       |
| Total +ve PAH's                | mg/kg | 1.9        | <0.05      | 20         | 0.3        | <0.05      |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       | 2.2        | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       | 2.2        | <0.5       | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       | 2.3        | <0.5       | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 133        | 119        | 131        | 128        | 131        |

| PAHs in Soil                   |       |            |
|--------------------------------|-------|------------|
| Our Reference                  |       | 321520-14  |
| Your Reference                 | UNITS | S Dup1     |
| Depth                          |       | -          |
| Date Sampled                   |       | 20/04/2023 |
| Type of sample                 |       | Soil       |
| Date extracted                 | -     | 26/04/2023 |
| Date analysed                  | -     | 27/04/2023 |
| Naphthalene                    | mg/kg | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       |
| Fluorene                       | mg/kg | <0.1       |
| Phenanthrene                   | mg/kg | <0.1       |
| Anthracene                     | mg/kg | <0.1       |
| Fluoranthene                   | mg/kg | 0.3        |
| Pyrene                         | mg/kg | 0.3        |
| Benzo(a)anthracene             | mg/kg | 0.2        |
| Chrysene                       | mg/kg | 0.1        |
| Benzo(b,j+k)fluoranthene       | mg/kg | 0.3        |
| Benzo(a)pyrene                 | mg/kg | 0.1        |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | <0.1       |
| Total +ve PAH's                | mg/kg | 1.2        |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       |
| Surrogate p-Terphenyl-d14      | %     | 131        |

| Organochlorine Pesticides in soil |       |            |            |            |
|-----------------------------------|-------|------------|------------|------------|
| Our Reference                     |       | 321520-1   | 321520-6   | 321520-14  |
| Your Reference                    | UNITS | BH1        | BH2        | S Dup1     |
| Depth                             |       | 0-0.1      | 0.1-0.2    | -          |
| Date Sampled                      |       | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                    |       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed                     | -     | 27/04/2023 | 27/04/2023 | 27/04/2023 |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| нсв                               | mg/kg | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       |
| Total +ve DDT+DDD+DDE             | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                    | %     | 119        | 117        | 116        |

| Organophosphorus Pesticides in Soil |       |            |            |            |
|-------------------------------------|-------|------------|------------|------------|
| Our Reference                       |       | 321520-1   | 321520-6   | 321520-14  |
| Your Reference                      | UNITS | BH1        | BH2        | S Dup1     |
| Depth                               |       | 0-0.1      | 0.1-0.2    | -          |
| Date Sampled                        |       | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                      |       | Soil       | Soil       | Soil       |
| Date extracted                      | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed                       | -     | 27/04/2023 | 27/04/2023 | 27/04/2023 |
| Dichlorvos                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Dimethoate                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Diazinon                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl                | mg/kg | <0.1       | <0.1       | <0.1       |
| Ronnel                              | mg/kg | <0.1       | <0.1       | <0.1       |
| Fenitrothion                        | mg/kg | <0.1       | <0.1       | <0.1       |
| Malathion                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos                       | mg/kg | <0.1       | <0.1       | <0.1       |
| Parathion                           | mg/kg | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl                     | mg/kg | <0.1       | <0.1       | <0.1       |
| Ethion                              | mg/kg | <0.1       | <0.1       | <0.1       |
| Azinphos-methyl (Guthion)           | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                      | %     | 119        | 117        | 116        |

| PCBs in Soil               |       |            |            |            |
|----------------------------|-------|------------|------------|------------|
| Our Reference              |       | 321520-1   | 321520-6   | 321520-14  |
| Your Reference             | UNITS | BH1        | BH2        | S Dup1     |
| Depth                      |       | 0-0.1      | 0.1-0.2    | -          |
| Date Sampled               |       | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample             |       | Soil       | Soil       | Soil       |
| Date extracted             | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed              | -     | 27/04/2023 | 27/04/2023 | 27/04/2023 |
| Aroclor 1016               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1221               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1232               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1242               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1248               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1254               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1260               | mg/kg | <0.1       | <0.1       | <0.1       |
| Total +ve PCBs (1016-1260) | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX             | %     | 119        | 117        | 116        |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                   |       | 321520-1   | 321520-4   | 321520-6   | 321520-8   | 321520-11  |
| Your Reference                  | UNITS | BH1        | BH1        | BH2        | BH2        | TB1        |
| Depth                           |       | 0-0.1      | 2-2.2      | 0.1-0.2    | 1.3-1.5    | -          |
| Date Sampled                    |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed                   | -     | 28/04/2023 | 28/04/2023 | 28/04/2023 | 28/04/2023 | 28/04/2023 |
| Arsenic                         | mg/kg | <4         | <4         | <4         | <4         | <4         |
| Cadmium                         | mg/kg | 0.6        | <0.4       | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 8          | 5          | 8          | 4          | 3          |
| Copper                          | mg/kg | 63         | 5          | 35         | 3          | <1         |
| Lead                            | mg/kg | 140        | 9          | 200        | 18         | 3          |
| Mercury                         | mg/kg | 0.3        | <0.1       | 0.5        | <0.1       | <0.1       |
| Nickel                          | mg/kg | 6          | 2          | 4          | 2          | <1         |
| Zinc                            | mg/kg | 580        | 15         | 86         | 6          | 2          |

| Acid Extractable metals in soil |       |            |
|---------------------------------|-------|------------|
| Our Reference                   |       | 321520-14  |
| Your Reference                  | UNITS | S Dup1     |
| Depth                           |       | -          |
| Date Sampled                    |       | 20/04/2023 |
| Type of sample                  |       | Soil       |
| Date prepared                   | -     | 26/04/2023 |
| Date analysed                   | -     | 28/04/2023 |
| Arsenic                         | mg/kg | <4         |
| Cadmium                         | mg/kg | <0.4       |
| Chromium                        | mg/kg | 10         |
| Copper                          | mg/kg | 38         |
| Lead                            | mg/kg | 130        |
| Mercury                         | mg/kg | 0.5        |
| Nickel                          | mg/kg | 5          |
| Zinc                            | mg/kg | 360        |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 321520-1   | 321520-4   | 321520-6   | 321520-8   | 321520-11  |
| Your Reference | UNITS | BH1        | BH1        | BH2        | BH2        | TB1        |
| Depth          |       | 0-0.1      | 2-2.2      | 0.1-0.2    | 1.3-1.5    | -          |
| Date Sampled   |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared  | -     | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 | 26/04/2023 |
| Date analysed  | -     | 27/04/2023 | 27/04/2023 | 27/04/2023 | 27/04/2023 | 27/04/2023 |
| Moisture       | %     | 9.4        | 5.1        | 5.5        | 1.6        | 4.8        |

| Moisture       |       |            |
|----------------|-------|------------|
| Our Reference  |       | 321520-14  |
| Your Reference | UNITS | S Dup1     |
| Depth          |       | -          |
| Date Sampled   |       | 20/04/2023 |
| Type of sample |       | Soil       |
| Date prepared  | -     | 26/04/2023 |
| Date analysed  | -     | 27/04/2023 |
| Moisture       | %     | 9.3        |

| Asbestos ID - soils NEPM - ASB-001    |        |                                                             |                                                             |
|---------------------------------------|--------|-------------------------------------------------------------|-------------------------------------------------------------|
| Our Reference                         |        | 321520-1                                                    | 321520-6                                                    |
| Your Reference                        | UNITS  | BH1                                                         | BH2                                                         |
| Depth                                 |        | 0-0.1                                                       | 0.1-0.2                                                     |
| Date Sampled                          |        | 20/04/2023                                                  | 20/04/2023                                                  |
| Type of sample                        |        | Soil                                                        | Soil                                                        |
| Date analysed                         | -      | 01/05/2023                                                  | 01/05/2023                                                  |
| Sample mass tested                    | g      | 690.18                                                      | 486.67                                                      |
| Sample Description                    | -      | Grey fine-grained soil and rocks                            | Brown fine-<br>grained soil and<br>rocks                    |
| Asbestos ID in soil (AS4964) >0.1g/kg | -      | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg |
|                                       |        | Organic fibres detected                                     | Organic fibres detected                                     |
| Trace Analysis                        | -      | No asbestos<br>detected                                     | No asbestos<br>detected                                     |
| Total Asbestos <sup>#1</sup>          | g/kg   | <0.1                                                        | <0.1                                                        |
| Asbestos ID in soil <0.1g/kg*         | -      | No visible asbestos detected                                | No visible asbestos detected                                |
| ACM >7mm Estimation*                  | g      | _                                                           | _                                                           |
| FA and AF Estimation*                 | g      | _                                                           | _                                                           |
| ACM >7mm Estimation*                  | %(w/w) | <0.01                                                       | <0.01                                                       |
| FA and AF Estimation*#2               | %(w/w) | <0.001                                                      | <0.001                                                      |

| sPOCAS field test                       |          |              |              |              |              |                 |
|-----------------------------------------|----------|--------------|--------------|--------------|--------------|-----------------|
| Our Reference                           |          | 321520-1     | 321520-2     | 321520-4     | 321520-6     | 321520-8        |
| Your Reference                          | UNITS    | BH1          | BH1          | BH1          | BH2          | BH2             |
| Depth                                   |          | 0-0.1        | 0.6-0.8      | 2-2.2        | 0.1-0.2      | 1.3-1.5         |
| Date Sampled                            |          | 20/04/2023   | 20/04/2023   | 20/04/2023   | 20/04/2023   | 20/04/2023      |
| Type of sample                          |          | Soil         | Soil         | Soil         | Soil         | Soil            |
| Date prepared                           | -        | 01/05/2023   | 01/05/2023   | 01/05/2023   | 01/05/2023   | 01/05/2023      |
| Date analysed                           | -        | 01/05/2023   | 01/05/2023   | 01/05/2023   | 01/05/2023   | 01/05/2023      |
| pH <sub>F</sub> (field pH test)         | pH Units | 7.1          | 8.2          | 7.9          | 7.6          | 7.1             |
| pH <sub>FOX</sub> (field peroxide test) | pH Units | 5.8          | 6.0          | 6.2          | 5.9          | 5.7             |
| Reaction Rate*                          | -        | Low reaction | Low reaction | Low reaction | Low reaction | Medium reaction |

| sPOCAS field test                       |          |                 |
|-----------------------------------------|----------|-----------------|
| Our Reference                           |          | 321520-10       |
| Your Reference                          | UNITS    | BH2             |
| Depth                                   |          | 2.5-2.7         |
| Date Sampled                            |          | 20/04/2023      |
| Type of sample                          |          | Soil            |
| Date prepared                           | -        | 01/05/2023      |
| Date analysed                           | -        | 01/05/2023      |
| pH <sub>F</sub> (field pH test)         | pH Units | 7.0             |
| pH <sub>FOX</sub> (field peroxide test) | pH Units | 5.6             |
| Reaction Rate*                          | -        | Medium reaction |

| vTRH(C6-C10)/BTEXN in Water                         |       |            |  |  |
|-----------------------------------------------------|-------|------------|--|--|
| Our Reference                                       |       | 321520-13  |  |  |
| Your Reference                                      | UNITS | FR HA1     |  |  |
| Depth                                               |       | -          |  |  |
| Date Sampled                                        |       | 20/04/2023 |  |  |
| Type of sample                                      |       | Water      |  |  |
| Date extracted                                      | -     | 24/04/2023 |  |  |
| Date analysed                                       | -     | 26/04/2023 |  |  |
| TRH C <sub>6</sub> - C <sub>9</sub>                 | μg/L  | 51         |  |  |
| TRH C <sub>6</sub> - C <sub>10</sub>                | μg/L  | 51         |  |  |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | μg/L  | 51         |  |  |
| Benzene                                             | μg/L  | <1         |  |  |
| Toluene                                             | μg/L  | <1         |  |  |
| Ethylbenzene                                        | μg/L  | <1         |  |  |
| m+p-xylene                                          | μg/L  | <2         |  |  |
| o-xylene                                            | μg/L  | <1         |  |  |
| Naphthalene                                         | μg/L  | <1         |  |  |
| Surrogate Dibromofluoromethane                      | %     | 106        |  |  |
| Surrogate toluene-d8                                | %     | 101        |  |  |
| Surrogate 4-BFB                                     | %     | 96         |  |  |

| svTRH (C10-C40) in Water                                     |       |            |
|--------------------------------------------------------------|-------|------------|
| Our Reference                                                |       | 321520-13  |
| Your Reference                                               | UNITS | FR HA1     |
| Depth                                                        |       | -          |
| Date Sampled                                                 |       | 20/04/2023 |
| Type of sample                                               |       | Water      |
| Date extracted                                               | -     | 28/04/2023 |
| Date analysed                                                | -     | 29/04/2023 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | μg/L  | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | μg/L  | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | μg/L  | <100       |
| Total +ve TRH (C10-C36)                                      | μg/L  | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub>                       | μg/L  | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | μg/L  | <50        |
| TRH >C <sub>16</sub> - C <sub>34</sub>                       | μg/L  | <100       |
| TRH >C <sub>34</sub> - C <sub>40</sub>                       | μg/L  | <100       |
| Total +ve TRH (>C10-C40)                                     | μg/L  | <50        |
| Surrogate o-Terphenyl                                        | %     | 76         |

| PAHs in Water             |       |            |
|---------------------------|-------|------------|
| Our Reference             |       | 321520-13  |
| Your Reference            | UNITS | FR HA1     |
| Depth                     |       | -          |
| Date Sampled              |       | 20/04/2023 |
| Type of sample            |       | Water      |
| Date extracted            | -     | 28/04/2023 |
| Date analysed             | -     | 01/05/2023 |
| Naphthalene               | μg/L  | <2         |
| Acenaphthylene            | μg/L  | <1         |
| Acenaphthene              | μg/L  | <1         |
| Fluorene                  | μg/L  | <1         |
| Phenanthrene              | μg/L  | <1         |
| Anthracene                | μg/L  | <1         |
| Fluoranthene              | μg/L  | <1         |
| Pyrene                    | μg/L  | <1         |
| Benzo(a)anthracene        | μg/L  | <1         |
| Chrysene                  | μg/L  | <1         |
| Benzo(b,j+k)fluoranthene  | μg/L  | <2         |
| Benzo(a)pyrene            | μg/L  | <1         |
| Indeno(1,2,3-c,d)pyrene   | μg/L  | <1         |
| Dibenzo(a,h)anthracene    | μg/L  | <1         |
| Benzo(g,h,i)perylene      | μg/L  | <1         |
| Benzo(a)pyrene TEQ        | μg/L  | <5         |
| Total +ve PAH's           | μg/L  | NIL (+)VE  |
| Surrogate p-Terphenyl-d14 | %     | 100        |

| Metals in Waters - Acid extractable |       |            |
|-------------------------------------|-------|------------|
| Our Reference                       |       | 321520-13  |
| Your Reference                      | UNITS | FR HA1     |
| Depth                               |       | -          |
| Date Sampled                        |       | 20/04/2023 |
| Type of sample                      |       | Water      |
| Date prepared                       | -     | 28/04/2023 |
| Date analysed                       | -     | 28/04/2023 |
| Arsenic - Total                     | mg/L  | <0.05      |
| Cadmium - Total                     | mg/L  | <0.01      |
| Chromium - Total                    | mg/L  | <0.01      |
| Copper - Total                      | mg/L  | 0.9        |
| Lead - Total                        | mg/L  | <0.03      |
| Mercury - Total                     | mg/L  | <0.0005    |
| Nickel - Total                      | mg/L  | <0.02      |
| Zinc - Total                        | mg/L  | <0.02      |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASB-001    | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                                                                                                                                                                                                                                                                                                      |
| ASB-001    | Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004.  Results reported denoted with * are outside our scope of NATA accreditation. |
|            | NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | <b>NOTE</b> #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.                                                                                                                                                                                                                                                                                                                                                            |
|            | Estimation = Estimated asbestos weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Inorg-063  | pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.                                                                                                                                                                                             |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-020    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                    |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _           | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-021     | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Org-021     | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.  Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Org-022     | Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-022/025 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.  For soil results:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql> |
| Org-023     | Water samples are analysed directly by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.  Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                          |

Envirolab Reference: 321520

Revision No: R00

| QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil |       |     |         |            | Duplicate |            |            |     | Spike Recovery % |      |  |
|---------------------------------------------|-------|-----|---------|------------|-----------|------------|------------|-----|------------------|------|--|
| Test Description                            | Units | PQL | Method  | Blank      | #         | Base       | Dup.       | RPD | LCS-7            | [NT] |  |
| Date extracted                              | -     |     |         | 26/04/2023 | 1         | 26/04/2023 | 26/04/2023 |     | 26/04/2023       |      |  |
| Date analysed                               | -     |     |         | 27/04/2023 | 1         | 27/04/2023 | 27/04/2023 |     | 27/04/2023       |      |  |
| TRH C <sub>6</sub> - C <sub>9</sub>         | mg/kg | 25  | Org-023 | <25        | 1         | <25        | <25        | 0   | 119              |      |  |
| TRH C <sub>6</sub> - C <sub>10</sub>        | mg/kg | 25  | Org-023 | <25        | 1         | <25        | <25        | 0   | 119              |      |  |
| Benzene                                     | mg/kg | 0.2 | Org-023 | <0.2       | 1         | <0.2       | <0.2       | 0   | 120              |      |  |
| Toluene                                     | mg/kg | 0.5 | Org-023 | <0.5       | 1         | <0.5       | <0.5       | 0   | 120              |      |  |
| Ethylbenzene                                | mg/kg | 1   | Org-023 | <1         | 1         | <1         | <1         | 0   | 115              |      |  |
| m+p-xylene                                  | mg/kg | 2   | Org-023 | <2         | 1         | <2         | <2         | 0   | 120              |      |  |
| o-Xylene                                    | mg/kg | 1   | Org-023 | <1         | 1         | <1         | <1         | 0   | 127              |      |  |
| Naphthalene                                 | mg/kg | 1   | Org-023 | <1         | 1         | <1         | <1         | 0   | [NT]             |      |  |
| Surrogate aaa-Trifluorotoluene              | %     |     | Org-023 | 117        | 1         | 102        | 102        | 0   | 103              |      |  |

| QUALITY CONTROL: svTRH (C10-C40) in Soil |       |     |         |            |   | Du         | plicate    |     | Spike Re   | covery % |
|------------------------------------------|-------|-----|---------|------------|---|------------|------------|-----|------------|----------|
| Test Description                         | Units | PQL | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-7      | [NT]     |
| Date extracted                           | -     |     |         | 26/04/2023 | 1 | 26/04/2023 | 26/04/2023 |     | 26/04/2023 |          |
| Date analysed                            | -     |     |         | 28/04/2023 | 1 | 28/04/2023 | 28/04/2023 |     | 28/04/2023 |          |
| TRH C <sub>10</sub> - C <sub>14</sub>    | mg/kg | 50  | Org-020 | <50        | 1 | <50        | <50        | 0   | 120        |          |
| TRH C <sub>15</sub> - C <sub>28</sub>    | mg/kg | 100 | Org-020 | <100       | 1 | <100       | <100       | 0   | 107        |          |
| TRH C <sub>29</sub> - C <sub>36</sub>    | mg/kg | 100 | Org-020 | <100       | 1 | <100       | <100       | 0   | 100        |          |
| TRH >C <sub>10</sub> -C <sub>16</sub>    | mg/kg | 50  | Org-020 | <50        | 1 | <50        | <50        | 0   | 120        |          |
| TRH >C <sub>16</sub> -C <sub>34</sub>    | mg/kg | 100 | Org-020 | <100       | 1 | <100       | <100       | 0   | 107        |          |
| TRH >C <sub>34</sub> -C <sub>40</sub>    | mg/kg | 100 | Org-020 | <100       | 1 | <100       | <100       | 0   | 100        |          |
| Surrogate o-Terphenyl                    | %     |     | Org-020 | 120        | 1 | 121        | 118        | 3   | 112        |          |

| QUA                       | LITY CONTRO | L: PAHs | in Soil     |            |   | Du         | plicate    |     | Spike Recovery % |      |  |
|---------------------------|-------------|---------|-------------|------------|---|------------|------------|-----|------------------|------|--|
| Test Description          | Units       | PQL     | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-7            | [NT] |  |
| Date extracted            | -           |         |             | 26/04/2023 | 1 | 26/04/2023 | 26/04/2023 |     | 26/04/2023       |      |  |
| Date analysed             | -           |         |             | 27/04/2023 | 1 | 27/04/2023 | 27/04/2023 |     | 27/04/2023       |      |  |
| Naphthalene               | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 92               |      |  |
| Acenaphthylene            | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Acenaphthene              | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 89               |      |  |
| Fluorene                  | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | 92               |      |  |
| Phenanthrene              | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | 0.1        | 0.2        | 67  | 86               |      |  |
| Anthracene                | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Fluoranthene              | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | 0.3        | 0.7        | 80  | 94               |      |  |
| Pyrene                    | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | 0.3        | 0.6        | 67  | 99               |      |  |
| Benzo(a)anthracene        | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | 0.2        | 0.5        | 86  | [NT]             |      |  |
| Chrysene                  | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | 0.1        | 0.2        | 67  | 81               |      |  |
| Benzo(b,j+k)fluoranthene  | mg/kg       | 0.2     | Org-022/025 | <0.2       | 1 | 0.4        | 0.7        | 55  | [NT]             |      |  |
| Benzo(a)pyrene            | mg/kg       | 0.05    | Org-022/025 | <0.05      | 1 | 0.2        | 0.3        | 40  | 94               |      |  |
| Indeno(1,2,3-c,d)pyrene   | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | 0.1        | 0   | [NT]             |      |  |
| Dibenzo(a,h)anthracene    | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Benzo(g,h,i)perylene      | mg/kg       | 0.1     | Org-022/025 | <0.1       | 1 | 0.2        | 0.2        | 0   | [NT]             |      |  |
| Surrogate p-Terphenyl-d14 | %           |         | Org-022/025 | 129        | 1 | 133        | 134        | 1   | 115              |      |  |

| QUALITY CO          | ONTROL: Organo | chlorine F | Pesticides in soil |            |   | Du         | plicate    |     | Spike Recovery % |      |  |
|---------------------|----------------|------------|--------------------|------------|---|------------|------------|-----|------------------|------|--|
| Test Description    | Units          | PQL        | Method             | Blank      | # | Base       | Dup.       | RPD | LCS-7            | [NT] |  |
| Date extracted      | -              |            |                    | 26/04/2023 | 1 | 26/04/2023 | 26/04/2023 |     | 26/04/2023       |      |  |
| Date analysed       | -              |            |                    | 27/04/2023 | 1 | 27/04/2023 | 27/04/2023 |     | 27/04/2023       |      |  |
| alpha-BHC           | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 94               |      |  |
| HCB                 | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| beta-BHC            | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 96               |      |  |
| gamma-BHC           | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Heptachlor          | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 87               |      |  |
| delta-BHC           | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Aldrin              | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 95               |      |  |
| Heptachlor Epoxide  | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 94               |      |  |
| gamma-Chlordane     | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| alpha-chlordane     | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Endosulfan I        | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| pp-DDE              | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 105              |      |  |
| Dieldrin            | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 106              |      |  |
| Endrin              | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 92               |      |  |
| Endosulfan II       | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| pp-DDD              | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 92               |      |  |
| Endrin Aldehyde     | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| pp-DDT              | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Endosulfan Sulphate | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 70               |      |  |
| Methoxychlor        | mg/kg          | 0.1        | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |
| Surrogate TCMX      | %              |            | Org-022/025        | 122        | 1 | 119        | 118        | 1   | 117              |      |  |

| QUALITY CONTRO            | L: Organoph | osphorus | Pesticides in Soil | Duplicate  |   |            |            |     | Spike Recovery % |      |  |  |
|---------------------------|-------------|----------|--------------------|------------|---|------------|------------|-----|------------------|------|--|--|
| Test Description          | Units       | PQL      | Method             | Blank      | # | Base       | Dup.       | RPD | LCS-7            | [NT] |  |  |
| Date extracted            | -           |          |                    | 26/04/2023 | 1 | 26/04/2023 | 26/04/2023 |     | 26/04/2023       |      |  |  |
| Date analysed             | -           |          |                    | 27/04/2023 | 1 | 27/04/2023 | 27/04/2023 |     | 27/04/2023       |      |  |  |
| Dichlorvos                | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 111              |      |  |  |
| Dimethoate                | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |  |
| Diazinon                  | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |  |
| Chlorpyriphos-methyl      | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |  |
| Ronnel                    | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 91               |      |  |  |
| Fenitrothion              | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 93               |      |  |  |
| Malathion                 | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 95               |      |  |  |
| Chlorpyriphos             | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 96               |      |  |  |
| Parathion                 | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 89               |      |  |  |
| Bromophos-ethyl           | mg/kg       | 0.1      | Org-022            | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |  |
| Ethion                    | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | 90               |      |  |  |
| Azinphos-methyl (Guthion) | mg/kg       | 0.1      | Org-022/025        | <0.1       | 1 | <0.1       | <0.1       | 0   | [NT]             |      |  |  |
| Surrogate TCMX            | %           |          | Org-022/025        | 122        | 1 | 119        | 118        | 1   | 117              |      |  |  |

| QUALIT           | Y CONTRO | L: PCBs | in Soil |            | Duplicate |            |            |     |            | covery % |
|------------------|----------|---------|---------|------------|-----------|------------|------------|-----|------------|----------|
| Test Description | Units    | PQL     | Method  | Blank      | #         | Base       | Dup.       | RPD | LCS-7      | [NT]     |
| Date extracted   | -        |         |         | 26/04/2023 | 1         | 26/04/2023 | 26/04/2023 |     | 26/04/2023 |          |
| Date analysed    | -        |         |         | 27/04/2023 | 1         | 27/04/2023 | 27/04/2023 |     | 27/04/2023 |          |
| Aroclor 1016     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1221     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1232     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1242     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1248     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | [NT]       |          |
| Aroclor 1254     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | 115        |          |
| Aroclor 1260     | mg/kg    | 0.1     | Org-021 | <0.1       | 1         | <0.1       | <0.1       | 0   | [NT]       |          |
| Surrogate TCMX   | %        |         | Org-021 | 122        | 1         | 119        | 118        | 1   | 117        |          |

| QUALITY CONT     | ROL: Acid E | xtractable | e metals in soil |            |   | Du         |            | Spike Recovery % |            |      |
|------------------|-------------|------------|------------------|------------|---|------------|------------|------------------|------------|------|
| Test Description | Units       | PQL        | Method           | Blank      | # | Base       | Dup.       | RPD              | LCS-7      | [NT] |
| Date prepared    | -           |            |                  | 26/04/2023 | 1 | 26/04/2023 | 26/04/2023 |                  | 26/04/2023 |      |
| Date analysed    | -           |            |                  | 28/04/2023 | 1 | 28/04/2023 | 28/04/2023 |                  | 28/04/2023 |      |
| Arsenic          | mg/kg       | 4          | Metals-020       | <4         | 1 | <4         | <4         | 0                | 97         |      |
| Cadmium          | mg/kg       | 0.4        | Metals-020       | <0.4       | 1 | 0.6        | <0.4       | 40               | 94         |      |
| Chromium         | mg/kg       | 1          | Metals-020       | <1         | 1 | 8          | 9          | 12               | 98         |      |
| Copper           | mg/kg       | 1          | Metals-020       | <1         | 1 | 63         | 66         | 5                | 102        |      |
| Lead             | mg/kg       | 1          | Metals-020       | <1         | 1 | 140        | 170        | 19               | 100        |      |
| Mercury          | mg/kg       | 0.1        | Metals-021       | <0.1       | 1 | 0.3        | 0.3        | 0                | 83         |      |
| Nickel           | mg/kg       | 1          | Metals-020       | <1         | 1 | 6          | 5          | 18               | 96         |      |
| Zinc             | mg/kg       | 1          | Metals-020       | <1         | 1 | 580        | 450        | 25               | 97         | [NT] |

| QUALITY                                 | QUALITY CONTROL: sPOCAS field test |     |           |            |      |      |      |      | Spike Recovery % |      |
|-----------------------------------------|------------------------------------|-----|-----------|------------|------|------|------|------|------------------|------|
| Test Description                        | Units                              | PQL | Method    | Blank      | #    | Base | Dup. | RPD  | LCS-7            | [NT] |
| Date prepared                           | -                                  |     |           | 01/05/2023 | [NT] | [NT] |      | [NT] | 01/05/2023       |      |
| Date analysed                           | -                                  |     |           | 01/05/2023 | [NT] | [NT] |      | [NT] | 01/05/2023       |      |
| pH <sub>F</sub> (field pH test)         | pH Units                           |     | Inorg-063 | [NT]       | [NT] | [NT] |      | [NT] | 101              |      |
| pH <sub>FOX</sub> (field peroxide test) | pH Units                           |     | Inorg-063 | [NT]       | [NT] | [NT] |      | [NT] | 101              |      |

| QUALITY CONT                         | ROL: vTRH( | C6-C10)/E | BTEXN in Water |            |      | Du   | Spike Recovery % |      |            |      |
|--------------------------------------|------------|-----------|----------------|------------|------|------|------------------|------|------------|------|
| Test Description                     | Units      | PQL       | Method         | Blank      | #    | Base | Dup.             | RPD  | LCS-W4     | [NT] |
| Date extracted                       | -          |           |                | 24/04/2023 | [NT] |      | [NT]             | [NT] | 24/04/2023 |      |
| Date analysed                        | -          |           |                | 26/04/2023 | [NT] |      | [NT]             | [NT] | 26/04/2023 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>  | μg/L       | 10        | Org-023        | <10        | [NT] |      | [NT]             | [NT] | 107        |      |
| TRH C <sub>6</sub> - C <sub>10</sub> | μg/L       | 10        | Org-023        | <10        | [NT] |      | [NT]             | [NT] | 107        |      |
| Benzene                              | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]             | [NT] | 105        |      |
| Toluene                              | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]             | [NT] | 107        |      |
| Ethylbenzene                         | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]             | [NT] | 107        |      |
| m+p-xylene                           | μg/L       | 2         | Org-023        | <2         | [NT] |      | [NT]             | [NT] | 107        |      |
| o-xylene                             | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]             | [NT] | 105        |      |
| Naphthalene                          | μg/L       | 1         | Org-023        | <1         | [NT] |      | [NT]             | [NT] | [NT]       |      |
| Surrogate Dibromofluoromethane       | %          |           | Org-023        | 104        | [NT] |      | [NT]             | [NT] | 101        |      |
| Surrogate toluene-d8                 | %          |           | Org-023        | 97         | [NT] |      | [NT]             | [NT] | 99         |      |
| Surrogate 4-BFB                      | %          |           | Org-023        | 100        | [NT] |      | [NT]             | [NT] | 99         |      |

| QUALITY CON                            | QUALITY CONTROL: svTRH (C10-C40) in Water |     |         |            |      |      |      |      | Spike Recovery % |      |  |
|----------------------------------------|-------------------------------------------|-----|---------|------------|------|------|------|------|------------------|------|--|
| Test Description                       | Units                                     | PQL | Method  | Blank      | #    | Base | Dup. | RPD  | LCS-W1           | [NT] |  |
| Date extracted                         | -                                         |     |         | 28/04/2023 | [NT] |      | [NT] | [NT] | 28/04/2023       |      |  |
| Date analysed                          | -                                         |     |         | 28/04/2023 | [NT] |      | [NT] | [NT] | 28/04/2023       |      |  |
| TRH C <sub>10</sub> - C <sub>14</sub>  | μg/L                                      | 50  | Org-020 | <50        | [NT] |      | [NT] | [NT] | 95               |      |  |
| TRH C <sub>15</sub> - C <sub>28</sub>  | μg/L                                      | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 108              |      |  |
| TRH C <sub>29</sub> - C <sub>36</sub>  | μg/L                                      | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 86               |      |  |
| TRH >C <sub>10</sub> - C <sub>16</sub> | μg/L                                      | 50  | Org-020 | <50        | [NT] |      | [NT] | [NT] | 95               |      |  |
| TRH >C <sub>16</sub> - C <sub>34</sub> | μg/L                                      | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 108              |      |  |
| TRH >C <sub>34</sub> - C <sub>40</sub> | μg/L                                      | 100 | Org-020 | <100       | [NT] |      | [NT] | [NT] | 86               |      |  |
| Surrogate o-Terphenyl                  | %                                         |     | Org-020 | 84         | [NT] |      | [NT] | [NT] | 72               |      |  |

| QUAL                      | ITY CONTRO | L: PAHs ir | n Water     |            |      | Du   | plicate | Spike Recovery % |            |      |
|---------------------------|------------|------------|-------------|------------|------|------|---------|------------------|------------|------|
| Test Description          | Units      | PQL        | Method      | Blank      | #    | Base | Dup.    | RPD              | LCS-W1     | [NT] |
| Date extracted            | -          |            |             | 28/04/2023 | [NT] |      | [NT]    | [NT]             | 28/04/2023 |      |
| Date analysed             | -          |            |             | 01/05/2023 | [NT] |      | [NT]    | [NT]             | 01/05/2023 |      |
| Naphthalene               | μg/L       | 2          | Org-022/025 | <2         | [NT] |      | [NT]    | [NT]             | 78         |      |
| Acenaphthylene            | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Acenaphthene              | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 83         |      |
| Fluorene                  | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 82         |      |
| Phenanthrene              | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 90         |      |
| Anthracene                | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Fluoranthene              | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 82         |      |
| Pyrene                    | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 82         |      |
| Benzo(a)anthracene        | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Chrysene                  | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 71         |      |
| Benzo(b,j+k)fluoranthene  | μg/L       | 2          | Org-022/025 | <2         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Benzo(a)pyrene            | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | 103        |      |
| Indeno(1,2,3-c,d)pyrene   | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Dibenzo(a,h)anthracene    | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Benzo(g,h,i)perylene      | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]             | [NT]       |      |
| Surrogate p-Terphenyl-d14 | %          |            | Org-022/025 | 107        | [NT] |      | [NT]    | [NT]             | 106        |      |

| QUALITY CONTRO   | OL: Metals ir | ı Waters - | - Acid extractable |            |      | Du   |      | Spike Recovery % |            |      |
|------------------|---------------|------------|--------------------|------------|------|------|------|------------------|------------|------|
| Test Description | Units         | PQL        | Method             | Blank      | #    | Base | Dup. | RPD              | LCS-W1     | [NT] |
| Date prepared    | -             |            |                    | 28/04/2023 | [NT] |      | [NT] | [NT]             | 28/04/2023 |      |
| Date analysed    | -             |            |                    | 28/04/2023 | [NT] |      | [NT] | [NT]             | 28/04/2023 |      |
| Arsenic - Total  | mg/L          | 0.05       | Metals-020         | <0.05      | [NT] |      | [NT] | [NT]             | 102        |      |
| Cadmium - Total  | mg/L          | 0.01       | Metals-020         | <0.01      | [NT] |      | [NT] | [NT]             | 97         |      |
| Chromium - Total | mg/L          | 0.01       | Metals-020         | <0.01      | [NT] |      | [NT] | [NT]             | 101        |      |
| Copper - Total   | mg/L          | 0.01       | Metals-020         | <0.01      | [NT] |      | [NT] | [NT]             | 102        |      |
| Lead - Total     | mg/L          | 0.03       | Metals-020         | <0.03      | [NT] |      | [NT] | [NT]             | 103        |      |
| Mercury - Total  | mg/L          | 0.0005     | Metals-021         | <0.0005    | [NT] |      | [NT] | [NT]             | 97         |      |
| Nickel - Total   | mg/L          | 0.02       | Metals-020         | <0.02      | [NT] |      | [NT] | [NT]             | 98         |      |
| Zinc - Total     | mg/L          | 0.02       | Metals-020         | <0.02      | [NT] | [NT] | [NT] | [NT]             | 102        | [NT] |

Envirolab Reference: 321520

Revision No: R00

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 321520 Page | 32 of 33

Revision No: R00

# **Report Comments**

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 321520 Page | 33 of 33

Revision No: R00



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

# **SAMPLE RECEIPT ADVICE**

| Client Details |                 |
|----------------|-----------------|
| Client         | JK Environments |
| Attention      | Katrina Taylor  |

| Sample Login Details                 |            |  |
|--------------------------------------|------------|--|
| Your reference                       | E35999BT   |  |
| Envirolab Reference                  | 321520     |  |
| Date Sample Received                 | 21/04/2023 |  |
| Date Instructions Received           | 21/04/2023 |  |
| Date Results Expected to be Reported | 01/05/2023 |  |

| Sample Condition                                       |                  |
|--------------------------------------------------------|------------------|
| Samples received in appropriate condition for analysis | Yes              |
| No. of Samples Provided                                | 13 Soil, 1 Water |
| Turnaround Time Requested                              | Standard         |
| Temperature on Receipt (°C)                            | 8                |
| Cooling Method                                         | Ice Pack         |
| Sampling Date Provided                                 | YES              |

| Comments |  |
|----------|--|
| Nil      |  |

## Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

| Sample ID   | VTRH(C6-C10)/BTEXN in Soil | svTRH (C10-C40) in Soil | PAHs in Soil | Organochlorine Pesticides in soil | Organophosphorus Pesticides in Soil | PCBs in Soil | Acid Extractable metalsin soil | Asbestos ID - soils NEPM - ASB-<br>001 | sPOCAS field test | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water | HM in water - total | On Hold |
|-------------|----------------------------|-------------------------|--------------|-----------------------------------|-------------------------------------|--------------|--------------------------------|----------------------------------------|-------------------|-----------------------------|--------------------------|--------------|---------------------|---------|
| BH1-0-0.1   | ✓                          | ✓                       | ✓            | ✓                                 | ✓                                   | ✓            | ✓                              | ✓                                      | ✓                 |                             |                          |              |                     |         |
| BH1-0.6-0.  |                            |                         |              |                                   |                                     |              |                                |                                        | ✓                 |                             |                          |              |                     |         |
| BH1-1.3-1.5 |                            |                         |              |                                   |                                     |              |                                |                                        |                   |                             |                          |              |                     | ✓       |
| BH1-2-2.2   | ✓                          | ✓                       | ✓            |                                   |                                     |              | ✓                              |                                        | ✓                 |                             |                          |              |                     |         |
| BH1-2.5-2.7 |                            |                         |              |                                   |                                     |              |                                |                                        |                   |                             |                          |              |                     | ✓       |
| BH2-0.1-0.2 | ✓                          | ✓                       | ✓            | ✓                                 | ✓                                   | ✓            | ✓                              | ✓                                      | ✓                 |                             |                          |              |                     |         |
| BH2-0.6-0.8 |                            |                         |              |                                   |                                     |              |                                |                                        |                   |                             |                          |              |                     | ✓       |
| BH2-1.3-1.5 | ✓                          | ✓                       | ✓            |                                   |                                     |              | ✓                              |                                        | ✓                 |                             |                          |              |                     |         |
| BH2-2-2.2   |                            |                         |              |                                   |                                     |              |                                |                                        |                   |                             |                          |              |                     | ✓       |
| BH2-2.5-2.7 |                            |                         |              |                                   |                                     |              |                                |                                        | ✓                 |                             |                          |              |                     |         |
| TB1         | ✓                          | ✓                       | ✓            |                                   |                                     |              | ✓                              |                                        |                   |                             |                          |              |                     |         |
| TS1         | ✓                          |                         |              |                                   |                                     |              |                                |                                        |                   |                             |                          |              |                     |         |
| FR HA1      |                            |                         |              |                                   |                                     |              |                                |                                        |                   | ✓                           | ✓                        | ✓            | ✓                   |         |
| S Dup1      | ✓                          | ✓                       | ✓            | ✓                                 | ✓                                   | ✓            | ✓                              |                                        |                   |                             |                          |              |                     |         |

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job E35999BT 12 ASHLEY STREET Number: **JK**Environments CHATSWOOD NSW 2067 P: (02) 99106200 Date Results STANDARD REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Attention: Ktaylor@ikenvironments.com.au Page: 1 of 1 Location: Manly Sample Preserved in Esky on Ice Sampler: ÓВ Tests Required HM/TRH/BIEX
#3 TRH/BIEXN/PA
Asbestos (WA
500mL method)
Asbestos
(Detection)
ASS Field Test
(pH F and pH
Chromium Reducible Suite Sample Description Sample Container Date l ah Sample Depth (m) PID Sampled Ref: Number G, A, P 0.2 F: Silty Sand 20/04/2023 BH1 -0-0.1 G, A, P 0.4 Silty Sand 2 20/04/2023 BH1 0.6-0.8 P Silty Sand 20/04/2023 **BH1** 1.3-1.5 G, P 0.2 Silty Sand 20/04/2023 вн1 2-2.2 ·ρ Silty Sand 20/04/2023 BH1 2.5-2.7 G, A, P 0.2 F: Silty Clayey Sand 20/04/2023 BH2 0.1-0.2 . Р F: Silty Clayey Sand 20/04/2023 BH2 0:6-0.8 8 20/04/2023 G, A, P Silty Sand BH2 1.3-1.5 20/04/2023 , P Silty Sand вн2 2-2.2 O Ρ Silty Sand 20/04/2023 вн2 2.5-2.7 G 20/04/2023 TB1 12 v 20/04/2023 TS1 13 G1, V, H 20/04/2023 FR HA 1 20/04/2023 S DUP 1 Envirolab Services
12 Ashley St
Chatswood NSW 2067
Ph: (02) 99/0 6200 EÚVIROLÁB Time Received: Received By: emp Coo Ambient £. Cooling: Ice/Icepack ecunty:(Intact) roken/Norte \_. Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar A - Ziplock Asbestos Bag P - Plastic Bag Relinquished By: OB Date: 21/04/23 10:15am Time: Received By: Date:



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

## **CERTIFICATE OF ANALYSIS 321520-A**

| Client Details |                                      |
|----------------|--------------------------------------|
| Client         | JK Environments                      |
| Attention      | Katrina Taylor                       |
| Address        | PO Box 976, North Ryde BC, NSW, 1670 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | <u>E35999BT</u>     |
| Number of Samples                    | additional analysis |
| Date samples received                | 21/04/2023          |
| Date completed instructions received | 02/05/2023          |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

| Report Details                                                                                       |            |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Date results requested by                                                                            | 09/05/2023 |  |  |  |  |
| Date of Issue                                                                                        | 09/05/2023 |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |  |

**Results Approved By** 

Nick Sarlamis, Assistant Operation Manager

**Authorised By** 

Nancy Zhang, Laboratory Manager



| Chromium Suite              |                     |            |            |            |             |
|-----------------------------|---------------------|------------|------------|------------|-------------|
| Our Reference               |                     | 321520-A-2 | 321520-A-4 | 321520-A-6 | 321520-A-10 |
| Your Reference              | UNITS               | BH1        | BH1        | BH2        | BH2         |
| Depth                       |                     | 0.6-0.8    | 2-2.2      | 0.1-0.2    | 2.5-2.7     |
| Date Sampled                |                     | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023  |
| Type of sample              |                     | Soil       | Soil       | Soil       | Soil        |
| Date prepared               | -                   | 08/05/2023 | 08/05/2023 | 08/05/2023 | 08/05/2023  |
| Date analysed               | -                   | 08/05/2023 | 08/05/2023 | 08/05/2023 | 08/05/2023  |
| pH kd                       | pH units            | 8.9        | 7.9        | 8.3        | 7.4         |
| s-TAA pH 6.5                | %w/w S              | <0.01      | <0.01      | <0.01      | <0.01       |
| TAA pH 6.5                  | moles H+/t          | <5         | <5         | <5         | <5          |
| Chromium Reducible Sulfur   | %w/w                | <0.005     | <0.005     | 0.01       | <0.005      |
| a-Chromium Reducible Sulfur | moles H+/t          | <3         | <3         | 8          | <3          |
| Shci                        | %w/w S              | [NT]       | [NT]       | [NT]       | [NT]        |
| Sкci                        | %w/w S              | [NT]       | [NT]       | [NT]       | [NT]        |
| Snas                        | %w/w S              | [NT]       | [NT]       | [NT]       | [NT]        |
| ANC <sub>BT</sub>           | % CaCO <sub>3</sub> | <0.05      | 0.05       | <0.05      | <0.05       |
| s-ANC <sub>BT</sub>         | %w/w S              | <0.05      | <0.05      | <0.05      | <0.05       |
| s-Net Acidity               | %w/w S              | <0.005     | <0.005     | 0.012      | <0.005      |
| a-Net Acidity               | moles H+/t          | <5         | <5         | 7.5        | <5          |
| Liming rate                 | kg CaCO₃/t          | <0.75      | <0.75      | <0.75      | <0.75       |
| a-Net Acidity without ANCE  | moles H+/t          | <5         | <5         | 7.5        | <5          |
| Liming rate without ANCE    | kg CaCO₃/t          | <0.75      | <0.75      | <0.75      | <0.75       |
| s-Net Acidity without ANCE  | %w/w S              | <0.005     | <0.005     | 0.012      | <0.005      |

Envirolab Reference: 321520-A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-068 | Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied.  Neutralising value (NV) of 100% is assumed for liming rate.  Based on National acid sulfate soils identification and laboratory methods manual June 2018.  The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported. |

Envirolab Reference: 321520-A Page | 3 of 6

| QUALITY CONTROL: Chromium Suite |                         |       | Duplicate |            |      |      | Spike Recovery % |      |            |      |
|---------------------------------|-------------------------|-------|-----------|------------|------|------|------------------|------|------------|------|
| Test Description                | Units                   | PQL   | Method    | Blank      | #    | Base | Dup.             | RPD  | LCS-1      | [NT] |
| Date prepared                   | -                       |       |           | 08/05/2023 | [NT] |      | [NT]             | [NT] | 08/05/2023 |      |
| Date analysed                   | -                       |       |           | 08/05/2023 | [NT] |      | [NT]             | [NT] | 08/05/2023 |      |
| pH <sub>kcl</sub>               | pH units                |       | Inorg-068 | [NT]       | [NT] |      | [NT]             | [NT] | 99         |      |
| s-TAA pH 6.5                    | %w/w S                  | 0.01  | Inorg-068 | <0.01      | [NT] |      | [NT]             | [NT] | [NT]       |      |
| TAA pH 6.5                      | moles H+/t              | 5     | Inorg-068 | <5         | [NT] |      | [NT]             | [NT] | 106        |      |
| Chromium Reducible Sulfur       | %w/w                    | 0.005 | Inorg-068 | <0.005     | [NT] |      | [NT]             | [NT] | 108        |      |
| a-Chromium Reducible Sulfur     | moles H+/t              | 3     | Inorg-068 | <3         | [NT] |      | [NT]             | [NT] | [NT]       |      |
| S <sub>HCI</sub>                | %w/w S                  | 0.005 | Inorg-068 | <0.005     | [NT] |      | [NT]             | [NT] | [NT]       |      |
| S <sub>KCI</sub>                | %w/w S                  | 0.005 | Inorg-068 | <0.005     | [NT] |      | [NT]             | [NT] | [NT]       |      |
| S <sub>NAS</sub>                | %w/w S                  | 0.005 | Inorg-068 | <0.005     | [NT] |      | [NT]             | [NT] | [NT]       |      |
| ANC <sub>BT</sub>               | % CaCO₃                 | 0.05  | Inorg-068 | <0.05      | [NT] |      | [NT]             | [NT] | 125        |      |
| s-ANC <sub>BT</sub>             | %w/w S                  | 0.05  | Inorg-068 | <0.05      | [NT] |      | [NT]             | [NT] | [NT]       |      |
| s-Net Acidity                   | %w/w S                  | 0.005 | Inorg-068 | <0.005     | [NT] |      | [NT]             | [NT] | [NT]       |      |
| a-Net Acidity                   | moles H <sup>+</sup> /t | 5     | Inorg-068 | <5         | [NT] |      | [NT]             | [NT] | [NT]       |      |
| Liming rate                     | kg CaCO₃/t              | 0.75  | Inorg-068 | <0.75      | [NT] |      | [NT]             | [NT] | [NT]       |      |
| a-Net Acidity without ANCE      | moles H <sup>+</sup> /t | 5     | Inorg-068 | <5         | [NT] |      | [NT]             | [NT] | [NT]       |      |
| Liming rate without ANCE        | kg CaCO₃/t              | 0.75  | Inorg-068 | <0.75      | [NT] |      | [NT]             | [NT] | [NT]       |      |
| s-Net Acidity without ANCE      | %w/w S                  | 0.005 | Inorg-068 | <0.005     | [NT] |      | [NT]             | [NT] | [NT]       |      |

Envirolab Reference: 321520-A

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 321520-A

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 321520-A Page | 6 of 6



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

### **SAMPLE RECEIPT ADVICE**

| Client Details |                 |
|----------------|-----------------|
| Client         | JK Environments |
| Attention      | Katrina Taylor  |

| Sample Login Details                 |            |  |
|--------------------------------------|------------|--|
| Your reference                       | E35999BT   |  |
| Envirolab Reference                  | 321520-A   |  |
| Date Sample Received                 | 21/04/2023 |  |
| Date Instructions Received           | 02/05/2023 |  |
| Date Results Expected to be Reported | 09/05/2023 |  |

| Sample Condition                                       |                     |
|--------------------------------------------------------|---------------------|
| Samples received in appropriate condition for analysis | Yes                 |
| No. of Samples Provided                                | additional analysis |
| Turnaround Time Requested                              | Standard            |
| Temperature on Receipt (°C)                            | 8                   |
| Cooling Method                                         | Ice Pack            |
| Sampling Date Provided                                 | YES                 |

| Comments |  |
|----------|--|
| Nil      |  |

### Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

| Sample ID   | Chromium Suite | On Hold        |
|-------------|----------------|----------------|
| BH1-0-0.1   |                | <b>✓</b>       |
| BH1-0.6-0.8 | ✓              |                |
| BH1-1.3-1.5 |                | ✓              |
| BH1-2-2.2   | ✓              |                |
| BH1-2.5-2.7 |                | ✓              |
| BH2-0.1-0.2 | ✓              |                |
| BH2-0.6-0.8 |                | ✓              |
| BH2-1.3-1.5 |                | <b>√ √</b>     |
| BH2-2-2.2   |                | ✓              |
| BH2-2.5-2.7 | ✓              |                |
| TB1         |                | ✓              |
| TS1         |                | <b>√ √</b>     |
| FR HA1      |                | ✓              |
| S Dup1      |                | $ \checkmark $ |

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

#### Ming To

From:

Katrina Taylor < KTaylor@jkenvironments.com.au>

Sent:

Tuesday, 2 May 2023 9:48 AM

To:

Samplereceipt

Subject:

FW: Results for Registration 321520 E35999BT

Attachments:

321520-[R00].pdf; 321520-COC.pdf; JK Environment Soil for Envirolab 321520.xlsx;

321520.Excel.xlsx

**CAUTION:** This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Morning,

Please schedule the following on standard TA:

Af:321520-A 7A7:Standard. 12ho:valos/2023

SCr

BH1 (0.6-0.8) **2** BH1 (2-2.2) **4**-BH2 (0.1-0.2) **6** BH2 (2.5-2.7) **(0** 

Thank you.

Regards Katrina Taylor Associate | Environmental Scientist NSW Licensed Asbestos Assessor



T: +612 9888 5000

E: <u>KTaylor@jkenvironments.com.au</u>

www.jkenvironments.com.au

PO Box 976

NORTH RYDE BC NSW 1670

115 Wicks Road

MACQUARIE PARK NSW 2113

# **JK**Environments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

From: Nancy Zhang < NZhang@envirolab.com.au>

Sent: Monday, 1 May 2023 5:52 PM

To: Katrina Taylor < KTaylor@jkenvironments.com.au > Subject: Results for Registration 321520 E35999BT

This message originated outside the JKG network. If this looks to be from a staff member, it is likely to be malicious (spam/phish attack). Do not click links of open attachments unless you recognise the sender and know the content is safe.

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 321454**

| Client Details |                                      |
|----------------|--------------------------------------|
| Client         | JK Environments                      |
| Attention      | Katrina Taylor                       |
| Address        | PO Box 976, North Ryde BC, NSW, 1670 |

| Sample Details                       |              |  |  |  |  |  |
|--------------------------------------|--------------|--|--|--|--|--|
| Your Reference                       | <u>Manly</u> |  |  |  |  |  |
| Number of Samples                    | 9 Air        |  |  |  |  |  |
| Date samples received                | 21/04/2023   |  |  |  |  |  |
| Date completed instructions received | 21/04/2023   |  |  |  |  |  |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| Date results requested by                                                             | 01/05/2023                                                       |  |  |  |  |  |
| Date of Issue                                                                         | 01/05/2023                                                       |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                  |  |  |  |  |  |
| Accredited for compliance with ISO/II                                                 | EC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |  |

Results Approved By

Amanda Chui, Air Toxics Team Leader Kyle Gavrily, Senior Chemist

**Authorised By** 

Nancy Zhang, Laboratory Manager



| TO15 in Canisters/Bags               |       |            |            |            |            |
|--------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                        |       | 321454-1   | 321454-3   | 321454-5   | 321454-7   |
| Your Reference                       | UNITS | SV1        | SV2        | SV3        | SVDUP1     |
| Date Sampled                         |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                       |       | Air        | Air        | Air        | Air        |
| Air Kit Security No.                 |       | 3524       | 1694       | 2293       | 1866       |
| Vacuum before Shipment               | Hg"   | -30        | -30        | -30        | -30        |
| Vacuum before Analysis               | Hg"   | -5         | -5         | -5         | -5         |
| Date prepared                        | -     | 24/04/2023 | 24/04/2023 | 24/04/2023 | 24/04/2023 |
| Date analysed                        | -     | 24/04/2023 | 24/04/2023 | 24/04/2023 | 24/04/2023 |
| Propylene                            | ppbv  | 38         | <3         | <1         | <3         |
| Dichlorodifluoromethane              | ppbv  | <0.5       | <3         | <1         | <3         |
| Chloromethane                        | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,2-Dichlorotetrafluoroethane        | ppbv  | <0.5       | <3         | <1         | <3         |
| Vinyl chloride                       | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,3-Butadiene                        | ppbv  | <0.5       | <3         | <1         | <3         |
| Bromomethane                         | ppbv  | <0.5       | <3         | <1         | <3         |
| Chloroethane                         | ppbv  | <0.5       | <3         | <1         | <3         |
| Ethanol                              | ppbv  | 70         | 90         | 77         | 100        |
| Acrolein                             | ppbv  | <5         | <30        | <10        | <30        |
| Trichlorofluoromethane (Freon 11)    | ppbv  | <0.5       | <3         | <1         | <3         |
| Acetone                              | ppbv  | 50         | 100        | 470        | 110        |
| Isopropyl Alcohol                    | ppbv  | <5         | <30        | 10         | <30        |
| 1,1-Dichloroethene                   | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,1,2-Trichlorotrifluoroethane       | ppbv  | <0.5       | <3         | <1         | <3         |
| Methylene chloride (Dichloromethane) | ppbv  | <5         | <30        | <10        | <30        |
| Carbon Disulfide                     | ppbv  | <5         | <30        | <10        | <30        |
| trans-1,2-dichloroethene             | ppbv  | <0.5       | <3         | <1         | <3         |
| мтве                                 | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,1- Dichloroethane                  | ppbv  | <0.5       | <3         | <1         | <3         |
| Vinyl Acetate                        | ppbv  | <0.5       | <3         | <1         | <3         |
| MEK                                  | ppbv  | <5         | <30        | <10        | <30        |
| Hexane                               | ppbv  | 31         | <3         | 6.0        | <3         |
| cis-1,2-Dichloroethene               | ppbv  | <0.5       | 15         | 4          | 16         |
| Ethyl Acetate                        | ppbv  | 0.7        | <3         | <1         | <3         |
| Chloroform                           | ppbv  | <0.5       | 75         | 5.2        | 77         |
| Tetrahydrofuran                      | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,1,1-Trichloroethane                | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,2-Dichloroethane                   | ppbv  | <0.5       | <3         | <1         | <3         |
| Benzene                              | ppbv  | 2          | <3         | 4          | <3         |
| Carbon tetrachloride                 | ppbv  | <0.5       | <3         | <1         | <3         |

| TO15 in Canisters/Bags         |       |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|
| Our Reference                  |       | 321454-1   | 321454-3   | 321454-5   | 321454-7   |
| Your Reference                 | UNITS | SV1        | SV2        | SV3        | SVDUP1     |
| Date Sampled                   |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                 |       | Air        | Air        | Air        | Air        |
| Air Kit Security No.           |       | 3524       | 1694       | 2293       | 1866       |
| Cyclohexane                    | ppbv  | <0.5       | <3         | 6.5        | <3         |
| Heptane                        | ppbv  | 14         | <3         | 4          | <3         |
| Trichloroethene                | ppbv  | <0.5       | 27         | 33         | 28         |
| 1,2-Dichloropropane            | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,4-Dioxane                    | ppbv  | <0.5       | <3         | <1         | <3         |
| Bromodichloromethane           | ppbv  | <0.5       | 5.7        | <1         | 5.9        |
| Methyl Methacrylate            | ppbv  | <0.5       | <3         | <1         | <3         |
| МІВК                           | ppbv  | <5         | <30        | <10        | <30        |
| cis-1,3-Dichloropropene        | ppbv  | <0.5       | <3         | <1         | <3         |
| trans-1,3-Dichloropropene      | ppbv  | <0.5       | <3         | <1         | <3         |
| Toluene                        | ppbv  | 4          | <3         | 10         | <3         |
| 1,1,2-Trichloroethane          | ppbv  | <0.5       | <3         | <1         | <3         |
| Methyl Butyl Ketone            | ppbv  | 0.5        | <3         | <1         | <3         |
| Dibromochloromethane           | ppbv  | <0.5       | <3         | <1         | <3         |
| Tetrachloroethene              | ppbv  | 190        | 5,800      | 1,900      | 5,700      |
| 1,2-Dibromoethane              | ppbv  | <0.5       | <3         | <1         | <3         |
| Chlorobenzene                  | ppbv  | <0.5       | <3         | <1         | <3         |
| Ethylbenzene                   | ppbv  | 2          | <3         | 2          | <3         |
| m-& p-Xylene                   | ppbv  | 6          | <5         | 7          | <5         |
| Styrene                        | ppbv  | 1          | <3         | <1         | <3         |
| o-Xylene                       | ppbv  | 3          | <3         | 3          | <3         |
| Bromoform                      | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,1,2,2-Tetrachloroethane      | ppbv  | <0.5       | <3         | <1         | <3         |
| 4-ethyl toluene                | ppbv  | 1          | <3         | <1         | <3         |
| 1,3,5-Trimethylbenzene         | ppbv  | 1          | <3         | 1          | <3         |
| 1,2,4-Trimethylbenzene         | ppbv  | 3          | <3         | 2          | <3         |
| 1,3-Dichlorobenzene            | ppbv  | <0.5       | <3         | <1         | <3         |
| Benzyl chloride                | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,4-Dichlorobenzene            | ppbv  | 1          | <3         | <1         | <3         |
| 1,2-Dichlorobenzene            | ppbv  | <0.5       | <3         | <1         | <3         |
| 1,2,4-Trichlorobenzene         | ppbv  | <0.5       | <3         | <1         | <3         |
| Naphthalene                    | ppbv  | <0.5       | <3         | <1         | <3         |
| Hexachloro- 1,3-butadiene      | ppbv  | <0.5       | <3         | <1         | <3         |
| Surrogate-Bromochloromethane   | % rec | 108        | 103        | 109        | 101        |
| Surrogate -1,4-Difluorobenzene | % rec | 104        | 101        | 103        | 100        |
| Surrogate-Chlorobenzene-D5     | % rec | 103        | 102        | 103        | 101        |

| TO15 in Canisters μg/m3              |       |            |            |            |            |
|--------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                        |       | 321454-1   | 321454-3   | 321454-5   | 321454-7   |
| Your Reference                       | UNITS | SV1        | SV2        | SV3        | SVDUP1     |
| Date Sampled                         |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                       |       | Air        | Air        | Air        | Air        |
| Air Kit Security No.                 |       | 3524       | 1694       | 2293       | 1866       |
| Vacuum before Shipment               | Hg"   | -30        | -30        | -30        | -30        |
| Vacuum before Analysis               | Hg"   | -5         | -5         | -5         | -5         |
| Date prepared                        | -     | 24/04/2023 | 24/04/2023 | 24/04/2023 | 24/04/2023 |
| Date analysed                        | -     | 24/04/2023 | 24/04/2023 | 24/04/2023 | 24/04/2023 |
| Propylene                            | μg/m³ | 66         | <4.5       | <1.8       | <4.5       |
| Dichlorodifluoromethane              | μg/m³ | <2.5       | <12.5      | <5         | <12.5      |
| Chloromethane                        | μg/m³ | <1         | <5         | <2         | <5         |
| 1,2-Dichlorotetrafluoroethane        | μg/m³ | <2.5       | <12.5      | <5         | <12.5      |
| Vinyl chloride                       | μg/m³ | <1.3       | <6.5       | <2.6       | <6.5       |
| 1,3-Butadiene                        | μg/m³ | <1.1       | <5.5       | <2.2       | <5.5       |
| Bromomethane                         | μg/m³ | <1.9       | <9.5       | <3.8       | <9.5       |
| Chloroethane                         | μg/m³ | <1.3       | <6.5       | <2.6       | <6.5       |
| Ethanol                              | μg/m³ | 130        | 170        | 150        | 200        |
| Acrolein                             | μg/m³ | <11        | <55        | <22        | <55        |
| Trichlorofluoromethane (Freon 11)    | μg/m³ | <2.8       | <14        | <5.6       | <14        |
| Acetone                              | μg/m³ | 100        | 240        | 1,100      | 250        |
| Isopropyl Alcohol                    | μg/m³ | <12        | <60        | 30         | <60        |
| 1,1-Dichloroethene                   | μg/m³ | <2         | <10        | <4         | <10        |
| 1,1,2-Trichlorotrifluoroethane       | μg/m³ | <3.8       | <19        | <7.6       | <19        |
| Methylene chloride (Dichloromethane) | μg/m³ | <17        | <85        | <34        | <85        |
| Carbon Disulfide                     | μg/m³ | <16        | <80        | <32        | <80        |
| trans-1,2-dichloroethene             | μg/m³ | <2         | <10        | <4         | <10        |
| МТВЕ                                 | μg/m³ | <1.8       | <9         | <3.6       | <9         |
| 1,1- Dichloroethane                  | μg/m³ | <2         | <10        | <4         | <10        |
| Vinyl Acetate                        | μg/m³ | <1.8       | <9         | <3.6       | <9         |
| MEK                                  | μg/m³ | <15        | <75        | <30        | <75        |
| Hexane                               | μg/m³ | 110        | <9         | 21         | <9         |
| cis-1,2-Dichloroethene               | μg/m³ | <2         | 61         | 20         | 61         |
| Ethyl Acetate                        | μg/m³ | 3          | <9         | <3.6       | <9         |
| Chloroform                           | μg/m³ | <2.4       | 370        | 25         | 380        |
| Tetrahydrofuran                      | μg/m³ | <1.5       | <7.5       | <3         | <7.5       |
| 1,1,1-Trichloroethane                | μg/m³ | <2.7       | <13.5      | <5.4       | <13.5      |
| 1,2-Dichloroethane                   | μg/m³ | <2         | <10        | <4         | <10        |
| Benzene                              | μg/m³ | 6          | <8         | 10         | <8         |
| Carbon tetrachloride                 | μg/m³ | <3.1       | <15.5      | <6.2       | <15.5      |

| TO15 in Canisters µg/m3        |       |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|
| Our Reference                  |       | 321454-1   | 321454-3   | 321454-5   | 321454-7   |
| Your Reference                 | UNITS | SV1        | SV2        | SV3        | SVDUP1     |
| Date Sampled                   |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                 |       | Air        | Air        | Air        | Air        |
| Air Kit Security No.           |       | 3524       | 1694       | 2293       | 1866       |
| Cyclohexane                    | μg/m³ | <1.7       | <8.5       | 22         | <8.5       |
| Heptane                        | μg/m³ | 57         | <10        | 20         | <10        |
| Trichloroethene                | μg/m³ | <2.7       | 140        | 180        | 150        |
| 1,2-Dichloropropane            | μg/m³ | <2.3       | <11.5      | <4.6       | <11.5      |
| 1,4-Dioxane                    | μg/m³ | <1.8       | <9         | <3.6       | <9         |
| Bromodichloromethane           | μg/m³ | <3.4       | 38         | <6.8       | 39         |
| Methyl Methacrylate            | μg/m³ | <2         | <10        | <4         | <10        |
| мівк                           | μg/m³ | <20        | <100       | <40        | <100       |
| cis-1,3-Dichloropropene        | μg/m³ | <2.3       | <11.5      | <4.6       | <11.5      |
| trans-1,3-Dichloropropene      | μg/m³ | <2.3       | <11.5      | <4.6       | <11.5      |
| Toluene                        | μg/m³ | 20         | <9.5       | 38         | <9.5       |
| 1,1,2-Trichloroethane          | μg/m³ | <2.7       | <13.5      | <5.4       | <13.5      |
| Methyl Butyl Ketone            | μg/m³ | 2          | <10        | <4         | <10        |
| Dibromochloromethane           | μg/m³ | <1.6       | <8         | <3.2       | <8         |
| Tetrachloroethene              | μg/m³ | 1,300      | 40,000     | 13,000     | 39,000     |
| 1,2-Dibromoethane              | μg/m³ | <3.8       | <19        | <7.6       | <19        |
| Chlorobenzene                  | μg/m³ | <2.3       | <11.5      | <4.6       | <11.5      |
| Ethylbenzene                   | μg/m³ | 7          | <11        | 8          | <11        |
| m-& p-Xylene                   | μg/m³ | 30         | <21.5      | 30         | <21.5      |
| Styrene                        | μg/m³ | 5          | <10.5      | <4.2       | <10.5      |
| o-Xylene                       | μg/m³ | 10         | <11        | 10         | <11        |
| Bromoform                      | μg/m³ | <5.2       | <26        | <10.4      | <26        |
| 1,1,2,2-Tetrachloroethane      | μg/m³ | <3.4       | <17        | <6.8       | <17        |
| 4-ethyl toluene                | μg/m³ | 5          | <12.5      | <5         | <12.5      |
| 1,3,5-Trimethylbenzene         | μg/m³ | 7          | <12.5      | 5          | <12.5      |
| 1,2,4-Trimethylbenzene         | μg/m³ | 10         | <12.5      | 9          | <12.5      |
| 1,3-Dichlorobenzene            | μg/m³ | <3         | <15        | <6         | <15        |
| Benzyl chloride                | μg/m³ | <2.6       | <13        | <5.2       | <13        |
| 1,4-Dichlorobenzene            | μg/m³ | 6          | <15        | <6         | <15        |
| 1,2-Dichlorobenzene            | μg/m³ | <3         | <15        | <6         | <15        |
| 1,2,4-Trichlorobenzene         | μg/m³ | <3.7       | <18.5      | <7.4       | <18.5      |
| Naphthalene                    | μg/m³ | <2.6       | <13        | <5.2       | <13        |
| Hexachloro- 1,3-butadiene      | μg/m³ | <5.3       | <26.5      | <10.6      | <26.5      |
| Surrogate-Bromochloromethane   | % rec | 108        | 103        | 109        | 101        |
| Surrogate -1,4-Difluorobenzene | % rec | 104        | 101        | 103        | 100        |
| Surrogate-Chlorobenzene-D5     | % rec | 103        | 102        | 103        | 101        |

| TPH Air/ Air Phase Hydrocarbon                            |       |            |            |            |            |
|-----------------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                             |       | 321454-1   | 321454-3   | 321454-5   | 321454-7   |
| Your Reference                                            | UNITS | SV1        | SV2        | SV3        | SVDUP1     |
| Date Sampled                                              |       | 20/04/2023 | 20/04/2023 | 20/04/2023 | 20/04/2023 |
| Type of sample                                            |       | Air        | Air        | Air        | Air        |
| Air Kit Security No.                                      |       | 3524       | 1694       | 2293       | 1866       |
| Date prepared                                             | -     | 24/04/2023 | 24/04/2023 | 24/04/2023 | 24/04/2023 |
| Date analysed                                             | -     | 24/04/2023 | 24/04/2023 | 24/04/2023 | 24/04/2023 |
| TPH C₅ - C <sub>8</sub> Aliphatic                         | μg/m³ | 1,300      | 18,000     | 6,300      | 18,000     |
| TPH C <sub>9</sub> - C <sub>12</sub> Aliphatic            | μg/m³ | 200        | <250       | <100       | <250       |
| TPH C <sub>9</sub> - C <sub>10</sub> Aromatic             | μg/m³ | <100       | <500       | <200       | <500       |
| TPH C <sub>6</sub> - C <sub>10</sub> - BTEX (F1)          | μg/m³ | <200       | 16,000     | 2,700      | 17,000     |
| TPH >C <sub>10</sub> - C <sub>12</sub> - Naphthalene (F2) | μg/m³ | 160        | <200       | <80        | <200       |

| VOC in Carbon tubes            |         |            |
|--------------------------------|---------|------------|
| Our Reference                  |         | 321454-9   |
| Your Reference                 | UNITS   | Shroud     |
| Date Sampled                   |         | 20/04/2023 |
| Type of sample                 |         | Air        |
| Air Kit Security No.           |         | 171504646  |
| Date extracted                 | -       | 26/04/2023 |
| Date analysed                  | -       | 26/04/2023 |
| Isopropyl Alcohol*             | μg/tube | 58         |
| Surrogate Toluene-d8           | %       | 81         |
| Surrogate 4-Bromofluorobenzene | %       | 82         |

Envirolab Reference: 321454 Revision No: R00

21454 Page | **7 of 18** 

| VOC in Carbon tubes  |                |            |
|----------------------|----------------|------------|
| Our Reference        |                | 321454-9   |
| Your Reference       | UNITS          | Shroud     |
| Date Sampled         |                | 20/04/2023 |
| Type of sample       |                | Air        |
| Air Kit Security No. |                | 171504646  |
| Date prepared        | -              | 26/04/2023 |
| Date analysed        | -              | 26/04/2023 |
| Tube Sampling rate   | mL/min         | 50         |
| Tube Sampling Time   | mins           | 1.0        |
| Volume sampled       | m <sup>3</sup> | 0.00005000 |
| Isopropyl Alcohol    | μg/m³          | 1,200,000  |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT-005    | Measurement of Air-Phase Petroleum Hydrocarbons and Ozone Precursors by GC-MS.                                                                                                                                                                                                                     |
| ORG-022   | Determination of volatile organic compounds in charcoal tubes/badges/sorbents using CS2 extraction, determined by GC/GC-MS. Desorption efficiencies are not applied to results.                                                                                                                    |
|           | Note where µg/m³ results are supplied for SKC badges, the factors used are for 575-001, if 575-001 data is unavailable for an analyte then use 575-002 then 575-003 (exposure time must be supplied). Otherwise a sampling rate may be used for a similar analyte on request.                      |
|           | Analytes such as (where applicable) lodomethane, Chloroprene, Nitrobenzene, Naphthalene and 1, 2, 3 // 1, 2, 4 Trichlorobenzenes are considered to be semi-quant analyses using CS2 desorption from charcoal tubes. The latter three compounds are better served by XAD-2 collection and analysis. |
|           | Note - air volume measurements are not covered by Envirolab's NATA accreditation.                                                                                                                                                                                                                  |
| TO15      | USEPA TO15 - Analysis of VOC's in air using USEPA TO15 and in house method AT-002. Note, longer term stability of some oxygenated compounds is questionable where significant humidity is present.                                                                                                 |
| USEPA 18  | Measurement of Gaseous Organic Compound Emissions by Gas Chromatography using USEPA m18.                                                                                                                                                                                                           |

Envirolab Reference: 321454

| QUALITY CO                           | ONTROL: TO | 15 in Car | nisters/Bags |            |   | Du         | plicate    |     | Spike Re   | covery % |
|--------------------------------------|------------|-----------|--------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                     | Units      | PQL       | Method       | Blank      | # | Base       | Dup.       | RPD | LCS-1      | [NT]     |
| Vacuum before Shipment               | Hg"        |           |              | [NT]       | 1 | -30        | -30        | 0   | [NT]       |          |
| Vacuum before Analysis               | Hg"        |           |              | [NT]       | 1 | -5         | -5         | 0   | [NT]       |          |
| Date prepared                        | -          |           |              | 24/04/2023 | 1 | 24/04/2023 | 24/04/2023 |     | 24/04/2023 |          |
| Date analysed                        | -          |           |              | 24/04/2023 | 1 | 24/04/2023 | 24/04/2023 |     | 24/04/2023 |          |
| Propylene                            | ppbv       | 0.5       | TO15         | <0.5       | 1 | 38         | 39         | 3   | 107        |          |
| Dichlorodifluoromethane              | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Chloromethane                        | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| 1,2-Dichlorotetrafluoroethane        | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Vinyl chloride                       | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| 1,3-Butadiene                        | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Bromomethane                         | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Chloroethane                         | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Ethanol                              | ppbv       | 5         | TO15         | <5         | 1 | 70         | 71         | 1   | [NT]       |          |
| Acrolein                             | ppbv       | 5         | TO15         | <5         | 1 | <5         | <5         | 0   | [NT]       |          |
| Trichlorofluoromethane (Freon 11)    | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Acetone                              | ppbv       | 5         | TO15         | <5         | 1 | 50         | 50         | 0   | [NT]       |          |
| Isopropyl Alcohol                    | ppbv       | 5         | TO15         | <5         | 1 | <5         | <5         | 0   | [NT]       |          |
| 1,1-Dichloroethene                   | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| 1,1,2-Trichlorotrifluoroethane       | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Methylene chloride (Dichloromethane) | ppbv       | 5         | TO15         | <5         | 1 | <5         | <5         | 0   | [NT]       |          |
| Carbon Disulfide                     | ppbv       | 5         | TO15         | <5         | 1 | <5         | <5         | 0   | [NT]       |          |
| trans-1,2-dichloroethene             | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| мтве                                 | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| 1,1- Dichloroethane                  | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Vinyl Acetate                        | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| MEK                                  | ppbv       | 5         | TO15         | <5         | 1 | <5         | 5          | 0   | [NT]       |          |
| Hexane                               | ppbv       | 0.5       | TO15         | <0.5       | 1 | 31         | 32         | 3   | 97         |          |
| cis-1,2-Dichloroethene               | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Ethyl Acetate                        | ppbv       | 0.5       | TO15         | <0.5       | 1 | 0.7        | 0.7        | 0   | [NT]       |          |
| Chloroform                           | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Tetrahydrofuran                      | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| 1,1,1-Trichloroethane                | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| 1,2-Dichloroethane                   | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Benzene                              | ppbv       | 0.5       | TO15         | <0.5       | 1 | 2          | 2          | 0   | 95         |          |
| Carbon tetrachloride                 | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | <0.5       | 0   | [NT]       |          |
| Cyclohexane                          | ppbv       | 0.5       | TO15         | <0.5       | 1 | <0.5       | 0.5        | 0   | 91         |          |
| Heptane                              | ppbv       | 0.5       | TO15         | <0.5       | 1 | 14         | 14         | 0   | 102        |          |

| QUALITY CO                     | ONTROL: TO | 15 in Car | nisters/Bags |       |   | Du   | ıplicate |     | Spike Re | covery % |
|--------------------------------|------------|-----------|--------------|-------|---|------|----------|-----|----------|----------|
| Test Description               | Units      | PQL       | Method       | Blank | # | Base | Dup.     | RPD | LCS-1    | [NT]     |
| Trichloroethene                | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| 1,2-Dichloropropane            | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| 1,4-Dioxane                    | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Bromodichloromethane           | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Methyl Methacrylate            | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| MIBK                           | ppbv       | 5         | TO15         | <5    | 1 | <5   | <5       | 0   |          |          |
| cis-1,3-Dichloropropene        | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| trans-1,3-Dichloropropene      | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Toluene                        | ppbv       | 0.5       | TO15         | <0.5  | 1 | 4    | 4        | 0   | 101      |          |
| 1,1,2-Trichloroethane          | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Methyl Butyl Ketone            | ppbv       | 0.5       | TO15         | <0.5  | 1 | 0.5  | <0.5     | 0   |          |          |
| Dibromochloromethane           | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Tetrachloroethene              | ppbv       | 0.5       | TO15         | <0.5  | 1 | 190  | 200      | 5   |          |          |
| 1,2-Dibromoethane              | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Chlorobenzene                  | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Ethylbenzene                   | ppbv       | 0.5       | TO15         | <0.5  | 1 | 2    | 2        | 0   | 103      |          |
| m-& p-Xylene                   | ppbv       | 1         | TO15         | <1    | 1 | 6    | 6        | 0   | 100      |          |
| Styrene                        | ppbv       | 0.5       | TO15         | <0.5  | 1 | 1    | 1        | 0   | 100      |          |
| o-Xylene                       | ppbv       | 0.5       | TO15         | <0.5  | 1 | 3    | 3        | 0   | 102      |          |
| Bromoform                      | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| 1,1,2,2-Tetrachloroethane      | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| 4-ethyl toluene                | ppbv       | 0.5       | TO15         | <0.5  | 1 | 1    | 1        | 0   | 103      |          |
| 1,3,5-Trimethylbenzene         | ppbv       | 0.5       | TO15         | <0.5  | 1 | 1    | 1        | 0   | 101      |          |
| 1,2,4-Trimethylbenzene         | ppbv       | 0.5       | TO15         | <0.5  | 1 | 3    | 3        | 0   | 103      |          |
| 1,3-Dichlorobenzene            | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Benzyl chloride                | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| 1,4-Dichlorobenzene            | ppbv       | 0.5       | TO15         | <0.5  | 1 | 1    | 0.7      | 35  |          |          |
| 1,2-Dichlorobenzene            | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| 1,2,4-Trichlorobenzene         | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Naphthalene                    | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Hexachloro- 1,3-butadiene      | ppbv       | 0.5       | TO15         | <0.5  | 1 | <0.5 | <0.5     | 0   |          |          |
| Surrogate-Bromochloromethane   | % rec      |           | TO15         | 100   | 1 | 108  | 107      | 1   | 106      |          |
| Surrogate -1,4-Difluorobenzene | % rec      |           | TO15         | 97    | 1 | 104  | 103      | 1   | 100      |          |
| Surrogate-Chlorobenzene-D5     | % rec      |           | TO15         | 96    | 1 | 103  | 102      | 1   | 101      |          |

| QUALITY CC                           | NTROL: TO | 15 in Can | isters µg/m3 |            |   | Du         | plicate    |     | Spike Re | covery % |
|--------------------------------------|-----------|-----------|--------------|------------|---|------------|------------|-----|----------|----------|
| Test Description                     | Units     | PQL       | Method       | Blank      | # | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Vacuum before Shipment               | Hg"       |           |              | [NT]       | 1 | -30        | -30        | 0   |          |          |
| Vacuum before Analysis               | Hg"       |           |              | [NT]       | 1 | -5         | -5         | 0   |          |          |
| Date prepared                        | -         |           |              | 24/04/2023 | 1 | 24/04/2023 | 24/04/2023 |     |          |          |
| Date analysed                        | -         |           |              | 24/04/2023 | 1 | 24/04/2023 | 24/04/2023 |     |          |          |
| Propylene                            | μg/m³     | 0.9       | TO15         | <0.9       | 1 | 66         | 67         | 2   |          |          |
| Dichlorodifluoromethane              | μg/m³     | 2.5       | TO15         | <2.5       | 1 | <2.5       | <2.5       | 0   |          |          |
| Chloromethane                        | μg/m³     | 1.0       | TO15         | <1.0       | 1 | <1         | <1         | 0   |          |          |
| 1,2-Dichlorotetrafluoroethane        | μg/m³     | 2.5       | TO15         | <2.5       | 1 | <2.5       | <2.5       | 0   |          |          |
| Vinyl chloride                       | μg/m³     | 1.3       | TO15         | <1.3       | 1 | <1.3       | <1.3       | 0   |          |          |
| 1,3-Butadiene                        | μg/m³     | 1.1       | TO15         | <1.1       | 1 | <1.1       | <1.1       | 0   |          |          |
| Bromomethane                         | μg/m³     | 1.9       | TO15         | <1.9       | 1 | <1.9       | <1.9       | 0   |          |          |
| Chloroethane                         | μg/m³     | 1.3       | TO15         | <1.3       | 1 | <1.3       | <1.3       | 0   |          |          |
| Ethanol                              | μg/m³     | 9         | TO15         | <9         | 1 | 130        | 130        | 0   |          |          |
| Acrolein                             | μg/m³     | 11        | TO15         | <11        | 1 | <11        | <11        | 0   |          |          |
| Trichlorofluoromethane (Freon 11)    | μg/m³     | 2.8       | TO15         | <2.8       | 1 | <2.8       | <2.8       | 0   |          |          |
| Acetone                              | μg/m³     | 11.9      | TO15         | <11.9      | 1 | 100        | 100        | 0   |          |          |
| Isopropyl Alcohol                    | μg/m³     | 12        | TO15         | <12        | 1 | <12        | <12        | 0   |          |          |
| 1,1-Dichloroethene                   | μg/m³     | 2.0       | TO15         | <2.0       | 1 | <2         | <2         | 0   |          |          |
| 1,1,2-Trichlorotrifluoroethane       | μg/m³     | 3.8       | TO15         | <3.8       | 1 | <3.8       | <3.8       | 0   |          |          |
| Methylene chloride (Dichloromethane) | μg/m³     | 17        | USEPA 18     | <17        | 1 | <17        | <17        | 0   |          |          |
| Carbon Disulfide                     | μg/m³     | 16        | TO15         | <16        | 1 | <16        | <16        | 0   |          |          |
| trans-1,2-dichloroethene             | μg/m³     | 2.0       | TO15         | <2.0       | 1 | <2         | <2         | 0   |          |          |
| мтве                                 | μg/m³     | 1.8       | TO15         | <1.8       | 1 | <1.8       | <1.8       | 0   |          |          |
| 1,1- Dichloroethane                  | μg/m³     | 2.0       | TO15         | <2.0       | 1 | <2         | <2         | 0   |          |          |
| Vinyl Acetate                        | μg/m³     | 1.8       | TO15         | <1.8       | 1 | <1.8       | <1.8       | 0   |          |          |
| MEK                                  | μg/m³     | 15        | TO15         | <15        | 1 | <15        | <15        | 0   |          |          |
| Hexane                               | μg/m³     | 1.8       | TO15         | <1.8       | 1 | 110        | 110        | 0   |          |          |
| cis-1,2-Dichloroethene               | μg/m³     | 2.0       | TO15         | <2.0       | 1 | <2         | <2         | 0   |          |          |
| Ethyl Acetate                        | μg/m³     | 1.8       | TO15         | <1.8       | 1 | 3          | 2          | 40  |          |          |
| Chloroform                           | μg/m³     | 2.4       | TO15         | <2.4       | 1 | <2.4       | <2.4       | 0   |          |          |
| Tetrahydrofuran                      | μg/m³     | 1.5       | TO15         | <1.5       | 1 | <1.5       | <1.5       | 0   |          |          |
| 1,1,1-Trichloroethane                | μg/m³     | 2.7       | TO15         | <2.7       | 1 | <2.7       | <2.7       | 0   |          |          |
| 1,2-Dichloroethane                   | μg/m³     | 2.0       | TO15         | <2.0       | 1 | <2         | <2         | 0   |          |          |
| Benzene                              | μg/m³     | 1.6       | TO15         | <1.6       | 1 | 6          | 6          | 0   |          |          |
| Carbon tetrachloride                 | μg/m³     | 3.1       | TO15         | <3.1       | 1 | <3.1       | <3.1       | 0   |          |          |
| Cyclohexane                          | μg/m³     | 1.7       | TO15         | <1.7       | 1 | <1.7       | 2          | 16  |          |          |
| Heptane                              | μg/m³     | 2.0       | TO15         | <2.0       | 1 | 57         | 58         | 2   |          |          |

| QUALITY CO                     | NTROL: TO | 15 in Can | isters µg/m3 |       |   | Du   | plicate |     | Spike Re | covery % |
|--------------------------------|-----------|-----------|--------------|-------|---|------|---------|-----|----------|----------|
| Test Description               | Units     | PQL       | Method       | Blank | # | Base | Dup.    | RPD | [NT]     | [NT]     |
| Trichloroethene                | μg/m³     | 2.7       | TO15         | <2.7  | 1 | <2.7 | <2.7    | 0   |          | [NT]     |
| 1,2-Dichloropropane            | μg/m³     | 2.3       | TO15         | <2.3  | 1 | <2.3 | <2.3    | 0   |          | [NT]     |
| 1,4-Dioxane                    | μg/m³     | 1.8       | TO15         | <1.8  | 1 | <1.8 | <1.8    | 0   |          | [NT]     |
| Bromodichloromethane           | μg/m³     | 3.4       | TO15         | <3.4  | 1 | <3.4 | <3.4    | 0   |          | [NT]     |
| Methyl Methacrylate            | μg/m³     | 2.0       | TO15         | <2.0  | 1 | <2   | <2      | 0   |          | [NT]     |
| MIBK                           | μg/m³     | 20        | TO15         | <20   | 1 | <20  | <20     | 0   |          | [NT]     |
| cis-1,3-Dichloropropene        | μg/m³     | 2.3       | TO15         | <2.3  | 1 | <2.3 | <2.3    | 0   |          | [NT]     |
| trans-1,3-Dichloropropene      | μg/m³     | 2.3       | TO15         | <2.3  | 1 | <2.3 | <2.3    | 0   |          | [NT]     |
| Toluene                        | μg/m³     | 1.9       | TO15         | <1.9  | 1 | 20   | 20      | 0   |          | [NT]     |
| 1,1,2-Trichloroethane          | μg/m³     | 2.7       | TO15         | <2.7  | 1 | <2.7 | <2.7    | 0   |          | [NT]     |
| Methyl Butyl Ketone            | μg/m³     | 2.0       | TO15         | <2.0  | 1 | 2    | <2      | 0   |          | [NT]     |
| Dibromochloromethane           | μg/m³     | 1.6       | TO15         | <1.6  | 1 | <1.6 | <1.6    | 0   |          | [NT]     |
| Tetrachloroethene              | μg/m³     | 3.4       | TO15         | <3.4  | 1 | 1300 | 1300    | 0   |          | [NT]     |
| 1,2-Dibromoethane              | μg/m³     | 3.8       | TO15         | <3.8  | 1 | <3.8 | <3.8    | 0   |          | [NT]     |
| Chlorobenzene                  | μg/m³     | 2.3       | TO15         | <2.3  | 1 | <2.3 | <2.3    | 0   |          | [NT]     |
| Ethylbenzene                   | μg/m³     | 2.2       | TO15         | <2.2  | 1 | 7    | 7       | 0   |          | [NT]     |
| m-& p-Xylene                   | μg/m³     | 4.3       | TO15         | <4.3  | 1 | 30   | 30      | 0   |          | [NT]     |
| Styrene                        | μg/m³     | 2.1       | TO15         | <2.1  | 1 | 5    | 5       | 0   |          | [NT]     |
| o-Xylene                       | μg/m³     | 2.2       | TO15         | <2.2  | 1 | 10   | 10      | 0   |          | [NT]     |
| Bromoform                      | μg/m³     | 5.2       | TO15         | <5.2  | 1 | <5.2 | <5.2    | 0   |          | [NT]     |
| 1,1,2,2-Tetrachloroethane      | μg/m³     | 3.4       | TO15         | <3.4  | 1 | <3.4 | <3.4    | 0   |          | [NT]     |
| 4-ethyl toluene                | μg/m³     | 2.5       | TO15         | <2.5  | 1 | 5    | 5       | 0   |          | [NT]     |
| 1,3,5-Trimethylbenzene         | μg/m³     | 2.5       | TO15         | <2.5  | 1 | 7    | 6       | 15  |          | [NT]     |
| 1,2,4-Trimethylbenzene         | μg/m³     | 2.5       | TO15         | <2.5  | 1 | 10   | 10      | 0   |          | [NT]     |
| 1,3-Dichlorobenzene            | μg/m³     | 3.0       | TO15         | <3.0  | 1 | <3   | <3      | 0   |          | [NT]     |
| Benzyl chloride                | μg/m³     | 2.6       | TO15         | <2.6  | 1 | <2.6 | <2.6    | 0   |          | [NT]     |
| 1,4-Dichlorobenzene            | μg/m³     | 3.0       | TO15         | <3.0  | 1 | 6    | 4       | 40  |          | [NT]     |
| 1,2-Dichlorobenzene            | μg/m³     | 3.0       | TO15         | <3.0  | 1 | <3   | <3      | 0   |          | [NT]     |
| 1,2,4-Trichlorobenzene         | μg/m³     | 3.7       | TO15         | <3.7  | 1 | <3.7 | <3.7    | 0   |          | [NT]     |
| Naphthalene                    | μg/m³     | 2.6       | TO15         | <2.6  | 1 | <2.6 | <2.6    | 0   |          | [NT]     |
| Hexachloro- 1,3-butadiene      | μg/m³     | 5.3       | TO15         | <5.3  | 1 | <5.3 | <5.3    | 0   |          | [NT]     |
| Surrogate-Bromochloromethane   | % rec     |           | TO15         | 100   | 1 | 108  | 107     | 1   |          | [NT]     |
| Surrogate -1,4-Difluorobenzene | % rec     |           | TO15         | 97    | 1 | 104  | 103     | 1   |          | [NT]     |
| Surrogate-Chlorobenzene-D5     | % rec     |           | TO15         | 96    | 1 | 103  | 102     | 1   |          | [NT]     |

| QUALITY CONTROL: TPH Air/ Air Phase Hydrocarbon           |       |     |        |            | Du |            | Spike Recovery % |     |            |      |
|-----------------------------------------------------------|-------|-----|--------|------------|----|------------|------------------|-----|------------|------|
| Test Description                                          | Units | PQL | Method | Blank      | #  | Base       | Dup.             | RPD | LCS-1      | [NT] |
| Date prepared                                             | -     |     |        | 24/04/2023 | 1  | 24/04/2023 | 24/04/2023       |     | 24/04/2023 | [NT] |
| Date analysed                                             | -     |     |        | 24/04/2023 | 1  | 24/04/2023 | 24/04/2023       |     | 24/04/2023 | [NT] |
| TPH C₅ - C <sub>8</sub> Aliphatic                         | μg/m³ | 200 | AT-005 | <200       | 1  | 1300       | 1300             | 0   | 98         | [NT] |
| TPH C <sub>9</sub> - C <sub>12</sub> Aliphatic            | μg/m³ | 50  | AT-005 | <50        | 1  | 200        | 200              | 0   | [NT]       | [NT] |
| TPH C <sub>9</sub> - C <sub>10</sub> Aromatic             | μg/m³ | 100 | AT-005 | <100       | 1  | <100       | <100             | 0   | 100        | [NT] |
| TPH C <sub>6</sub> - C <sub>10</sub> - BTEX (F1)          | μg/m³ | 200 | TO15   | <200       | 1  | <200       | <200             | 0   | 98         | [NT] |
| TPH >C <sub>10</sub> - C <sub>12</sub> - Naphthalene (F2) | μg/m³ | 40  | TO15   | <40        | 1  | 160        | 180              | 12  | 98         | [NT] |
|                                                           |       |     |        |            |    |            |                  |     |            |      |

| QUALITY CONTROL: VOC in Carbon tubes |         |     |         | Duplicate  |      |      |      | Spike Recovery % |            |      |
|--------------------------------------|---------|-----|---------|------------|------|------|------|------------------|------------|------|
| Test Description                     | Units   | PQL | Method  | Blank      | #    | Base | Dup. | RPD              | LCS-1      | [NT] |
| Date extracted                       | -       |     |         | 26/04/2023 | [NT] |      | [NT] | [NT]             | 26/04/2023 |      |
| Date analysed                        | -       |     |         | 26/04/2023 | [NT] |      | [NT] | [NT]             | 26/04/2023 |      |
| Isopropyl Alcohol*                   | μg/tube | 5   | ORG-022 | <5         | [NT] |      | [NT] | [NT]             | 102        |      |
| Surrogate Toluene-d8                 | %       |     | ORG-022 | 94         | [NT] |      | [NT] | [NT]             | 92         |      |
| Surrogate 4-Bromofluorobenzene       | %       |     | ORG-022 | 99         | [NT] |      | [NT] | [NT]             | 96         |      |
|                                      |         |     |         |            |      |      |      |                  |            |      |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 321454 Page | 17 of 18 Revision No: R00

# **Report Comments**

PQL has been raised due to interference from analytes (other than those being tested) in the sample/s.

Envirolab Reference: 321454

Revision No: R00

Page | 18 of 18



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

### **SAMPLE RECEIPT ADVICE**

| Client Details |                 |
|----------------|-----------------|
| Client         | JK Environments |
| Attention      | Katrina Taylor  |

| Sample Login Details                 |            |
|--------------------------------------|------------|
| Your reference                       | Manly      |
| Envirolab Reference                  | 321454     |
| Date Sample Received                 | 21/04/2023 |
| Date Instructions Received           | 21/04/2023 |
| Date Results Expected to be Reported | 01/05/2023 |

| Sample Condition                                       |                |
|--------------------------------------------------------|----------------|
| Samples received in appropriate condition for analysis | Yes            |
| No. of Samples Provided                                | 9 Air          |
| Turnaround Time Requested                              | Standard       |
| Temperature on Receipt (°C)                            | n/a            |
| Cooling Method                                         | Not applicable |
| Sampling Date Provided                                 | YES            |

| Comments |  |
|----------|--|
| Nil      |  |

### Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

| Sample ID | TO15 in Canisters/Bags | TO15 in Canisters µg/m3 | TPH Air/ Air Phase Hydrocarbon | VOC in Carbon tubes | VOC in Carbon tubes | On Hold |
|-----------|------------------------|-------------------------|--------------------------------|---------------------|---------------------|---------|
| SV1       | ✓                      | ✓                       | ✓                              |                     |                     |         |
| SV1       |                        |                         |                                |                     |                     | ✓       |
| SV2       | ✓                      | ✓                       | ✓                              |                     |                     |         |
| SV2       |                        |                         |                                |                     |                     | ✓       |
| SV3       | ✓                      | ✓                       | ✓                              |                     |                     |         |
| SV3       |                        |                         |                                |                     |                     | ✓       |
| SVDUP1    | ✓                      | ✓                       | ✓                              |                     |                     |         |
| SVDUP1    |                        |                         |                                |                     |                     | ✓       |
| Shroud    |                        |                         |                                | ✓                   | <b>√</b>            |         |

The ' $\checkmark$ ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

| The Or Th |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3524<br>1694<br>2293<br>1866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sem 10.1) April   10.1 (Sem 10.1) April   1.1 (Sem 10.1   |
| SV1   3524   1745   Ves   0.6   20/94/2023   11:13em   11:13em   11:13em   30Hg*   6Hg*   100mL/min   X   X   300mL    |
| SV1   3524   1745   Yes   0.6   2004/2023   11:13em   11:13em   30Hg*   6Hg*   100mL/min   X   X   300mL   3   |
| 1594   1742   Yes   0.6   20/04/2023   10:18am   10:34am   3014g*   641g*   100mL/min   X   X   300mL     1594   1742   Yes   5.5   20/04/2023   11:13am   11:19am   3014g*   641g*   100mL/min   X   X   300mL     2233   1976   Yes   0.9   20/04/2023   11:13am   11:19am   3014g*   641g*   100mL/min   X   X   300mL     4   1866   1750   Yes   NA   20/04/2023   10:19am   10:40am   3014g*   641g*   100mL/min   X   X   100mL     5   1750   Yes   NA   20/04/2023   10:19am   10:40am   3014g*   641g*   100mL/min   X   X   100mL     5   1750   Yes   NA   20/04/2023   10:19am   10:40am   3014g*   641g*   100mL/min   X   X   100mL     6   1750   Yes   NA   20/04/2023   10:19am   10:40am   3014g*   641g*   100mL/min   X   X   100mL     7   1866   1750   Yes   NA   20/04/2023   10:19am   10:40am   Notes     7   1866   1750   Yes   Na   Notes   10:10am   Notes   10:10am   Notes     8   1750   Yes   Na   Notes   10:10am   Notes      |
| SV1   3524   1745   Ves   0.6   2004/2023   11:13em   11:13em   30Hg"   6Hg"   100mL/min   X   X   300mL   3   |
| SV1   3524   1745   Ves   0.6   2004/2023   11:13em   11:13em   3014g*   64g*   100mL/min   X   X   300mL      |
| SV1   3524   1745   Ves   0.6   2004/2023   11:13em   11:13em   11:13em   3014°   6:14°   100mL/min   X   X   300mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 3524   1745   1745   1785   10.1 Sam   10.   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sem 10.1) April   10.1 (Sem 10.1) April   1.1 (Sem 10.1   |
| 3524   1745   1745   1785   10.1 (Sem 10.1) April   10.1 (Sem 10.1) April   1.1 (Sem 10.1   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sem 10.1) April   10.1 (Sem 10.1) April   1.1 (Sem 10.1   |
| 3524   1745   1745   1785   10.1 (Sem 10.1) April   10.1 (Sem 10.1) April   1.1 (Sem 10.1   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sem 10.1) April   10.1 (Sem 10.1) April   1.1 (Sem 10.1   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sen 10.1 (Sen 10.1 (Sen 10.3 4gm 3.3 (Hz) 2.3 (H   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014   2014      |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   105   20/04/2023   115:13em   103:45em   2014g*   2014g*   100mL/min   X   X   X   X   300mL   100mL/min   100mL   |
| 1554   1745   1745   1745   105   20/04/2023   115:13em   103:45em   2014g*   2014g*   100mL/min   X   X   X   X   300mL   100mL/min   100mL   |
| 3524   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 3524   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sam 1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1785   10.1 (Sam 10.1 (Sam 2014)   1784   1784   1784   1784   1784   1784   1784   1785   1886   1786   1786   1786   1886   1786   1786   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886   1886      |
| 3524   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1554   1745   1745   1745   105   20/04/2023   115/13em   103-13em   100-14em   100-14   |
| 1554   1745   1745   1745   105   20/04/2023   115/13em   103-13em   100-14em   100-14   |
| 1554   1745   1745   1745   105   20/04/2023   115/13em   103-13em   100-14em   100-14   |
| 1554   1745   1745   1745   105   20/04/2023   115/13em   103-13em   100-14em   100-14   |
| 1554   1745   1745   1745   105   20/04/2023   115:13em   103:45em   120:16em   120:16   |
| 1594   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1594   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745      |
| 1594   1745   1745   1745   105   20/04/2023   115/13em   103-45m   2304g"   264g"   100mL/min   X   X   300mL   300mL   15694   1742   1742   1742   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   1745   |
| 3524   1745   Yes   0.6   20/04/2023   10:18am   10:34am   30hg*   6:hg*   100mL/min   X   X   300mL   300mL   10:48am   11:18am   20:hg*   100mL/min   X   X   300mL   10:04mL/min   X   X   300mL   300mL   300mL   300mL/min   X   X   300mL   300mL   300mL/min   X   X   300mL   300mL   300mL/min   X   X   300mL/min   X   X   300mL/min   X   X   300mL/min   300mL/min   X   X   300mL/min   300m   |
| 1524   1745   Yes   0.6   20/04/2023   10:18am   10:34am   3:04g*   6:16g*   100mL/min   X   X   300mL   300mL   10:24g*   100mL/min   X   X   300mL   10:24g*   10:18am   11:13am   2:04g*   6:14g*   100mL/min   X   X   300mL   10:04mL/min   X   X   300mL   |
| 1524   1745   Yes   0.6   20/04/2023   10:18am   10:34am   30hgr   150mu/min   X   X   300mu   100mu/min   X   X   300mu   3   |
| 1524   1745   Yes   0.6   20/04/2023   10:18am   10:34am   3:014g*   4:14g*   100mL/min   X   X   300mL     1594   1742   Yes   5.5   20/04/2023   11:13am   11:13am   3:014g*   4:14g*   100mL/min   X   X   300mL     1866   1750   Yes   2.9   20/04/2023   11:13am   11:13am   3:014g*   4:14g*   100mL/min   X   X   300mL     1866   1750   Yes   2.9   20/04/2023   11:13am   11:13am   11:13am   11:13am   3:014g*   4:14g*   100mL/min   X   X   300mL     1866   1750   Yes   NA   20/04/2023   10:33am   10:40am   3:014g*   4:14g*   100mL/min   X   X   300mL     1966   1750   Yes   NA   20/04/2023   10:33am   10:40am   3:014g*   4:14g*   4:14   |
| 1594   1745   Yes   0.6   20/04/2023   10:18am   10:34am   3:014g"   6:14g"   100mL/min   X   X   300mL     1594   1742   Yes   5.5   20/04/2023   11:13am   11:13am   3:014g"   6:14g"   100mL/min   X   X   300mL     1866   1750   Yes   2.9   20/04/2023   11:13am   11:13am   3:014g"   6:14g"   100mL/min   X   X   300mL     1866   1750   Yes   2.9   20/04/2023   11:13am   11:13am   11:13am   11:13am   3:014g"   6:14g"   100mL/min   X   X   300mL     1866   1750   Yes   NA   20/04/2023   10:33am   10:40am   3:014g"   6:14g"   100mL/min   X   X   300mL     1966   1750   Yes   NA   20/04/2023   10:33am   10:40am   3:014g"   6:14g"   100mL/min   X   X   300mL     1966   1750   Yes   NA   20/04/2023   10:33am   10:40am   3:014g"   6:14g"   100mL/min   X   X   3:00mL     1966   1750   Yes   10:33am   10:40am   11:13am   10:40am   11:13am   10:40am   11:13am   10:40am   11:13am   10:40am   11:13am   10:40am   11:13am      |
| 1594   1745   Yes   0.6   20/04/2023   10:18am   11:13am   30hg"   6:hg"   100mL/min   X   X   300mL     1594   1742   Yes   5.5   20/04/2023   11:13am   11:13am   30hg"   6:hg"   100mL/min   X   X   300mL     1866   1750   Yes   2.9   20/04/2023   11:13am   11:13am   30hg"   6:hg"   100mL/min   X   X   300mL     1866   1750   Yes   2.9   20/04/2023   11:13am      |
| 1594   1745   Yes   0.6   20/04/2023   10:18am   10:34am   -3014g*   -614g*   100mu/min   X   X     300mu   200mu   2293   1976   Yes   2.5   20/04/2023   11:13am   11:13am   -3014g*   -614g*   100mu/min   X   X     300mu   200mu   200m   |
| 1594   1745   Yes   0.6   20/04/2023   10:18am   10:34am   -3014g"   -614g"   100mL/min   X   X     300mL   300mL   10594   1742   Yes   5.5   20/04/2023   11:13am   11:13am   -3014g"   -614g"   100mL/min   X   X   300mL   100mL   |
| 3524 1745 Yes 0.6 2004/2023 10:18am 1:13am 1 |
| 3524   1745   Yes   0.6   20/04/2023   10:18am   10:34am   10:34   |
| 3524   1745   Yes   0.6   20/04/2023   10:18am   10:34am   10:34am   10:34am   10:0mt/min   X   X   X   300mt   300mt   1594   1742   Yes   2.5   20/04/2023   11:31am   11:18am   2.304g"   64g"   100mt/min   X   X   300mt   300mt   1956   1750   Yes   2.9   20/04/2023   11:31am   11:18am   2.304g"   64g"   100mt/min   X   X   300mt   300m   |
| 3324   1745   Yes   0.6   20/04/2023   10:18am   10:34am   3:304g"   6:14g"   100ml/min   X   X   300ml   300ml   2293   1976   Yes   2.9   20/04/2023   11:31am   12:35m   3:304g"   6:14g"   100ml/min   X   X   3:00ml   |
| 3524 1745 Yes 0.6 2004/2023 10:18am 10:34am 3.94q° -64q° 100mL/min X X X 300mL 2223 1976 Yes 2.9 20094/2023 11:01am 11:19am 2.94q° 64q° 100mL/min X X X 300mL 1866 1750 Yes NA 20094/2023 11:01am 11:10am 2.94q° 64q° 100mL/min X X X 300mL  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3524 1745 Yes 0.6 20/04/2023 10:18am 11:13am 11:13am 11:13am 1304g" -644g" 100mL/min X X X 300mL 2004 2002 11:01am 11:13am 11:13am 12:05g 644g" 100mL/min X X X 300mL 2004 2002 11:01am 11:13am 12:05g 644g" 100mL/min X X X 300mL 2004 2002 11:01am 11:03am 12:05g 7 29 20/04/2023 11:01am 10:40am 200mL/min X X X X 200mL 200mL/min X X X 200mL 2 |
| 3524 1745 Yes 0.6 2004/2023 10:18am 10:34am 3:04g" -6Hg" 100mL/min X X X 300mL 2293 11:01am 11:13am 3:04g" -6Hg" 100mL/min X X X 300mL 300mL 2293 11:01am 11:13am 3:04g" -6Hg" 100mL/min X X X 300mL 300mL 1866 1750 Yes 2.9 20/04/2023 11:01am 11:13am 3:04g" -6Hg" 100mL/min X X X 300mL 300mL 200mL 200mL 200mL/min X X X X 300mL 200mL/min X X X X X 300mL 200mL/min X X X X X 300mL 200mL/min X X X X X X 300mL 200mL/min X X X X X X 300mL 200mL/min X X X X X X X 300mL 200mL/min X X X X X X X 300mL 200mL/min X X X X X X X X X 300mL 200mL/min X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3524 1745 Yes 0.6 2004/2023 10:18am 10:34am -30Hg" -6Hg" 100mL/min X X 300mL 2293 1976 Yes 2.9 20/04/2023 11:51am 12:05pm -30Hg" -6Hg" 100mL/min X X 300mL 1866 1750 Yes NA 20/04/2023 11:51am 12:05pm -6Hg" 100mL/min X X 300mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3524 1745 Yes 0 6 20/04/2023 10:18am 10:34am 3:30Hg" -6Hg" 100mL/min X X X 3 300mL  1654 1742 Yes 5 2 20/04/2023 11:51am 1:13am 3:30Hg" -6Hg" 100mL/min X X X 3 300mL  2293 1976 Yes 0 2 20/04/2023 11:51am 11:13am 2:30Hg" -6Hg" 100mL/min X X X 3 300mL  1866 1750 Yes 0 2 20/04/2023 11:51am 11:13am 2:30Hg" -6Hg" 100mL/min X X X 3 300mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SVI         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         139hg**         6-hg**         100mL/min         X         X         Character           SV3         1654         1742         Yes         5.5         20/04/2023         11:13am         13.04g**         -6-hg**         100mL/min         X         X         N         300mL           SV3         2293         1976         Yes         2.9         20/04/2023         11:13am         12:05pm         -39hg**         -6hg**         100mL/min         X         X         N         300mL           Shroud         5         1750         Yes         NA         20/04/2023         11:13am         13:14gm         -39hg**         -6hg**         100mL/min         X         X         N         300mL           Shroud         5         NA         20/04/2023         11:13am         11:13am         13:14gm         -30hg**         -6hg**         100mL/min         X         X         N         50mL           Shroud         5         7         NA         20/04/2023         11:13am         10:40am         X         X         X         X         50mL           Shrou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SV1 3524 1745 Yes 0.6 20/04/2023 11:13am 3:01q° -6ftg" 100mL/min X X X 300mL SV2 1694 1742 Yes 5.5 20/04/2023 11:13am 3:01q° -6ftg" 100mL/min X X X 300mL SV3 2233 1976 Yes 2.9 20/04/2023 11:13am 3:01q° -6ftg" 100mL/min X X X 300mL SV0.UP1 1866 1750 Yes NA 20/04/2023 11:13am 3:04g° -6ftg" 100mL/min X X X 300mL Shroud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         30Hg"         6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -304gm         -6Hgm         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SV1         3524         1745         Yes         0.6         20/04/2023         10.18am         10.34am         -50Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SVI         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         CHG         300mL           SV3         1594         1772         Yes         5         20/04/2023         11:01am         12:05pm         -29Hg"         -6Hg"         100mL/min         X         X         300mL           SVPUPI         1866         1750         Yes         NA         20/04/2023         11:01am         11:19am         -29Hg"         -6Hg"         100mL/min         X         X         100mL           Shroud         NA         20/04/2023         11:01am         11:19am         -29Hg"         -6Hg"         100mL/min         X         X         S0mL           Shroud         NA         20/04/2023         11:01am         11:19am         -30Hg"         -6Hg"         100mL/min         X         X         X         S0mL           Shroud         10:40am         10:40am         10:40am         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SVI         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         CHG         300mL           SV2         1694         1742         Yes         5.5         20/04/2023         11:13am         130Hg"         -6Hg"         100mL/min         X         X         300mL           SV3         2293         1976         Yes         2.9         20/04/2023         11:13am         12:05pm         -29Hg"         -6Hg"         100mL/min         X         X         300mL           SVDUP1         1866         1750         Yes         NA         20/04/2023         11:13am         -30Hg"         -6Hg"         100mL/min         X         X         50mL           Shrout         Shrout         10:40am         10:40am         -6Hg"         100mL/min         X         X         50mL           Shrout         Shrout         10:40am         10:40am         -6Hg"         100mL/min         X         X         50mL           Shrout         Shrout         10:40am         -6Hg"         10:40am         -6Hg"         100mL/min         X         X         50mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         300mL           SV2         1694         1742         Yes         5.5         20/04/2023         11:19am         -30Hg"         -6Hg"         100mL/min         X         X         300mL           SV3         2293         1976         Yes         2.9         20/04/2023         11:51am         13:04g"         -6Hg"         100mL/min         X         X         300mL           Shrout         -         -         -         NA         20/04/2023         11:31am         -30Hg"         -6Hg"         100mL/min         X         X         X         100mL           Shrout         -         -         -         NA         20/04/2023         10:39am         10:40am         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SVI 3524 1745 Yes 0.6 20/04/2023 10:18am 10:34am -30Hg" 6Hg" 100mLymin X X X 300mL 300mL SV2 1694 17742 Yes 2.5 20/04/2023 11:01am 11:18am -30Hg" 6Hg" 100mLymin X X X 300mL 300mL SV0 1976 Yes 2.9 20/04/2023 11:01am 11:18am -30Hg" 6Hg" 100mLymin X X X 100mLymin X X X 100mL Sv0mL Shroud NA 20/04/2023 11:01am 11:18am -30Hg" 6Hg" 100mLymin X X X 100mLymin Shroud Shrou |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -504g"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         20/04/2023         10:18am         10:34am         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1 3524 1745 Yes 0.6 20/04/2023 10:18am 10:34am -30Hg" -6Hg" 100mL/min X X X 300mL 300mL SV2 1694 1742 Yes 29/04/2023 11:01am 12:05pm -29Hg" -6Hg" 100mL/min X X X 300mL 300mL SV2 11:01am 12:05pm 12:05pm -30Hg" -6Hg" 100mL/min X X X 300mL 300mL SV2 SVDUP1 1866 1750 Yes NA 20/04/2023 11:01am 13:01am 13 |
| SV1         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SV1         3524         1745         Yes         0.6         20/04/2023         11:13am         130Hg"         -6Hg"         100mL/min         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SVI 3524 1745 Yes 0.6 20/04/2023 10:18am 10:34am -30Hg" -6Hg" 100mL/min X X 3 300mL 300mL 5/2 2293 1976 Yes 2.9 20/04/2023 11:31am 12:05pm -29Hg" -6Hg" 100mL/min X X 3 300mL 300mL 5/2 2293 1976 Yes 2.9 20/04/2023 11:31am 12:05pm -29Hg" -6Hg" 100mL/min X X 3 300mL 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SVI         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X         X         X           SV2         1694         17742         Yes         5.5         20/04/2023         11:01am         13:19am         -30Hg"         -6Hg"         100mL/min         X         X         X           SV3         1976         Yes         2.9         20/04/2023         11:51am         12:05pm         -5Hg"         100mL/min         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SV1 3524 1742 Yes 0.6 20/04/2023 11:0148m 10:34em -30Hg" -6Hg" 100mL/min X X X 300mL 300mL 5V2 1694 1742 Yes 2.9 20/04/2023 11:014m 12:05pm -29Hg" -6Hg" 100mL/min X X X 300mL 300mL 300mL 5V3 11:014m 12:05pm 12:05pm 100mL/min X X X 300mL 500mL 500mL 5V3 11:014m 12:05pm 12:05pm 12:05pm 100mL/min X X X 300mL 500mL |
| SVI 3524 1745 Yes 0.6 20/04/2023 10:18am 10:34am -30Hg" -6Hg" 100mL/min X X 300mL 300mL 5V2 1694 1742 Yes 5.5 20/04/2023 11:01am 11:19am -30Hg" -6Hg" 100mL/min X X 300mL 300mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SV1 3524 1745 Yes 0.6 20/04/2023 10:18am 10:34am -30Hg" -6Hg" 100mL/min X X N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L         SVI         3524         1745         Yes         0.6         20/04/2023         10:18am         10:34am         -30Hg"         -6Hg"         100mL/min         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 SV1 3524 1745 Yes 0.6 20/04/2023 10:18am 10:34am -30Hg" -6Hg" 100mL/min X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3524 1745 Yes 0.6 20004/2023 10:34am 10:34am -30Hp" -6Hp" 100ml /min X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| / Leak Test PID Reading Date of Fine On Time Off This I Fine Tribe Collection Time Off Tribe Collection Time Off Tribe Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Client Sample ID Canister / Soil Gas Train / Leak Test PID Reading Date of (Reld Location) To Tube # Mass Flow Passed (ppmv) Collection Time Off Traited Enal Time Control of Time Off Traited Enal Off Tra |
| Client Sample ID  Canister / Soil Gas Train / Leak Test PID Reading Date of (Field Location)  TD Tube # Mass Flow Rate   Collection Time Off Train    |