
Results of Geotechnical Investigation

14 Aquatic Drive, Frenchs Forest

PSM4864-005R Rev 3 30 April 2025

Goodman Property Services Australia Pty Ltd

Table of Contents

1.	Introduction4							
2.	Bac	kgroun	d	4				
3.	Geotechnical Investigation							
	3.1	Fieldwork						
		3.1.1	Boreholes					
		3.1.2	Standpipe Piezometers	6				
4.	Site	Condit	ions	6				
	4.1	Geolo	gical Setting	6				
	4.2	Surfac	e Conditions	7				
	4.3	Inferre	d Subsurface Conditions	7				
	4.4	Groun	dwater	8				
5.	Res	ults of I	_aboratory Testing	8				
	5.1	Soil C	hemistry	8				
		5.1.1	Salinity Assessment	8				
		5.1.2	Corrosivity / Aggressivity	9				
		5.1.3	Sodicity	9				
	5.2	Califor	nia Bearing Ratio (CBR)	9				
6.	Disc	ussion		9				
	6.1	Gener	al	9				
	6.2	Eartho	uake Site Classification	9				
	6.3	Excav	ation	10				
	6.4	Perma	nent and temporary batters	10				
	6.5	Retain	ing Structures					
		6.5.1	Pad footings					
		6.5.2	Piles					
	6.6		Slabs					
			nents					
7.	Gen	eral		12				
Li	st c	f Ta	bles					
				7				
			ary of Inferred Subsurface Geotechnical Units Encountered During Investigation					
			ximate Elevation to Top of Inferred Geotechnical Units Encountered					
			^r Classification					
			ary of the CBR Test Results					
Tal	ole 5 -	- Desigr	n Batter Slope Angles	10				
Tak	ole 6 -	- Engine	eering Parameters of Inferred Geotechnical Units	11				

List of Insets

List of Appendices	
Appendix A Selected Site Photograph	
Appendix B Borehole Engineering Logs and Core Photo	s
Appendix C Point Load Index Test Results	
Appendix D Standpipe Piezometer Installation Records	
Appendix E Geotechnical Laboratory Test Certificates	
Appendix F Environmental Laboratory Test Certificates	
Appendix F Environmental Laboratory Test Certificates	

Inset 1:

Inset 2:

Locality plan of the Site (site marked in red)......5

Sydney 1:100,000 geological map (site marked in red)......6

1. Introduction

This report has been prepared by PSM on behalf of Goodman Property Services (Aust.) Pty Ltd (Goodman) to accompany a development application for self-storage units and warehouse and distribution centre uses at 14 Aquatic Drive, Frenchs Forest.

This site is located on the southern side of Warringah Road and within the broader Frenchs Forest Business Park. It currently hosts an existing four storey commercial building which is proposed for demolition under this application.

The proposed development comprises construction of a three-storey industrial building including:

- 153 self-storage units at ground floor;
- 72 warehouse units on Levels 1 and 2;
- 123 car parking spaces across all levels;
- outdoor breakout spaces for staff at ground floor and Level 2;
- shared lobby across all levels;
- landscaping; and
- associated infrastructure/servicing works.

Approval is sought for 24/7 operation of the proposed self-storage and warehouse and distribution units.

This report presents the results of a geotechnical investigations undertaken between 14 and 15 November 2022 for the proposed light industrial strata and storage development at 14 Aquatic Drive, Frenchs Forest, herein referred to as **the Site**. The work was undertaken in accordance with 'Item 1' of PSM's proposal (PSM4864-001L, dated 12 August 2022).

The aim of the geotechnical investigation was to assess the subsurface conditions and provide geotechnical advice for the proposed light industrial strata and storage development to be constructed at the Site.

2. Background

PSM has been provided with the following documents to assist with the geotechnical investigation:

- Consultant Briefing Meeting Notes:
 - "14 Aquatic Drive, Frenches Forest Strata Industrial Development" dated 10 December 2024
- Architectural drawings by SBA
 - 24103, DA100 P3, DA101 P4 to DA102 P4, DA200 P5 and DA201 P4 to DA204 P4, dated 25 February
 2025
- Landscape design by Place Design Group
 - 240307, dated 28 February 2025
- Civil drawings by Costin Roe Consulting:
 - "CO9431.01-DA43 to 54" dated 4 February 2025

We understand the following regarding the existing site:

- The existing building comprises:
 - The existing commercial building includes 2 x levels of basement carparking and 4 above ground levels of Commercial Office.
 - The site falls approximately 14.5m from the North to the South.
 - There are several existing mature trees located on site that will need to be retained.
 - The basement carparking extent is intended to be utilised as the perimeter for the basement storage level.

Inset 1: Locality plan of the Site (site marked in red)

3. Geotechnical Investigation

3.1 Fieldwork

The fieldwork was carried out on 14 and 15 November 2022, under the full-time supervision of a PSM geotechnical engineer who undertook the following tasks:

- Directing service locating, concrete coring, drilling and reinstatement of boreholes.
- Preparing engineering logs of material encountered within the boreholes.
- Undertaking point load tests on the recovered cores.
- Collecting soil samples for laboratory testing.

The intrusive testing locations were recorded with a hand-held GPS unit with a horizontal accuracy of approximately +/-5 m. Figure 1 shows the approximate testing locations. Approximate elevations were inferred from the elevation data publicly available by NSW Spatial Data.

Prior to carrying out testing, on-site service location "scans" were undertaken by a certified service locator to ensure the test locations were free from buried utilities. Where encountered, concrete slabs were cored using conventional diatube coring techniques prior to drilling.

Each of the holes were backfilled and fully reinstated on completion of the investigation.

3.1.1 Boreholes

A total of five (5) boreholes: were completed using a truck and track drill rig to a depth of between 3.4 m and 10.5 m: These boreholes comprised the following:

- Three (3) augered boreholes (ABH01 to ABH03)
- Two (2) cored boreholes (CBH01 and CBH02)

Rotary auger technique was undertaken through overlying soil units with rock coring completed using NMLC coring techniques. SPTs were taken at regular interval. Bulk soil samples were retrieved directly from the auger for laboratory testing.

Engineering logs were prepared for each cored borehole and are presented in Appendix B, along with explanation sheets. Photographs of the recovered rock core were taken and are also presented in Appendix B.

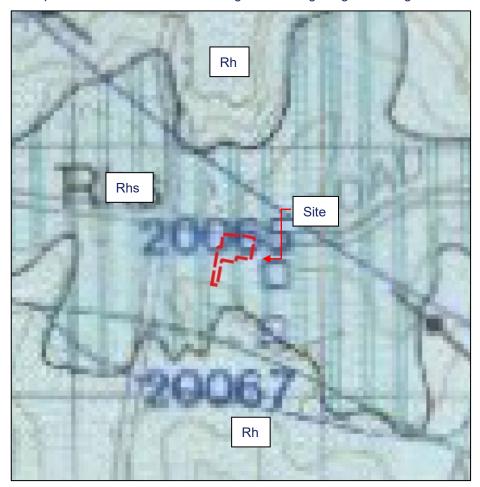
Point load tests on the core were performed at approximately one metre intervals. Results are tabulated in Appendix C.

3.1.2 Standpipe Piezometers

Standpipe piezometers were installed in CBH01 to monitor groundwater levels and fluctuations. Construction records for the installed piezometers are included in Appendix D.

4. Site Conditions

4.1 Geological Setting


The 1:100,000 Sydney geological map (1983) indicates that the site is underlain by:

(Rhs) Ashfield Shale of the Wianamatta Group consisting of Laminite and dark-grey siltstone.

The following unit is in close proximity around of the Site:

• (Rh) Hawkesbury Sandstone of the Wianamatta Group consisting of Medium to coarse-grained quartz sandstone, very minor shale and laminate lenses.

Inset 2 below presents the site location with regards to the geological settings.

Inset 2: Sydney 1:100,000 geological map (site marked in red)

4.2 Surface Conditions

The proposed development site covers an area of approximately 15,460 m² and currently comprises a commercial building and concrete hardstand.

The Site is roughly rectangular in shape with a small portion of the south-western boundary of the proposed development area extending towards Aquatic Drive as the driveway entrance to site.

Other commercial buildings are located to the east and west of the Site and Warringah Road is adject to the north.

4.3 Inferred Subsurface Conditions

The subsurface conditions encountered within the boreholes are summarised in Table 1. The encountered subsurface conditions were consistent with the published information in the geological maps and PSM's experience on nearby development sites.

Table 1 - Summary of Inferred Subsurface Geotechnical Units Encountered During Investigation

INFERRED UNIT	INFERRED TOP OF UNIT DEPTH BELOW GROUND SURFACE (m)	DESCRIPTION
CONCRETE/ ASPHALT	0	CONCRETE: up to 180 mm thick ASHPALT: up to 50 mm thick
FILL		Road base: SAND to SAND trace gravel: fine to coarse grained, dark brown, well graded, dry.
	0.05 to 0.18	CLAY to CLAY trace sand: high plasticity, brown to pale grey, sand is fine to coarse grained, brown, dry
		SAND with clay to clayey SAND: fine to coarse grained, dark brown to brown/orange, clay is highly plastic, brown mottle orange
RESIDUAL SOIL	0.7 to 2.5	Clayey SAND to SAND: fine to coarse grained, brown to pale grey, well graded, clay is highly plastic, brown CLAY: high plasticity, brown mottle orange/ grey
BEDROCK A	1.2 to 3.9	SANDSTONE: fine to coarse grained, pale grey, well graded, extremely to highly weathered, inferred very low to low strength
BEDROCK B	1.6 to 5.1	SANDSTONE: fine to coarse grained, pale grey to brown, thinly laminated with frequent siltstone lenses, pervasive iron staining observed, slightly weathered to fresh, medium to high strength

Table 2 shows the approximate elevation to top of the inferred geotechnical units encountered in PSM boreholes.

Table 2 – Approximate Elevation to Top of Inferred Geotechnical Units Encountered

	APPROXIMATE ELEVATION TO TOP OF INFERRED GEOTECHNICAL UNITS (m AHD)						
BOREHOLE	CONCRETE/ ASPHALT	FILL	RESIDUAL SOIL	BEDROCK A	BEDROCK B	EOH ¹	
ABH01	148.4	147.40	146.8	146.6	145.0*	145.0	
ABH02	142.2	142.15	140.7	139.7	138.4*	138.4	
ABH03	139.5	N/E	138.8	137.4	134.4*	134.4	
CBH01	143.3	142.80	140.8	139.5	138.7	132.8	
CBH02	149	148.82	N/E	147.8	147.4	138.5	

Notes:

(1) EOH = End of Hole

(2) N/E = Not Encountered

Photo 11 to 14 in Appendix A present the exposed BEDROCK unit within the existing basement level.

4.4 Groundwater

One (1) standpipe piezometer were installed at CBH01 in the completed boreholes during the fieldwork undertaken on the Site. The standpipe piezometer was emptied after its construction. The standpipes were 'dipped' two (2) weeks after the fieldwork, on 30 November 2022. The following depth to groundwater observed:

• CBH01 – 3.6 m below ground level (BGL), i.e., RL 139.7 m.

No groundwater was observed during the drilling of the auger holes.

Based on our observations in the exposed sandstone within the existing basement, some minor water seepage could be observed on BEDROCK unit.

5. Results of Laboratory Testing

5.1 Soil Chemistry

Four (4) disturbed soil samples were retrieved for salinity and aggressivity testing in an analytical laboratory testing. The disturbed soil samples were sent to a NATA accredited analytical laboratory and the following tests indicate the following:

- pH of the soil samples analysed was in the range of 4.8 to 5.5, with an average of 5.125.
- The 1:5 soil to water extraction and subsequent electrical conductivity (EC_{1:5}) of the soil samples analysed to be in the range of 38 μ S/cm to 143 μ S/cm.
- Concentrations of chlorides in samples analysed was in the range of <10 mg/kg to 150 mg/kg.
- Concentrations of soluble sulphate in samples analysed was in the range of 10 mg/kg to 90 mg/kg.
- Cation Exchange Capacity (CEC) in samples analysed was in the range 0.9 meq/100g to 2.5 meq/100g.
- Exchange Sodium Percentage (ESP) in samples analysed was in the range of 5.4 % to 22.4%.

The laboratory result sheets are presented in Appendix F. presents the sampling locations and summary of the results.

5.1.1 Salinity Assessment

Site Investigations for Urban Salinity (DLWC 2002) classify soil salinity based on electrical conductivity (ECe). The method of conversion from EC1:5 to ECe (electrical conductivity of saturated extract) is based on DLWC (2002) and given by ECe = EC1:5 x M, where M is the multiplication factor based on "Soil Texture Group".

The "Soil Texture Group" of the samples tested were assessed during our investigation. The salinity classifications for the soil samples that were tested are presented in Table 3.

Table 3 - Salinity Classification

Sample ID	Sampled Depth (m)	Sampled EC1:5 Soil Type M		M	ECe	Salinity Class
Sample ID		dS/m	Soli Type	IVI	(dS/m)	Samily Class
CBH01	0.5	0.047	Sands	17	0.799	Non-saline
CBH01	3.0	0.143	Loams	10	1.430	Non-saline
ABH01	1.5	0.092	Sand loams	14	1.288	Non-saline
CBH02	0.5	0.038	Clay Loam	9	0.342	Non-saline

Soils on site are typically classified as "Non-saline".

We have referred to Clause 4.8.2 of Australian Standard AS3600-2018 "Concrete Structures" and note that the assessed soil electrical conductivity (ECe) is within the "A2" exposure classification.

^{* =} Inferred from TC bit refusal

5.1.2 Corrosivity / Aggressivity

Table 4.8.1 of Australian Standard AS 3600:2018 provides criteria for exposure classification for concrete in sulphate soils based on sulphates in soil and groundwater, and pH of soil. On the basis of the sulphate and pH testing completed we assess the exposure classification for concrete in sulphate soils to be "B1".

Similarly, Table 6.4.2(C) of Australian Standard AS 2159:2009 provides criteria for exposure classification for concrete piles in soil, and here the exposure classification for concrete piles in soils is "Moderate".

Table 6.5.2(C) of AS 2159:2009 provides criteria for exposure classification for steel piles based on resistivity, soil and groundwater pH, and chlorides in soil and groundwater. On the basis of the resistivity, pH and chloride testing completed we assess the exposure classification for steel piles in the soil to be "Mild to Non-aggressive".

If any material is being imported to Site, it is recommended that additional testing of the imported material be undertaken to confirm the above classifications.

5.1.3 Sodicity

Sodicity provides a measure of the likely dispersion on wetting and to shrink/swell properties of a soil. Soil sodicity is classified based on the Exchangeable Sodium Percentage (ESP) which is the amount of exchangeable sodium as a percentage of the Cation Exchange Capacity (DLWC, 2002).

The Exchangeable Sodium Percentages calculated from these laboratory results, ranging from 5.4% to 22.4%, indicates that the soils on site are sodic to highly sodic when compared to criteria listed in DLWC (2002).

5.2 California Bearing Ratio (CBR)

Three (3) disturbed soil samples were retrieved for California Bearing Ratio (CBR) test with 4-day-soaked and 4.5kg surcharge. Table 4 presents a summary of the CBR test results. The test results are included in Appendix E.

Table 4 - Summary of the CBR Test Results

Sample ID	Approximate Sample Depth (m)	Soaked CBR (%)	OMC (%)	Standard Maximum Dry Density (t/m3)	Swell (%)
ABH01	0.5 - 1.0	25	9.8	2.05	0.0
CBH01	0.2 - 0.5	6	19.8	1.69	0.0
ABH02	0.5 - 2.0	14	10.6	1.98	0.0

6. Discussion

6.1 General

We note that the exact details of the proposed development (such as retention system and foundation loads) are currently not known. The design advice provided in the following sections has been prepared on the details specified in Section 2.

If any of the above basis is not applicable, PSM should be requested to review that the design advice below is still valid. PSM should also be engaged to review the recommendations contained herein should it be used in future for building design purposes.

6.2 Earthquake Site Classification

For earthquake provisions, we assess the site as the following in accordance with AS1170.4-2007:

- The site is classified as Class B_e (Rock)
- The site has a Hazard Design Factor (Z) of 0.08.

Given that the site is also located in a non-active seismic zone and the depth to rock is shallow, the potential for liquefaction is considered unlikely.

6.3 Excavation

We understand from the proposed development drawings that no excavation will be undertaken (eg. no new basement), and the current site profile (surface level) will be maintained for the proposed development.

6.4 Permanent and temporary batters

1. The batter slope angles shown in

Table 5 are recommended for the design of batters up to 4 m height and above the groundwater table, subject to the following recommendations:

- 1. The batters shall be protected from erosion
- Permanent batters shall be drained
- 3. Temporary batters shall not be left unsupported for more than 1 month without further advice, and inspection by a geotechnical engineer should be undertaken following significant rain events
- 4. Where loads are imposed or structures / services are located within on batter height of the crest of the batter, further advice should be sought.

Table 5 – Design Batter Slope Angles

Unit	Temporary	Permanent
SOIL UNITS, e.g., FILL, RESIDUAL SOIL	2H: 1V	2.5H: 1V
BEDROCK A	0.5H: 1V	1H: 1V
BEDROCK B	Vertical	Vertical

Steeper batters may be possible subject to further advice, typically involving inspection during construction.

The batters should be inspected by an experience geotechnical engineer or engineering geologist during excavation to confirm the batter advice provided and assess the need for localised support.

Exposed rock faces should be inspected by a geotechnical engineer or engineering geologist to assess the need for localised rock bolting to control adverse jointing in the Sandstone units and shotcreting for overall face support. The first inspection should be made when 1 m of BEDROCK A unit is excavated or one month from commencement of the bulk excavation, whichever is earliest.

For vertical cuts in rock, refer to Section 6.5 for support advice.

6.5 Retaining Structures

5. Permanent cuts in the SOIL and BEDROCKS units steeper than the recommended permanent batter slopes in .

Table 5 will need to be supported by some form of retaining structure.

Note that design of retention systems may be based on either K_a or K_o earth pressures. Design using active earth pressures provides the minimum lateral earth pressure that must be supported to avoid failure and requires a wall that can rotate or translate to allow the pressures to reduce to these values (vertical and lateral movements up to 2% of height may occur, typical movements will be much less).

Where the design is based on K_0 pressures, construction should be carefully controlled to avoid unwanted effects. It should be noted that designing for K_0 pressures do not, of themselves, ensure that movement does not occur. Movements are controlled by the construction method, and especially construction sequence.

The design of these structures should be based on the following geotechnical properties:

- Effective strength parameters in Table 6 when assessing the earth pressure on retaining structures.
- A lateral pressure of 20 kPa for vertical cuts in the BEDROCK A unit. This is to allow for blocks and rock.
 wedges which form due to adverse defects that may exist within the unit.
- Water pressure (depending on the type of structure). Both water pressure acting directly on the structure, and the effect of water pressure on effective stresses with the retained ground.

Surcharge loads behind the retention.

Table 6 - Engineering Parameters of Inferred Geotechnical Units

	Bulk Unit	Effe Stre	oil ctive ngth neters	Ultimate Bearing Pressure under	Allowable Bearing Pressure (ABP) under	Ultimate Shaft	Elastic Pa	arameters
Inferred Unit	Weight (kN/m3)	c' (kPa)	φ' (deg)	Vertical Centric Loading ^[2] (kPa)	Vertical Centric Loading ^[3] (kPa)	Adhesion (kPa)	Long Term Youngs Modulus (MPa)	Poisson's Ratio
FILL	18	0	28	300	100 ⁽¹⁾	N/A	8	0.3
RESIDUAL SOIL	18	0	30	450	150 ⁽¹⁾	N/A	15	0.3
BEDROCK A	22	30	35	3,000	1,000	150	100	0.25
BEDROCK B	22	N/A	N/A	40,000	6,000	1,200	900	0.25

⁽¹⁾ Pad footings should have a minimum horizontal dimension of 1.0 m and a minimum embedment depth of 0.5 m

The designer should consider the information regarding groundwater in this report and the drainage features included in the design of the retention system.

Both surface and sub-surface drainage needs to be designed and constructed properly to prevent pore water pressures from building up behind the retaining walls or appropriate water pressures must be included in the design.

Where excavations are proposed in the vicinity of existing structures designers shall consider the effects of the excavation including horizontal and vertical deflections on the neighbouring structures. Foundations

6.5.1 Pad footings

Pad footings could be founded on or within the residual SOIL units below the FILL. The design parameters in Table 6 can be adopted. As the building is likely to be founded on piles, shallow footings are expected to only be required for lightweight, ancillary structures.

Pad footings can be proportioned on the basis of an allowable bearing pressure (ABP) for centric vertical loads provided in Table 6. Further advice should be sought if the footings are located adjacent to a batter or wall.

We note that an allowable bearing pressure (ABP) is not a soil property. It depends on many factors such as the size of the footings, the embedment depth, the load direction and eccentricity, the stiffness of the footing, the adopted factor of safety (FOS), as well as the soil properties. As footings get bigger or deeper the capacity increases rapidly, and as the load gains eccentricity or becomes inclined, the capacity reduces rapidly.

Settlements in the SOIL units can be estimated using the elastic moduli provided in Table 6. When assessing the settlement of the shallow footings, the designer needs to consider the additional ground settlement due to the total building load on both shallow and deeper units.

The differential settlement due to the building load shall also be assessed.

Foundation conditions at the proposed shallow pad footing locations should be inspected by a suitably qualified geotechnical engineer prior to the pouring of concrete.

⁽²⁾ Ultimate values occur at large settlement (>5% of minimum footing)

⁽³⁾ ABP is an end bearing pressure to cause settlement of <1% of minimum footing.

Where footings are located within the zone of influence of an existing batter or retaining wall, the bearing capacity may need to be reduced and further advice should be sought. The zone of influence is defined as the zone above a 2H:1V line extending from the toe of the batter or the toe of the retaining wall.

6.5.2 Piles

Piles should be designed in accordance with the requirements in AS 2159 (2009), *Piling - Design and Installation*. The parameters provided in Table 6 may be adopted in the design of piles.

We envisage that piles would be founded within the BEDROCK units. If piles need to be founded within SOIL units, further advice should be sought, but we do not expect this to be practical.

The designer should note the following with regards to the pile design:

- The ABP needs to be confirmed by a geotechnical engineer through pile inspections prior to pouring concrete.
- Under permanent load, the contribution of side adhesion for soils and rock units above the bulk excavation level should be ignored.
- Deflection should be checked using the recommended elastic parameters in Table 6.
- Where adjacent foundation details differ (e.g., pile and pad, differing loads or ground conditions), differential settlement should also be assessed.

With regards to the pile design, we recommend that:

• A basic geotechnical strength reduction factor, Φ_{gb} = 0.60 (AS2159 CL. 4.3.2) be adopted for a high redundancy system for an assessed average risk rating (ARR) between 2.5 and 3.0. This should be reviewed to suit the specific design and appropriate pile testing proposed by the structural / pile designers in accordance with the requirements of AS2159.

We note that according to AS2159 cl. 8.2.4(c), the following pile testing requirements are given:

- Serviceability: 1% of piles to be tested for ARR 2.5-2.99 (Table 8.2.4(A))
- Pile shaft integrity: level of testing to be nominated by designer
- It may be possible to increase the pile reduction factors, if the details of the proposed pile installation
 procedures indicate a high level of quality control with regards to concrete placement, base cleanliness,
 etc.
- If a geotechnical strength reduction factor, $\Phi_g = 0.40$ is adopted then no pile testing will be required (AS2159 Clause 8.2.4 (b)).

Any structural settlement due to shortening (or extension) of the footing element itself should be considered.

Where the founding or loading conditions between footings vary consideration should be given to the effects of differential settlements.

6.6 Grade Slabs

The design of slabs on ground can be based on subgrade with a long-term Young's Modulus (E) presented in Table 6.

6.7 Pavements

Three (3) CBR tests were undertaken within the EXISTING FILL layer and the results are presented in Appendix D and summarised in Table 4.

Subgrade CBR for pavement design depends on the material at the finished subgrade levels.

We recommend that specific CBR testing be undertaken at subgrade level when pavement layouts are finalised.

7. General

If at any time, the conditions are found to vary from those described in this report, further advice should be sought.

Yours Sincerely

JUNGBIN LEE GEOTECHNICAL ENGINEER

A Gu

AGUSTRIA SALIM PRINCIPAL

Incl.

Figure 1 Site Locality Plan

Appendix A Selected Site Photos

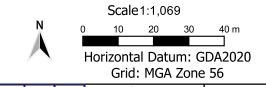
Appendix B Borehole Engineering Logs and Core Photos

Appendix C Point Load Index Test Results

Appendix D Standpipe Piezometer Installation Records

Appendix E Geotechnical Laboratory Test Certificates

Appendix F Environmental Laboratory Test Certificates



Approximate Site Boundary Approximate BH Locations

Notes:

1. Aerial Imagery was taken from www.Nearmap.com dated 12 September 2022.

Site Locality Plan

PSM4864-001L Figure 1

Created By: PSM Date: 01 Dec 2022

Revision: Paper Size: A3

Appendix A Selected Site Photographs

Photo 1 - General Site Photo Facing East at CBH01

Photo 2 - General Site Photo Facing West at CBH01

Selected Site Photographs (1 of 7)

PSM4864-005R

Photo 3 - General Site Photo Facing South at CBH02

Photo 4 - General Site Photo Facing East at CBH02

Selected Site Photographs (2 of 7)

PSM4864-005R

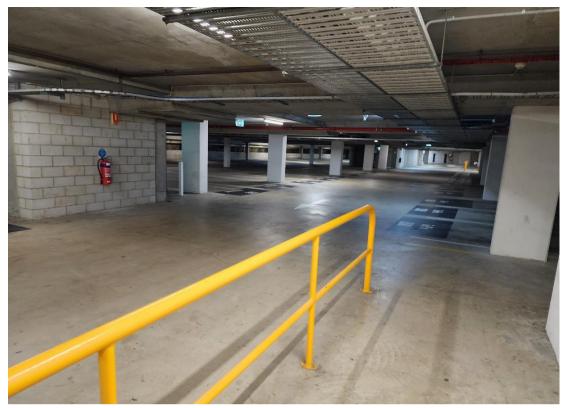


Photo 5 - Existing Basements Level 1 of 2

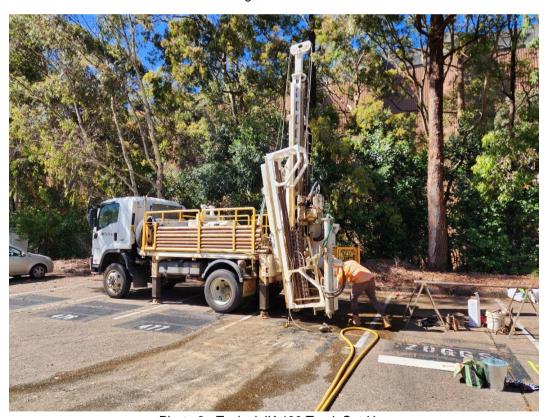


Photo 6 - Typical JK 400 Truck Set-Up

P S M → ::: ※ **Selected Site Photographs (3 of 7)**

PSM4864-005R

Photo 7 - Soil Profile from CBH01

Photo 8 - Soil Profile from ABH01

Selected Site Photographs (4 of 7)

PSM4864-005R

Photo 9 - Soil Profile from ABH02



Photo 10 - Soil Profile from ABH03

Selected Site Photographs (5 of 7)

P S M → ::: ※

PSM4864-005R

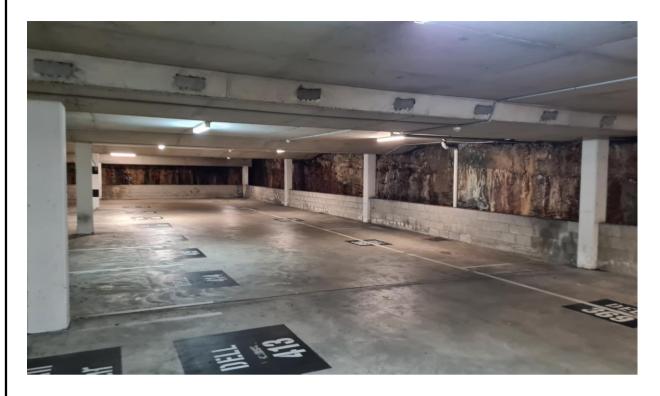


Photo 11 - BEDROCK Unit Observed in B2

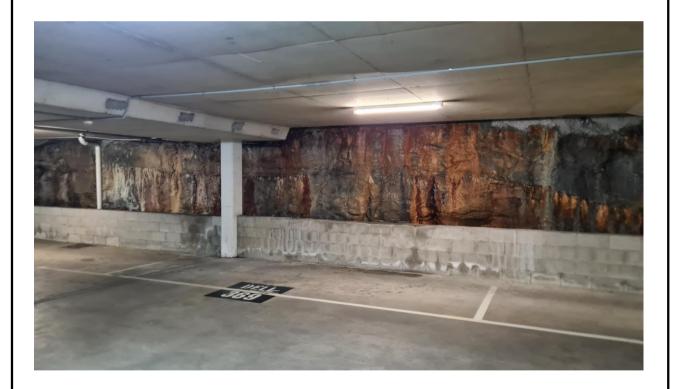


Photo 12 - BEDROCK Unit Observed in B2

Selected Site Photographs (6 of 7)

PSM4864-005R

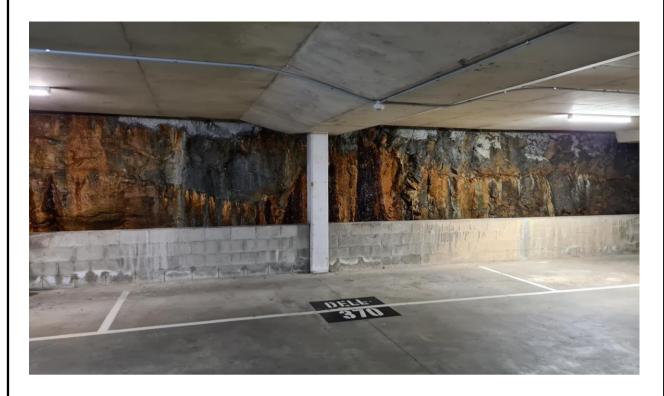


Photo 13 - BEDROCK Unit Observed in B2

Photo 14 - BEDROCK Unit Observed in B2

Selected Site Photographs (7 of 7)

PSM4864-005R

Appendix B Borehole Engineering Logs and Core Photos

GEOTECHNICAL LOGGING EXPLANATION SHEET

This explanation document presents the definitions and details used on PSM borehole logs. It is not intended to replace the details in AS 1726: 2017.

Geotechnical logs are shown as either non-cored, for the soil component, or cored for the rock interval.

The document is divided into three parts: drilling information, soil logging and rock logging.

Drilling Information

General

Method	AD/T	Auger drilling TC bit
	AD/V	Auger drilling V bit
	WB	Washbore
	PT	Push tube
	DT	Diatube
	E	Excavator
	СТ	Continuous tube
	NQ3	Wireline triple tube core (45.1 mm)
	HQ3	Wireline triple tube core (61.1 mm)
	NMLC	Triple barrel large core (51.2mm)
Core Quality	RQD	Rock Quality Designation (%)
Water	Inflow	Indicates inflow of groundwater through the base of the borehole observed as net excess drilling fluid return.
	Partial loss	Indicates an outflow of drilling fluid from the closed drilling system through the base of the borehole observed as net loss of drilling fluid return.
	Complete	Indicates zero drilling fluid return from the borehole. Losses into the soil or rock mass through the base of the borehole.

Penetration

Penetration is a qualitative measure of how easily the auger advances. This varies from no resistance to refusal.

Support

Borehole wall support during drilling will either be listed as casing (C) or where no casing as was required no support (N) or left blank.

Water

Observations of water down the borehole as observed, not observed, not encountered or return as a percentage of the drilling fluid. If not noted then return was 100%.

Sampling and Field Testing

	Abbreviation	Description
Sample	U	Undisturbed tube sample
	D	Disturbed sample
	ES	Environmental sample
	TW	Thin walled
	LB	Large disturbed sample
	В	Bulk disturbed sample
Test	ls(50) – a	Axial point load test result (MPa)
	Is(50) - d	Diametral point load test result (MPa)
	SPT	Standard penetration test
	RW	Rod Weight
	HW	Hammer Weight
	НВ	Hammer Bouncing

Hole Positioning

The following geodetic conventions are adopted.

- Map Grid of Australia 1994 (MGA94)
- Geocentric Datum of Australia 1994 (GDA94)
- Australian Height Datum (AHD)
- Bearings relate to magnetic north. Where required, magnetic values have been converted from grid using a magnetic declination of -12°.

Hole location relates to the street or project area the borehole was drilled on.

Depth is the downhole depth in metres below the borehole collar (i.e. surface level).

RL shows the elevation relative to AHD.

WPT (Lugeon)

The Water Pressure Test (usually using packers) measures water pressure and flow rate over time to assess the Lugeon value - an empirical measure of the hydraulic conductivity.

RQD

Rock quality designation is a measure of the quality of cored rock. The sum of intact intervals more than 100 mm in length are given as a percentage of the total drill run recovered.

Termination Details

Hole terminated means the hole was discontinued at a depth that corresponds to the downhole depth in metres. How the borehole was completed is also stated. This includes the following main categories:

- Grouted to surface using a cement grout mix.
- Instrumented by construction of groundwater (open standpipe, screened piezometer, grout in place vibrating wire piezometer (VWP)) or geotechnical (inclinometer, extensometer).
- Any other details such as if a hole was abandoned.

Soil Logging

General

In engineering terms, soil includes every type of uncemented, or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms

Classification Symbol

Soil name is described in accordance with the Unified Soil Classification System (USCS) with the following prefix

O organic soils

C inorganic fine-grained soils behaving as clays
M inorganic fine-grained soils behaving as silts
G coarse grained soils behaving as gravel
S coarse grained soils behaving as sand

These are defined by the particle size limits shown in the grading table below.

The above group symbols are appended with minor component modifiers, for coarse grained soils.

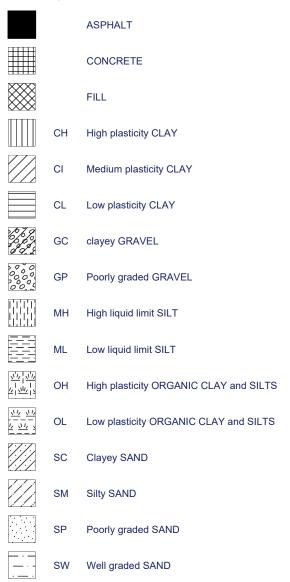
W well graded, little or no finesP poorly graded, little or no fines

G gap graded
M silty mixtures
C clayey mixtures

For fine grained soils, with plasticity or liquid limit

L low plasticity or liquid limit
 I medium plasticity or liquid limit
 H high plasticity or liquid limit.

Material Description


Soil Name

Soil name is based on the identifiable primary component of the soil and is given in block letters, thereafter is a description based on secondary components.

Plasticity

Non- plastic	3 mm thread cannot be rolled at any moisture content (cannot conduct toughness or dry strength tactile tests), slow to rapid dilatancy.
Low plasticity silt/clay mixtures	A 3 mm thread can barely be rolled; lump cannot be formed when drier than plastic limit (PL); low to medium dry strength, medium toughness; none to slow dilatant behaviour
Medium plasticity silt/clay mixtures	3 mm thread is easy to roll, little time required to reach PL; thread cannot be rerolled after reaching PL; lump crumbles when drier than PL; medium to high dry strength, medium toughness; no to slow dilatant behaviour; slightly tacky feel when wet
High plasticity clays	It takes considerable time rolling and kneading to reach PL; thread can be rolled several times after reaching PL; high toughness, high to very high dry strength; non-dilatant; tacky/sticky feel when moisture content >PL.

Graphic Log

Grading (coarse grained soils)

Where possible for coarse grained soils, include particle shape: equidimensional - rounded, sub-rounded, sub-angular, angular; two-dimensional - flaky/ platy; one dimensional - elongated.

two dimensional maky, platy, one dimensional ciongated.				
Well graded	Having good representation of all particle sizes from largest to smallest			
Poorly graded	One or more intermediate sizes poorly represented			
Gap graded	Absence of one or more intermediate sizes			
Uniform	Most particles are about the same size			

Particle Size Descriptive Terms

	Coarse-Grained				Fine-gra	ined	Organic				
Fraction			Gravel		Sand						
Traction	Boulders	Cobbles	Coarse	Medium	Fine	Coarse	Medium	Fine	Silt	Clay	Organic soils
Particle size limits [mm]	2	00 60		20 6	.0 2	.0 0.6	0.2	0	.06 0.00)2	
AS Sieve equivalent [mm]		- 63	1	19 6	.7 2.3	6 0.6	0.15	0.0)75		

Colour

Described in a moist condition, using simple colour terms such as green, red, orange, etc. These may have been modified using 'pale', 'dark' or 'mottled'. 'Light' is avoided as it can be confused with mass.

Secondary Component Modifiers

	Coai	se grained soil	Fine grained soil		
Term	Percentage of fines in a granular soil	Percentage of coarse in a granular soil (i.e. other than the primary component)	Percentage of coarse grained component (sand or gravel) in a fine-grained soil		
Add trace	≤ 5	≤ 15	≤ 15		
Add with	> 5 and ≤ 12	> 15 and ≤ 30	> 15 and ≤ 30		
Add prefix to name	> 12	> 30	> 30		

Moisture Condition

Coarse grained soil			
Dry (D)	Looks and feels dry; dusty; dry to the touch, non-cohesive, free running		
Moist (M)	Soil feels cool; soil tends to stick together; damp but no visible water, darkened in colour		
Wet (W)	Visible free water when handled, soil feels cool, darkened in colour		

Fine grained soil

Judge based on the soil's moisture condition relative to the plastic limit or liquid limit for soils with high moisture contents, refer to plasticity table above

Consistency/Relative Density

Consistency - Cohesive soils (fine grained)

Consistency	Field Guide to Consistency	Indicative Undrained Shear Strength (Su, kPa)
Very soft (VS)	Exudes between the fingers when squeezed in hand	≤ 12
Soft (S)	Moulded by light finger pressure	> 12 & ≤ 25
Firm (F)	Moulded by strong finger pressure	>25 & ≤ 50
Stiff (St)	Cannot be moulded by fingers	>50 & ≤ 100
Very stiff (VSt)	Readily indented by thumb nail	>100 & ≤ 200
Hard (H)	Indented with difficulty by thumbnail	>200
Friable (Fr)	Easily crumbled by hand	-
Compact (C)	Material readily disaggregated by physical means	-
Cemented (Ce)	Material cannot be disintegrated/remoulded in air or water	-

Relative density - Non-cohesive soils (coarse grained)

Term	Symbol	Density Index %
Very Loose	VL	<15
Loose	L	>15 & ≤ 35
Medium Dense	MD	>35 & ≤ 65
Dense	D	>65 & ≤ 85
Very Dense	VD	>85

The relative density of coarse-grained soils is inherently difficult to assess by visual or tactile means. Relative density assessment should be carried out using penetration test procedures.

Hand Penetrometer

Refers to pocket penetrometer tests, results shown in kPa.

Structure, Zoning

Soil $in \, situ$ or in samples may consist of separate zones differing in colour, grain size or other properties.

Zoning ¹		Cementi	ng²
Layer	Continuous across exposure or sample	Weakly	Soil fractured by hand in air/water
Lens	Discontinuous layer with lenticular shape	Strongly	Difficulty fracturing by hand in air/water
Pocket	Irregular inclusion		
Homogenous	Same colour/texture/ structure throughout		

Record the orientation, contact character (sharp regular/ irregular, gradual/ gradational). Use interlaminated or inter- bedded if too thin to describe individually

Origin, Additional Observations

Where there is doubt, the terms 'possibly' or 'probably' are used (as per AS1726:2017).

Origin		
Anthorpogenic	Fill	placed by human activity (controlled versus uncontrolled)
Formed in place	Topsoil	upper surface layer of soil with high proportion of organic material
	Alluvial	deposited by streams and rivers
	Colluvial	deposited on slopes chiefly by gravity
Transported	Aeolian	deposited by wind
·	Lacustrine	deposited in lakes/still bodies of water
	Marine	deposited in oceans, bays, beaches & estuaries
Formed in place	Residual soils	structure and fabric of parent rock not visible
	Extremely weathered	structure and fabric of parent rock visible

If unable to be disaggregated, treat as rock. Note cementing agent by appearance, strength or reaction to water/acid.

Rock Logging

General

Rock Substance is defined in engineering terms as any naturally occurring aggregate of minerals and organic material which cannot be disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Effectively homogenous material may be isotropic or anisotropic.

Defects are defined as discontinuities or breaks in the continuity of a substance or substances

Rock mass is defined as a body of material that is not effectively homogeneous. It can consist of two or more substances without defects, or one or more substances with one or more defects

Rock substance and mass characteristics are shown on the logs as rock substance and rock mass defect categories and are presented in this document in the same order

Rock substance

Graphic Log

Δ Δ Δ Δ

BRECCIA

CONCRETE

CONGLOMERATE

NO CORE

DOLERITE

INTERBEDDED SILTSTONE & SANDSTONE

SANDSTONE

SHALE

SHALE BRECCIA

SILTSTONE

Material Description

Rock Name	Simple rock names are used rather than precise geological classification		
Particle/grain Characteristics	Grains of rock described in terms of type, size as shape;		
	sedimentary	Coarse	0.6 - 2 mm
	rocks:	Medium	0.2 - 0.6 mm
		Fine	0.06 - 0.2 mm
	igneous rocks	Coarse	>2 mm
		Medium	0.06 – 2 mm
		Fine	<0.06 mm (just visible)
Colour	Simple terms such as white, red, orange etc. modify using pale of sark; describe in moist condition; use combinations of these when necessary		
Inclusions/ Minor components	Record isolated inclusions within the rock substance such as vesicles, nodules, phenocrysts, concretions, veins, ironstone bands; Indicate proportion – trace or minor (include thickness)		

Texture/Fabric

Term	Description	Spacing	
Massive	No stratification visible	-	
Bedded	Very thickly bedded	>2 m	
	Thickly bedded	0.6 m to 2 m	
	Medium bedded	0.2 m to 0.6 m	
	Thinly bedded	60 mm to 200 mm	
	Very thinly bedded	20 mm to 60 mm	
Laminated	Laminated	6 mm to 20 mm	
	Thinly laminated	<6 mm	

Bedding Development

Term	Description	
Massive / poorly	No obvious development; rock homogeneous	
Developed	Barely obvious; faint mineralogical layering or banding; planes poorly defined	
Well developed	Apparent in outcrops or drill core as distinct layers/lines marked by mineralogical or grain-size layering	
Very well developed	Often marked by distinct colour banding or mineralogical /grain size layering	

Weathering

Term		Description	
Residual Soil (RS)		Soil derived from insitu weathering of rock; structure and substance fabric of parent rock no longer evident; soil has not been transported; log using soil descriptive terms	
Extremely Weathered (XW)		Rock exhibits soil properties; mass texture/structure of original rock still visible; log using soil descriptive terms	
Highly weathered (HW)	(DW) ³	Iron staining or bleaching affects the entire rock substance and parent rock colour no longer recognisable; porosity may be increased or less than original rock substance by leaching or deposition of minerals; substance strength altered by weathering. Primary minerals may have weathered to clay	
Moderately weathered (MW)		Iron staining or bleaching extends throughout the entire rock substance; original rock colour of fresh rock no longer recognisable	
Slightly weathered (SW)		Partial staining or bleaching along joints; colour and texture of fresh rock is recognisable; little or no change of strength from fresh rock	
Fresh (FR)		No sign of mineral decomposition or colour change	

The terms Highly weathered (HW) or Moderately weathered (MW) are preferred to Distinctly weathered (DW).

Strength

Rock strength is based on UCS (MPa), point load strength index testing (Is(50) in MPa) and field estimated strengths. Is(50) values from axial and/or diametral point load tests and field estimated strengths are plotted in the strength column.

Term / Abbreviati	Term / Abbreviation		Field guide to strength
Very low	VL	0.03 to ≤0.1; (0.6-2)	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm thick can be broken by finger pressure.
Low	L	>0.1 to ≤0.3; (2-6)	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	>0.3 to ≤1.0; (6-20)	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	Н	>1 to ≤3; (20-60)	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very high	VH	>3 to ≤10 (60-200)	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely high	EH	> 10 (>200)	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock Mass Defects

General

Sequence of terms: defect type, orientation, shape, roughness, infill type/width, number, spacing/length/aperture.

Defect Description

Symbol	Description
BF	bedding fabric
BP	Bedding parting – surface crack across which there is little to no tensile strength, parallel to bedding fabric, maybe open or closed
BSH	Bedding Shear
СО	Contact – surface between two lithologies
CZ	Crushed Zone – zone with roughly parallel, planar boundaries (commonly slickensided) containing disoriented usually angular rock fragments of variable size often in a soil matrix
DB	Drilling Break – breaks caused by the drilling process, including handling breaks when boxing core
FL	Foliation
FT	Fault – fracture along which displacement is recognisable, may be open or closed
FZ	Fractured Zone – a zone of closely spaced defects comprising core lengths < 50 mm

Symbol	Description
IS	Infilled Seam – seam of soil substance formed by migration of soil into an open cavity or defect
JT	Joint – a single fracture across which rock has little or no tensile strength, is not obviously related to rock fabric and no shearing, maybe open or closed
SM	XW seam of soil material formed by weathering of the parent rock material in situ
SS	Sheared seam– fracture along which movement has taken place; no displacement recognisable; slickensides, polishing and/or clay gouge may suggest movement
SZ	Sheared Zone – zone of multiple closely spaced shears
VN	Vein – intrusion of tabular or sheet-like minerals
VO	void

Orientation

Field mapping: defect dip/dip direction recorded in degrees, noting datum.

Infill

CN	Clean	RF	Rock fragments
CA	Calcite	G	Gravel
Х	Carbonaceous	S	Sand
FE	Iron	Z	Silt
QZ	Quartz	CL	Clay
Facilities 4	4 41-1-1		

For infills <1 mm thick:

Stained (SN) – no visible coating but defect surfaces are discoloured $\,$

Veneer (VR) – visible uniform or patchy coating too thin to measure

Coating (CO)

Shape

Planar (PR)	No variation in orientation
Curved (CU)	Gradual change in orientation
Undulating (UN)	Wavy surface shape
Stepped (ST)	One or more well defined steps
Irregular (IR)	Many sharp changes of orientation

Surface Roughness

Slickensided (SL)	Grooved or striated surface, usually polished
Polished (POL)	Shiny smooth surface
Smooth (S)	Smooth to touch, few or no surface irregularities
Rough (RF)	Many small surface irregularities (ampl. <1mm) feels like fine to coarse sandpaper
Very rough (VR)	Many large mall surface irregularities (ampl. >1mm) feels like (or coarser than) very coarse sandpaper

ABH01

Page 1 of 1

Engineering Log - Non Cored Borehole

Logged in accordance with AS 1726:2017 Geotechnical site investigations

Client: Goodman Property Services Aus Pty Ltd Commenced: Project Name: Forestridge Business Park Completed: Logged By:

Hole Location:

Hole Position: 336699.0 m E 6263794.0 m N MGA2020 Zone 56 Project No.:

Checked By:

PSM4864

14/11/2022

14/11/2022 JBL/GW

1	Mode Diam		d Mounting:		400 T	ruck I	Mount	ed	Inclination: -90° Bearing:	RL Surfa Datum:	ice:	14 AF	8.40 ı ID	n	0	perator: JK Drilling
		Drill	ing Informat	ion					Soil Descri	ption						Observations
Method	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description SOIL NAME: Plasticity, beha particle characteristics of p component, colour, secondary c additional observatior	aviour or orimary components,	Moisture Condition	Consistency / Relative Density	Penet U	CS Pa)	nete)	r Structure, Zoning, Origin, Additional Observations
1 1003:00:09 Datget Fence and May Tool Lite. PSM 3.02.1 2019-03-06 Pg. PSM 3.02.0 2019-02-24 AD/T AD/T AD/T	z		SPT 0.50-0.95 m 4,5,5 N=10 SPT 1.50-1.83 m 6,9,3/30mm H N=R	В				SW	ASPHALT: 30mm thick SAND: fine to coarse grained, da well graded SAND with clay, fine to coarse grained, day is highly brown to orange Becoming reddish brown Clayey SAND: fine to coarse grained to pale grey well graded, clay is highly brown SANDSTONE: fine to coarse grained pale grey, well graded, extremely to his weathered, inferred very low to lo	ned, brown ighly plastic,	D to	L to MD				0.03: Road base 0.50: Ironstone observed INFERRED FILL 1.60: INFERRED RESIDUAL SOIL 1.78: V-Bit Refusal INFERRED BEDROCK
MAD/V WB SPT PT AS	Methode August 2 - Aug	er dri er dri hbor dard n tube er sci	penetration tes e	t	netration resistant Report Rep	stance efusal		> Inflo ⊲ Par	Atter DW U U U U U U U U U U U U U U U U U U	Sample ample netration Test tal Sample		floistu D M W	re Cor - Dr - Mc - Wa	/	tion	Consistency/Relative Density VS - Very soft S - Soft F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense

ABH02

Page 1 of 1

PSM4864

Project No.:

Engineering Log - Non Cored Borehole

Client:Goodman Property Services Aus Pty LtdCommenced:15/11/2022Project Name:Forestridge Business ParkCompleted:15/11/2022Hole Location:Logged By:GW

Hole Position: 336678.0 m E 6263714.0 m N MGA2020 Zone 56 Checked By:

	Drill M Hole D			d Mounting:		308 T	rack r	nount	ed		RL Surfa	ce:	14 Al-	2.20 ID) m	Operator: JK Drilling		
ŀ				ing Informat						Soil Descripti							Observations	
	Method Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description SOIL NAME: Plasticity, behavior particle characteristics of primic component, colour, secondary compadditional observations	ary	Moisture Condition	Consistency / Relative Density	Pene	UCS (kPa	nete 3)	Additional Observations	
> 07/1/22/22 11:36 10:03:00.09 Datgel Fence and Map Tool Uhr PSM 3:02 1 2019-03-06 Ptj: PSM 3:02 0 2019-02-24	AD/T AD/T AD/T AD/T AD/T AD/T AD/T AD/T	Z Z	Wat	SPT 0.50-0.95 m 4,3,2 N=5	Rec		Depth (m)	Gra	SW CH	ASPHALT: 50mm thick SAND with silt, fine to coarse grained brown, well graded CLAY with sand, high plasticity, brown fine to coarse grained, brown SAND: fine to coarse grained, brown orange, well graded Becoming brown to grey SANDSTONE: fine to coarse grained to grey, well graded, extremely to hig weathered, inferred very low to low set to grey, well graded, extremely to hig weathered, inferred very low to low set to grey.	d, dark In, sand is	D	Con L L L L L L L L L L L L L L L L L L L		7 000 () () () () () () () () ()		0.05: Road base 0.50: INFERRED FILL 1.50: INFERRED RESIDUAL SOIL 2.50: V-Bit Refusal INFERRED BEDROCK	
PSM 3.02.2. LIB.GLB Log PSM AU NONCORE BH NZ AU GINT PROJECT TEMPLATE.GPJ < <drawingfile></drawingfile>	Method AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore SPT - Standard penetration test PT - Push tube AS - Auger screwing CT - Continuous push tube 1.5m long 76mm diame									ater Samples and W U - Undisturbed Sa tial Loss SPT - Standard Penet SPT - Standard Penet ES - Environmental S TW - Thin Walled LB - Large Disturbed	mple ble tration Test Sample	A	floistu D M W	re Cc - [- N - V	Ory Moist		Consistency/Relative Density VS - Very soft S - Soft F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense VD - Very dense Ce - Cemented	

ABH03

Page 1 of 2

Engineering Log - Non Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Commenced: 15/11/2022 Project Name: Forestridge Business Park Completed: 15/11/2022 Logged By: GW

Project No.:

PSM4864

Hole Location: Hole Position: 336670.0 m E 6263674.0 m N MGA2020 Zone 56 Checked By:

Drill Model and Mounting: JK 308 Track mounted Inclination: -90° RL Surface: 139.50 m

	Hole D			r:		mm				Bearing: Datum:		AH	D.50		0	perator: JK Drilling
			Drill	ling Informat	ion					Soil Description						Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description SOIL NAME: Plasticity, behaviour or particle characteristics of primary component, colour, secondary components, additional observations	Condition	onsiste	Pene	UCS (kPa	neter))	Structure, Zoning, Origin, Additional Observations
				SPT 0.50-0.95 m 2,1,2			-		SW	CONCRETE: 140mm thick SAND trace gravel: fine to coarse grained, pale brown to grey, well graded, gravel is sub-rounded, brown to pale grey, up to 15mm D to M		L				0.14: Road base
AD/V		z		N=3		138.5	1-		СН	CLAY: high plasticity, brown mottle orange		St				0.70: INFERRED RESIDUAL SOIL
AD/T				SPT 1.50-1.95 m 2,3,5 N=8		137.5	2-									0.40 \\ \P\ \P\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
							-			SANDSTONE: fine to coarse grained, pale grey to brown, well graded, extremely to highly weathered, inferred very low to low strength						2.10: V-Bit Refusal INFERRED BEDROCK
AD/T		z				136.5	3-			Becoming grey to red brown, possible iron staining						
A						135.5	4									
	Method AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore SPT - Standard penetration test PT - Push tube AS - Auger screwing CT - Continuous push tube 1.5m long 76mm								Inflo □ Par 		Мо	Distur D M W	re Co - D - N - V)ry ⁄loist	tion	Consistency/Relative Density VS - Very soft S - Soft F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense VD - Very dense Ce - Cemented C - Compact

ABH03

Page 2 of 2

Engineering Log - Non Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Forestridge Business Park

Project Name: Hole Location:

Hole Position: 336670.0 m E 6263674.0 m N MGA2020 Zone 56

Drill Model and Mounting: JK 308 Track mounted Inclination: -90°

Checked By: RL Surface:

Project No.:

Commenced:

Completed:

Logged By:

139.50 m

PSM4864

15/11/2022

15/11/2022

GW

		lole I			a Mounting: r:) mm	гаск г			Bearing: -90 RL Surfa			1D		(Operator: JK Drilling
				Dril	ling Informat	ion					Soil Description						Observations
Mothod	- 1	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description SOIL NAME: Plasticity, behaviour or particle characteristics of primary component, colour, secondary components, additional observations	Moisture Condition	Consistency / Relative Density	Pen	Hane etror UCS (kPa	nete S I)	Additional Observations
F		//// 							::::		Becoming pale grey Hole Terminated at 5.10 m	D					5.10: TC-Bit Refusal
PSM AUNOWOORE BHNZ AU GINT PROJECT TEMPLATE.GPJ <-DrawingFile>> 07/12/2022 11:31 10:03:00:09 Datgel Fence and Map Tool Lib: PSM 3.02.1 2019-03-06 Pyl: PSM 3.02.0 2019-02-24							130.5 131.5 132.5 133.5	6— 6— 7— 8— 9— -			Refusal						
ONCORE BH	Ă	111	Vieth	od er dr	illing TC bit illing V bit	_	netrai			 W 	Vater Samples and Tests Sow U - Undisturbed Sample		Moistu D	re C	ondi Ory	tior	VS - Very soft
M 3.02.2. LIB. GLB LOG	N S P A C	/B - PT - T - S -	Was Star Pus Aug Con	shbor idard n tub er sc tinuo	re I penetration tes	5m lo		efusal mm dia	meter		tial Loss D - Disturbed Sample SPT - Standard Penetration Test ES - Environmental Sample TW - Thin Walled LB - Large Disturbed Sample	t	IV W	- - \	vioist Wet	ı	S - Soft F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense VD - Very dense Ce - Cemented C - Compact

CBH01

Page 1 of 4

Engineering Log - Non Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Commenced: 14/11/2022 Project Name: Forestridge Business Park Completed: 14/11/2022 Hole Location: Logged By: JBL/GW

Project No.:

Checked By:

PSM4864

Hole Position: 336722.0 m E 6263731.0 m N MGA2020 Zone 56

	Drill N			d Mounting:		400 T		Bearing: Datum: AHD					Орє	erator: JK Drilling			
			Drill	ing Informati	ion					Soil Description							Observations
Mothod	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description SOIL NAME: Plasticity, behaviour or particle characteristics of primary component, colour, secondary components, additional observations	Moisture Condition	Consistency / Relative Density	Pen	Handetror UCS (kPa	met S a)		Structure, Zoning, Origin, Additional Observations
Ļ	1	z								CONCRETE: 160mm thick							
							-		SW	SAND: fine to coarse grained, pale brown							0.16: Road base
2				SPT 0.50-0.95 m 4,4,5 N=9		 142.3	1-		SC	Clayey SAND: fine to coarse grained, pale brown, clay is highly plastic, dark brown		L					0.50: INFERRED FILL
x PSM 3.02.1 2019-03-06 Prj; PSM 3.02.0 2019-02-2		 		SPT 1.50-1.95 m 2,1,1 N=2		141.3	2-		СН	CLAY: high plasticity, brown to dark grey	D	S to					
>> 07/12/2022 11:31 10.03.00.09 Datgel Fence and Map Tool Lib: PSM 3.02.1 2019-03-06 Prj: PSM 3.02.0 2019-02-24 A D N /				SPT 3.00-3.45 m 11,12,8 N=20		 140.3	3		СН	CLAY: high plasticity, pale grey		VSt				2	2.50: INFERRED RESIDUAL
JECT TEMPLATE.GPJ < <drawingfile></drawingfile>		Z				139.3	4			SANDSTONE: fine to coarse grained, pale grey, well graded, extremely to highly weathered, inferred very low to low strength.						3	3.85: V-Bit Refusal NFERRED BEDROCK
BH NZ AU GINT PRO							-			Continued on cored borehole sheet							4.60: TC-Bit Refusal
AD/T - Auger drilling TC bit AD/V - Auger drilling TC bit AD/V - Auger drilling TC bit AD/V - Auger drilling TC bit No resistance WB - Washbore Partial Loss SPT - Standard Penetration Test SPT - Standard Penetration Test ES - Environmental Sample TW - Thin Walled LB - Large Disturbed Sample CT - Continuous push tube 1.5m long 76mm diameter D - Dry M - Moist W - Wet U - Undisturbed Sample D - Dry M - Moist W - Wet U - Undisturbed Sample D - Dry M - Moist W - Wet U - Undisturbed Sample D - Dry M - Moist W - Wet U - Undisturbed Sample ST - Standard Penetration Test ES - Environmental Sample TW - Thin Walled LB - Large Disturbed Sample U - Undisturbed Sample D - Dry M - Moist W - Wet U - Undisturbed Sample St - Se St -											S - Soff F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense VD - Very dense Ce - Cemented						

CBH01

Page 2 of 4

Engineering Log - Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Project Name: Forestridge Business Park

Hole Location:

Drill Model and Mounting:

336722.0 m E 6263731.0 m N MGA2020 Zone 56

Hole Position:

JK 400 Truck Mounted Inclination: -90° RL Surface: 143.30 m

Project No.:

Commenced:

Completed:

Logged By:

Checked By:

PSM4864

14/11/2022

14/11/2022

JBL/GW

	В	Barre	el Typ	e and L	engtl	h:	3 m		Bearing:	Datum:	AHD	Ope	rator: JK Drilling
	Drilling Information								Rock Substance			F	Rock Mass Defects
	Method	Water	RQD (%)	Samples and Field Tests	WPT (Lugeons)	RL (m)	Depth (m)	Graphic Log	Material Description ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteratior	Weathering	Strength Is(50) - Axial - Diametral	Defect Spacing (mm)	Defect Descriptions / Comments Description, alpha/beta, infilling or coating, shape, roughness, thickness, other
PSM AU CORE BH GINT PROJECT TEMPLATE.GPJ < <drawingfle>> 07/12/2022 11:32 10.03.00.09 Datgel Fence and Map Tool Lib: PSM 3.02.1 2019-03:46 Pj; PSM 3.02.0 2019-02:24</drawingfle>						139.3 140.3 141.3 142.3			Continued from non-cored borehole sheet				
INT PROJECT TE	NMLC		92	Is(50) d=0.08 a=0.51 MPa			-		SANDSTONE: fine to coarse grained, grey to brown, thinly laminated sub-horizontally				SM, CL, 100 mm BP, 5°, Fe & Clay, PR, RF, 5 mm
og PSM AU CORE BH GI		WB HQ3	T-Aug V-Aug - Wa 3- Win	ethod ler drilling T ler drilling V shbore eline core (i	63.5 mr	n) n)	<	> Inflov ☐ Partia	Titt Tilginy Wouldered	FT - Fai SS - Shi SZ - Shi BP - Be SM - Sei	ear Surface ear Zone dding parting	Infilling/Coa CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel	SL - Slickensided POL - Polished S - Smooth RF - Rough

WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT- Standard penetration test PT - Push tube

WPT - Water pressure test

Logged in accordance with AS 1726:2017 Geotechnical site investigations

Graphic Log/Core Loss Core recovered (hatching indicates material) No core recovery

SW - Slightly Weathered FR - Fresh

| Strength | VL - Very Low | L - Low | M - Medium | H - High | VH - Very High | EH - Extremely High |

Bedding parting

SZ - Shear Zone
BP - Bedding parting
SM - Seam
IS - Infilled Seam
JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break

\(\text{VN} \) - Veneer \(\text{CO} - \text{Coating} \) RF - Rock fragments \(\text{G} - \text{Gravel} \) S - Sand \(\text{Z} - \text{Silt} \) CA - Calcite \(\text{CL} - \text{Clay} \) FE - Iron \(\text{QZ} - \text{Quartz} \) X - Carbonaceous

RF - Rough VR - Very Rough

Shape
PR - Planar
CU - Curved
UN - Undulating
ST - Stepped
IR - Irregular

CBH01

Page 3 of 4

PSM4864

14/11/2022

14/11/2022

JBL/GW

Project No.:

Commenced:

Completed:

Logged By:

Checked By:

Engineering Log - Cored Borehole

Client: Goodman Property Services Aus Pty Ltd

Project Name: Forestridge Business Park

Hole Location:

Hole Position: 336722.0 m E 6263731.0 m N MGA2020 Zone 56

Drill Model and Mounting: JK 400 Truck Mounted Inclination: -90° RL Surface: 143.30 m

Barrel Type and Length: Rearing: Datum: AHD Operator: JK Drilling

L	Ва	arre	l Typ	e and L	.engtl	h:	3 m		Bea	aring:	Datum:	AHD	Oper	rator: JK Drilling
	,		Drill	ing Info	rmat	ion			R	ock Substance			R	Pock Mass Defects
77	Method	Water	RQD (%)	Samples and Field Tests	WPT (Lugeons)	RL (m)	Depth (m)	Graphic Log	Material De: ROCK NAME: particle/g colour, fabric/texture, i components, moisture, miner	grain characteristics, inclusions or minor	Weathering ≳ ≩ ¾ ‰ ≝	Strength Is(50)	Defect Spacing (mm)	Defect Descriptions / Comments Description, alpha/beta, infilling or coating, shape, roughness, thickness, other
							-		SANDSTONE: fine to coarse thinly laminated sub-horizon	e grained, grey to brown, tally(continued)				─BP, 5°, FE SN, PR, RF ─BP, 10°, FE SN, PR, RF
			95	Is(50) d=0.28 a=0.36 MPa		137.3	6-		Becoming grey					— BP, 0°, Fe & Clay, PR, RF,
3.02.1 2019-03-06 Prj: PSM 3.02.0 2019-02-24	200	URN		Is(50) d=0.78 a=0.75 MPa		 136.3	7-							— SM, CL, 40 mm
PSM	INIVIEC 75 4000/ Water BETT	75-100% Water RETURN		Is(50) d=0.05 a=0.69 MPa		 135.3	- 8—		Siltstone laminations observ Pervasive iron staining obse					⊔ — BP, 0°, CN, PR, RF — BP, 5°, FE SN, PR, RF
<-DrawingFile>> 07/12/2022 11:32 10.03.00.09 Datgel Fence and Map Tool Lib:			97	Is(50) d=0.74 a=0.58 MPa		 134.3 13	9-							—BP, 0°, CL VN, PR, RF
PSM AU CORE BH GINT PROJECT TEMPLATE.GPJ				Is(50) d=0.68 a=0.63 MPa			-							
M 3.02.2. LIB.GLB Log	PQ3- Wireline core (85.0 mm) SPT- Standard penetration test PT - Push tube WPT-Water pressure test Graphic Lo						Gra	➤ Inflor ☐ Parti ☐ Com ☐ Core ☐ indica ─ No co	al Loss plete Loss pg/Core Loss recovered (hatching tes material) re recovery	Weathering XW - Extremely Weathered HW - Highly Weathered MW - Moderately Weathered SW - Slightly Weathered FR - Fresh Strength VL - Very Low L - Low M - Medium H - High VH - Very High EH - Extremely High	FT - Fau SS - She SZ - She BP - Bec SM - Ses IS - Infil JT - Joir CO - Cor CZ - Cru VN - VU FZ - Fra	ar Surface ar Zone ding parting m led Seam it tact shed Zone n ture Zone ding Shear	Infilling/Coal CN - Clean CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbona	SL - Slickensided POL - Polished S - Smooth RF - Rough yr - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular

CBH01

Page 4 of 4

PSM4864

14/11/2022

14/11/2022

JBL/GW

Engineering Log - Cored Borehole

Client: Goodman Property Services Aus Pty Ltd

Project Name: Forestridge Business Park

Hole Location:

336722.0 m E 6263731.0 m N MGA2020 Zone 56

Hole Position: Drill Model and Mounting: JK 400 Truck Mounted

Inclination: -90° RL Surface: 143.30 m

Project No.:

Commenced:

Completed:

Logged By:

Checked By:

L	Barrel Type and Length:					h:	3 m		Bearing: Datum: AHD Operator: JK Drilling				rator: JK Drilling	
	Drilling Information					ion			Rock Substance				Rock Mass Defects	
	Method	Water	RQD (%)	Samples and Field Tests	WPT (Lugeons)	RL (m)	Depth (m)	Graphic Log	Material Description ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteration	Weathering	O - Diametral	Defect Spacing (mm)	Defect Descriptions / Comments Description, alpha/beta, infilling or coating, shape, roughness, thickness, other	
(NIMILC		97	Is(50) d=0.87 a=0.43 MPa			-		SANDSTONE: fine to coarse grained, grey to brown, thinly laminated sub-horizontally(continued)					
3M AU CORE BH GINT PROJECT TEMPLATE GPJ <cdrawingfile>> 07/12/2022 11:32 10.03300.09 Datjel Fence and Map Tool Lb: PSM 3.02.1 2019-03-04 Pf; PSM 3.02.0 2019-02-24</cdrawingfile>						129.3 130.3 131.3 132.3	11		Hole Terminated at 10.50 m Target depth					
M AU CORE BH	Method AD/T - Auger drilling TC bit AD/V - Auger drilling V bit WB - Washbore							Wa > Inflo	Titt Tilginy Troublotou	FT - Fa SS - St SZ - St	ect Type uult near Surface near Zone edding parting	Infilling/Coat CN - Clean SN - Stain VN - Veneer CO - Coating	SL - Slickensided POL - Polished S - Smooth	

ADV - Auger drilling V bit WB - Washbore HQ3- Wireline core (63.5 mm) PQ3- Wireline core (85.0 mm) SPT- Standard penetration test PT - Push tube

WPT - Water pressure test

Complete Loss

Graphic Log/Core Loss

Core recovered (hatching indicates material) No core recovery Logged in accordance with AS 1726:2017 Geotechnical site investigations

HW - Highly Weathered MW - Moderately Weathered SW - Slightly Weathered FR - Fresh

| Strength | VL - Very Low | L - Low | M - Medium | H - High | VH - Very High | EH - Extremely High |

SS - Shear Surface
SZ - Shear Zone
BP - Bedding parting
SM - Seam
JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break

| SN - Stain | VN - Veneer | CO - Coating | RF - Rock fragments | G - Gravel | S - Sand | Z - Silt | CA - Calcite | CL - Clay | FE - Iron | GZ - Quartz | X - Carbonaceous |

POL - Polished S - Smooth RF - Rough VR - Very Rough

Shape
PR - Planar
CU - Curved
UN - Undulating
ST - Stepped
IR - Irregular

CBH01 - 4.6 - 9.0 m

Note:

Defects are marked in red

Goodman Property Services Australia Pty Ltd
Forestridge Business Park
14 Aquatic Drive, Frenchs Forest
Geotechnical Investigation
Core Photograph

PSM4864-005R

CBH01 - 9.0 - 10.5 m

Note:

Defects are marked in red

Goodman Property Services Australia Pty Ltd
Forestridge Business Park
14 Aquatic Drive, Frenchs Forest
Geotechnical Investigation
Core Photograph

PSM4864-005R

Borehole ID

CBH02

Page 1 of 4

Engineering Log - Non Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Commenced: 15/11/2022 Project Name: Forestridge Business Park Completed: 15/11/2022 JBL/GW Hole Location: Logged By:

Hole Position: 336720.0 m E 6263828.0 m N MGA2020 Zone 56 Checked By:

Drill Model and Mounting: JK 308 Track mounted RL Surface: Inclination: -90° 149.00 m

Hole Diameter: AHD JK Drillina 110 mm Bearing: Datum: Operator:

Project No.:

PSM4864

	Hole D	iam	etei	r:	110) mm		Bearing: Datum: AHD					HD_		0	perator: JK Drilling	
			Drill	ling Informati	on					Soil Description						Observations	
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description SOIL NAME: Plasticity, behaviour or particle characteristics of primary component, colour, secondary components, additional observations	Moisture Condition	Consistency / Relative Density	Pen	Hand etron UCS (kPa	nete ;)	r Structure, Zoning, Origin Additional Observations	
										CONCRETE: 180mm thick							
AD/A		z		SPT 0.50-0.95 m 2,4,5 N=9			-		CH	CLAY trace sand: high plasticity, red brown, sand is find to coarse grained, brown		F to St				0.18: INFERRED FILL	
						148.0	1-		СН	CLAY trace sand: high plasticity, dark brown, sand is fine to coarse grained, brown	D					0.90: INFERRED RESIDUAL SOIL	
-		z					-			SANDSTONE: fine to coarse grained, pale brown, well graded, extremely to highly weathered, inferred very low to low strength						1.18: V-Bit Refusal INFERRED BEDROCK	
-										Continued on cored borehole sheet						1.63: TC-Bit Refusal	
						146.0 147.0	3-										
						145.0	4										
F	AD/T - / AD/V - / VB - ! SPT - ! AS - /	vvas Stan Pusl Auge	er dri er dri hbor dard n tub er sc	Illing TC bit Illing V bit e penetration test e rewing us push tube 1.5	N	Z Z R	stance efusal		Inflo ✓ Par	later Samples and Tests ow U - Undisturbed Sample tial Loss mplete Loss mplete Loss ES - Environmental Sample TW - Thin Walled LB - Large Disturbed Sample		l floistu D M W	re C - [- - \	ondi Ory Moist Wet	tion	Consistency/Relative Den: VS - Very soft S - Soft F - Firm St - Stiff VSt - Very stiff H - Hard VL - Very loose L - Loose MD - Medium dense D - Dense VD - Very dense Ce - Cemented	

- Soft - Firm - Stiff - Very stiff - Hard - Very loose - Loose - Medium dense - Dense - Very dense - Cemented - Compact MD D VD Ce C

Logged in accordance with AS 1726:2017 Geotechnical site investigations

Borehole ID

CBH02

Page 2 of 4

Engineering Log - Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Project Name:

Hole Location:

Forestridge Business Park

Hole Position: 336720.0 m E 6263828.0 m N MGA2020 Zone 56

Drill Model and Mounting: JK 308 Track mounted Inclination: -90° Rearing:

Checked By: RL Surface:

Project No.:

Commenced:

Completed:

Logged By:

149.00 m

PSM4864

15/11/2022

15/11/2022

JBL/GW

Description	Barrel Type and Le	•	Bearing:	Datum: AHD	Operator: JK Drilling
Defect Description Description Defect Description Description Description Defect Description Descri	Drilling Info	ng Information	Rock Substance		Rock Mass Defects
Ontinued from non-cored borehole sheet Continued from non-cored borehole sheet SANDSTONE: fine to coarse grained, pale brown to grey, thinly laminated sub-horizontally Becoming pale grey Becoming reddish brown, iron staining observed Becoming pale grey Becoming pale grey Becoming pale grey Becoming reddish brown, iron staining observed	Water RQD (%) Samples and Field Tests	Samples and Field Tests WPT (Lugeons) (B) AB (B) Agd (Graphic Log	ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor	Us(50) Weathering O - Axial O - Diametral	Spacing Description, alpha/beta, infilli or coating, shape, roughnes
O W Second Se	Is(50) d=0,23 a=0,63 MPB	Is(50) 4=0.23 4=0.63 4=0.63	Continued from non-cored borehole sheet SANDSTONE: fine to coarse grained, pale brown to grey, thinly laminated sub-horizontally		BP, 0°, CL, PR, RF, 5 mm
O W Second Se	ls(50) d=0.11 a=0.19	Is(50) d=0.11 a=0.19 MPa	Becoming reddish brown, iron staining observed		BP, 0°, FE SN, PR, RF
	7 ls(50) 6 d=0.15 a=0.09	Is(50) Is(60) d=0.15 a=0.09 MPa	Becoming reddish brown, iron staining observed		-BP, 0°, CL, PR, RF, 5 mm -JT, 75°, CN, PR, RF -SM, S, PR, RF, 10 mm -SM, CL, PR, RF, 15 mm
1s(50)	d=0.26 a=0.83 MPa	Is(50) d=0.26 a=0.83 MPa			-BP, 0°, FE SN, PR, RF BP, 0°, FE SN, PR, RF
Method Water Weathering Defect Type Infilling/Coating Rougl AD/T - Auger drilling TC bit No Clean No Clean No Slici AD/V - Auger drilling V bit No Clean No Clean No Slici AD/V - Auger drilling V bit No Slici No Pol Policy AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger drilling V bit No Slici No Slici AD/V - Auger d	AD/T - Auger drilling TO	r drilling TC bit	XW - Extremely Weathered	FT - Fault	CN - Clean SL - Slickensided

PSM

AD/T - Auger drilling TC bit
AD/V - Auger drilling V bit
WB - Washbore
HQ3- Wireline core (63.5 mm)
PQ3- Wireline core (85.0 mm)
SPT- Standard penetration test
PT - Push tube

Logged in accordance with AS 1726:2017 Geotechnical site investigations

WPT - Water pressure test

Core recovered (hatching indicates material) No core recovery

✓ Partial Loss

Complete Loss

Graphic Log/Core Loss

HW - Highly Weathered MW - Moderately Weathered SW - Slightly Weathered FR - Fresh

| Strength | VL - Very Low | L - Low | M - Medium | H - High | VH - Very High | EH - Extremely High |

SS - Shear Surface
SZ - Shear Zone
BP - Bedding parting
SM - Seam
IS - Infilled Seam
JT - Joint
CO - Contact
CZ - Crushed Zone
VN - Vein
FZ - Fracture Zone
BSH - Bedding Shear
DB - Drilling Break

POL - Polished S - Smooth RF - Rough VR - Very Rough

Shape
PR - Planar
CU - Curved
UN - Undulating
ST - Stepped
IR - Irregular

CBH02

Page 3 of 4

Engineering Log - Cored Borehole

Client: Goodman Property Services Aus Pty Ltd Project Name: Forestridge Business Park

Hole Location:

336720.0 m E 6263828.0 m N MGA2020 Zone 56

Hole Position: Drill Model and Mounting:

JK 308 Track mounted

Inclination: -90° Checked By: RL Surface:

Project No.:

Commenced:

Completed:

Logged By:

149.00 m

PSM4864

15/11/2022

15/11/2022

JBL/GW

L	Ва	irre	l Typ	e and L	engt	h:	3 m		Bearing:	Datum:	AHD	Oper	ator: JK Drilling	
	Drilling Information				tion			Rock Substance			R	ock Mass Defects		
Method	Metilod	Water	RQD (%)	Samples and Field Tests	WPT (Lugeons)	RL (m)	Depth (m)	Graphic Log	Material Description ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteratic	Weathering	O - Diametral	Defect Spacing (mm)	Defect Descriptions / Comments Description, alpha/beta, infilling or coating, shape, roughness, thickness, other	
			94	Is(50) d=1.14 a=1.05			-		SANDSTONE: fine to coarse grained, pale brown to grey, thinly laminated sub-horizontally(continued)					
NMLC			100	Is(50) d=0.62 a=1.64		143.0	6		SANDSTONE: fine to coarse grained, pale brown to grey, thinly laminated sub-horizontally with lenses of siltstone laminations					
	3			MPa		-41 0.5.7	7-							
Dagel Fence and Map 1001 LID:						Is(50) d=0.16 a=0.6 MPa		141.0	8-					
CUECT LEMPLATE.GFU < <uramignie>> U/17/2/2022 11:32 10.03/00.09</uramignie>			100	Is(50) d=0.94 a=0.9 MPa Is(50) d=0.41 a=0.72 MPa		140.0	9							
SM 3.02.2. LIB.GLB LOG PSM AU CORE BH GIN I PROJECT TEMPLATE.GPJ		AD/N WB HQ3 PQ3 SPT PT WPT	Γ - Aug / - Aug - Was - Wird - Star - Pus Γ - Was	ethod ler drilling \(\) er drilling \(\) shbore elline core (elline core (ndard pene h tube ter pressur- nce with AS	/ bit 63.5 m 85.0 m etration e test	m) test	Gra	➤ Inflo ☐ Parti ☐ Com ☐ Core ☐ indica — No co	al Loss MW - Moderately Weathered FR - Fresh - Fresh VL - Very Low Les material) - He - High recovery VH - Very High re recovery VH - Very High re recovery VH - Very High FH - Extremely High - Fresh FEH - Extremely High	FT - Fa SS - Sh SZ - Sh BP - Be SM - Se IS - Inf JT - Joi CO - Co CZ - Cn VN - Ve FZ - Fra BSH - Be	ear Surface ear Zone dding parting am illed Seam int ntact ushed Zone	Infilling/Coat CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock fra G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbona	SL - Slickensided POL - Pollshed S - Smooth RF - Rough gments VR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular	

Borehole ID

CBH02

Page 4 of 4

Engineering Log - Cored Borehole

Client: Goodman Property Services Aus Pty Ltd

Project Name: Forestridge Business Park

Hole Location: Hole Position:

336720.0 m E 6263828.0 m N MGA2020 Zone 56

Drill Model and Mounting: JK 308 Track mounted

Inclination: -90° Checked By: RL Surface:

Project No.:

Commenced:

Completed:

Logged By:

149.00 m

PSM4864

15/11/2022

15/11/2022

JBL/GW

	Barrel Type and Length:					h:	3 m		Bearing:	Datum:	AHD	Oper	ator: JK Drilling
			Drill	ing Info	rmat	ion			Rock Substance			R	ock Mass Defects
	Melliod	Water	RQD (%)	Samples and Field Tests	WPT (Lugeons)	RL (m)	Depth (m)	Graphic Log	Material Description ROCK NAME: particle/grain characteristics, colour, fabric/texture, inclusions or minor components, moisture, mineral composition, alteratio	n	Strength Is(50) • - Axial • - Diametral • - Si - S	Defect Spacing (mm)	Defect Descriptions / Comments Description, alpha/beta, infilling or coating, shape, roughness, thickness, other
0	NINIF		100	Is(50) d=0.65			-		SANDSTONE: fine to coarse grained, pale brown to grey, thinly laminated sub-horizontally with lenses of siltstone laminations(continued)				
				d=0.65 a=1.05 MPa		138.0	11-		Hole Terminated at 10.50 m Target depth				
3.02.1 2019-03-06 Prj; PSM 3.02.0 2019-02-24						1 137.0	12-						
07/12/2022 11;32 10,03.00.09 Datyal Fence and Map Tool Lib: PSM 3,02.1 2019-03-06 Prj: PSM 3,02.0 2019-02-24						1 136.0	13						
						 135.0	- 14 — - -						
PSM 302.2 LIB GLB Log PSM AU CORE BH GINT PROJECT TEMPLATE.GPJ < <drawngfile>-</drawngfile>		AD/V WB - HQ3- PQ3- SPT- PT - WPT	- Aug / - Aug - Was - Wire - Star - Pus	ethod er drilling T er drilling V shbore eline core (i eli	/ bit 63.5 mi 85.0 mi tration	m) test	Grap	➤ Inflove Partice Complete Complete Complete Corresponding Correspondi	al Loss MW - Moderately Weathered plete Loss SW - Slightly Weathered FR - Fresh Strength VL - Very Low Les material) H - High recovery VH - Very High re recovery VH - Very High EH - Evtremely High	FT - Fault SS - Shea	ar Surface ar Zone ding parting m ed Seam act hed Zone ture Zone ding Shear	Infilling/Coat CN - Clean SN - Stain VN - Veneer CO - Coating RF - Rock frag G - Gravel S - Sand Z - Silt CA - Calcite CL - Clay FE - Iron QZ - Quartz X - Carbonae	SL - Slickensided POL - Polished S - Smooth RF - Rough gments VR - Very Rough Shape PR - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular

CBH02 - 1.6 - 6.0 m

Note:

Defects are marked in red

Goodman Property Services Australia Pty Ltd
Forestridge Business Park
14 Aquatic Drive, Frenchs Forest
Geotechnical Investigation
Core Photograph

PSM4864-005R

CBH02 - 6.0 - 10.5 m

Note:

Defects are marked in red

Goodman Property Services Australia Pty Ltd
Forestridge Business Park
14 Aquatic Drive, Frenchs Forest
Geotechnical Investigation
Core Photograph

PSM4864-005R

Appendix C Point Load Index Test Results

Pells Sullivan Meynink

POINT LOAD STRENGTH INDEX TEST RESULTS

Job No.	PSM4864	I-005R												Sheet of	1
Project	Forestrid	lge Business	Park												
Test Method	AS 4133.4.1-2007 Methods of testing rocks for engineering purposes - Sampling Technique Determination of point load strength index Storage History								NLMC North Ry	de office s	torage			Sampling [14 and 15 No Testing Da 18/11/2022	
Test Machine	GSA 6510-	-0704						Moisture Condition	Natural					Tested By HZ	
Calibration Date	14/1/2021							Loading Rate	< 30 sec	onds					
			Depth			Diame	tral Tests					Axial Tests			AS 1726:20
Rock Ty	pe	Location	(m)	D (mm)	L (mm)	P (kN)	I _{s(50)} (MPa)	Failure Mode	W (mm)	D (mm)	P (kN)	I _s (MPa)	I _{s(50)} (MPa)	Failure Mode	Streng Clas
Sandstone		CBH01	4.75	50	95	0.2	0.1	Parallel to bedding	50	30	1.0	0.5	0.5	Through substar	
Sandstone		CBH01	5.50	50	50	0.7	0.3	Parallel to bedding	50	40	0.9	0.4	0.4	Through substar	
Sandstone		CBH01	6.45	50	380	2.0	0.8	Parallel to bedding	50	34	1.7	0.8	0.7	Through substar	ice M
Sandstone		CBH01	7.36	50	80	0.1	0.1	Parallel to bedding	50	35	1.6	0.7	0.7	Through substar	ice VL/
Sandstone		CBH01	8.60	50	580	1.9	0.7	Parallel to bedding	50	30	1.2	0.6	0.6	Through substar	ice M
Sandstone		CBH01	9.67	50	600	1.7	0.7	Parallel to bedding	50	30	1.3	0.7	0.6	Through substar	nce M
Sandstone		CBH01	10.24	50	130	2.2	0.9	Parallel to bedding	50	32	0.9	0.5	0.4	Through substar	nce M
Sandstone		CBH02	1.70	50	120	0.6	0.2	Parallel to bedding	50	33	1.4	0.7	0.6	Through substar	ice L/I
Sandstone		CBH02	2.40	50	450	0.3	0.1	Parallel to bedding	50	32	0.4	0.2	0.2	Through substar	
Sandstone		CBH02	3.60	50	170	0.4	0.1	Parallel to bedding	50	30	0.2	0.1	0.1	Through substar	ice VL /
Sandstone		CBH02	4.55	50	140	0.7	0.3	Parallel to bedding	50	40	2.1	0.8	0.8	Through substar	ice L/I
Sandstone		CBH02	5.50	50	130	2.9	1.1	Parallel to bedding	50	30	2.1	1.1	1.1	Through substar	
Sandstone		CBH02	6.40	50	350	1.5	0.6	Parallel to bedding	50	35	3.7	1.7	1.6	Through substar	
Sandstone		CBH02	7.60	50	120	0.4	0.2	Parallel to bedding	50	40	1.5	0.6	0.6	Through substar	
Sandstone		CBH02	8.52	50	230	2.3	0.9	Parallel to bedding	50	32	1.9	0.9	0.9	Through substar	
Sandstone		CBH02	9.40	50	50	1.0	0.4	Parallel to bedding	50	33	1.6	0.7	0.7	Through substar	
Sandstone		CBH02	10.40	50	160	1.6	0.7	Parallel to bedding	50	32	2.2	1.1	1.0	Through substar	nce M / 1
By:	HZ		•	Checke	ed:	•	JBL		•		•	•		Date: 30/11/20)22

Appendix D Standpipe Piezometer Installation Records

PSM4864 JOB no.:

PROJECT: Forestridge **Business Park**

PIEZOMETER CONSTRUCTION RECORD

HOLE NUMBER: CBH01 DRILLING CONTRACTOR: JK Drilling

PIEZOMETER:

336722 COLLAR EASTING: COLLAR NORTHING: 6263731 COLLAR RL(m): 143.3 DATUM: AHD

RIG:

JK 400 Truck

DEPTH OF HOLE (m): 10.50 BOREHOLE INCLINATION: -90

PIEZO INSTALLATION DATE: 14/11/2022

SUPERVISED BY: JBL/GW

Tick boxes

Complete dimensions if appropriate

	[77772]	↑	Height of stickup (m)	0
Steel protective well cover				
PVC cap				
Concrete colar			Diameter of PVC (mm)	63
Back fill type: Cement bentonite Soil None				
Seal:			Depth to top of seal	N/A
Bentonite pellets Other			Depth to top of gravel pack	0.2m
Gravel type:			Depth to top of graver pack	0.2111
2-5mm gravel Other			Depth to top of screen	1m
Perforation type: Drill holes Hack saw cuts	interval			
40um machine slots	Monitored interval		Depth to base of screen	10m
		\	Depth to base of piezo	10m
		\	Depth to base of gravel	10.5m

COMMENTS:			

Appendix E Geotechnical Laboratory Test Certificates

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976

North Ryde, Bc 1670 Telephone: 02 9888 5000

02 9888 5001 Facsimile:

FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

Client: Pells Sullivan Meynink Report No.: L4847 - 1 PSM Job No.: PSM4864 Report Date: 23/11/2022

Page 1 of 1

SAMPLE NUMBE	: P	ABH01	CBH02	ABH02
DEPTH (m)	-11	0.50 - 1.00	0.20 - 0.50	0.50 - 2.00
Surcharge (kg)		4.5	4.5	4.5
		_	_	
Maximum Dry De	• ` '	2.05 STD	1.69 STD	1.98 STD
Optimum Moistur	e Content (%)	9.8	19.8	10.6
Moulded Dry Den	sity (t/m³)	2.01	1.66	1.94
Sample Density F	Ratio (%)	98	98	98
Sample Moisture	Ratio (%)	94	100	96
Moisture Content	S			
Insitu (%)		10.4	20.8	13.0
Moulded (%)		9.2	19.9	10.2
After soaking a	and			
After Test, Top	o 30mm(%)	13.7	23.8	14.3
Remaining De	pth (%)	12.0	20.9	12.6
Material Retained	I on 19mm Sieve (%)	0	0	0
Swell (%)		0.0	0.0	0.0
C.B.R. value:	@2.5mm penetration	25	6	
	@5.0mm penetration			14

NOTES: Sampled and supplied by client. Samples tested as received.

- Refer to appropriate notes for soil descriptions
- AS 1289 6.1.1, 5.1.1 & 2.1.1. Test Methods:
- Date of receipt of sample: 15/11/2022 & 16/11/2022.
- ABH02 0.2-0.5m had insufficient material supplied to complete a 4-point compaction curve.

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

Appendix F Environmental Laboratory Test Certificates

CERTIFICATE OF ANALYSIS

Work Order : **ES2241203** Page : 1 of 4

Amendment : 1

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD Laboratory : Environmental Division Sydney

Contact : JEFF LEE Contact : Customer Services ES

Address : G3, 56 DELHI ROAD Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH RYDE NSW. AUSTRALIA 2113

 Telephone
 : --- Telephone
 : +61-2-8784 8555

 Project
 : PSM4864
 Date Samples Received
 : 15-Nov-2022 11:3

Order number : ---- Date Analy
C-O-C number : ---- Issue Date

Sampler : Jungbin Lee

Site : ----

Quote number : EN/333

No. of samples received : 4

No. of samples analysed : 4

Date Samples Received : 15-Nov-2022 11:30

Date Analysis Commenced : 16-Nov-2022

Issue Date : 24-Nov-2022 17:55

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 825

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Wisam Marassa Sydney Inorganics, Smithfield, NSW Sydney Inorganics, Smithfield, NSW

Page : 2 of 4

Work Order : ES2241203 Amendment 1

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

Project : PSM4864

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Amendment (24/11/2022): This report has been amended and re-released to allow the reporting of additional analytical data, specifically method EA010 for all samples.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

Page

3 of 4 ES2241203 Amendment 1 Work Order

: PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD Client

Project PSM4864

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	CBH01 0.5m	CBH01 3.0m	ABH01 1.5m	CBH02 0.5m	
·		Samplii	ng date / time	14-Nov-2022 00:00	14-Nov-2022 00:00	14-Nov-2022 00:00	14-Nov-2022 00:00	
Compound	CAS Number	LOR	Unit	ES2241203-001	ES2241203-002	ES2241203-003	ES2241203-004	
				Result	Result	Result	Result	
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.2	4.8	5.0	5.5	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	47	143	92	38	
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg	159	486	311	130	
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%	9.9	13.2	13.1	18.8	
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	21300	6990	10900	26300	
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	0.4			1.0	
Exchangeable Magnesium		0.1	meq/100g	0.3			1.3	
Exchangeable Potassium		0.1	meq/100g	<0.1			<0.1	
Exchangeable Sodium		0.1	meq/100g	0.2			0.1	
Cation Exchange Capacity		0.1	meq/100g	1.1			2.5	
Exchangeable Sodium Percent		0.1	%	22.4			5.4	
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		0.3	0.4		
Exchangeable Magnesium		0.1	meq/100g		0.5	0.5		
Exchangeable Potassium		0.1	meq/100g		<0.1	<0.1		
Exchangeable Sodium		0.1	meq/100g		<0.1	<0.1		
Cation Exchange Capacity		0.1	meq/100g		1.0	0.9		
Exchangeable Sodium Percent		0.1	%		6.9	5.4		
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	70	90	10	40	
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	10	mg/kg	<10	150	110	10	
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg	<10	<10	<10	<10	
Magnesium	7439-95-4	10	mg/kg	<10	<10	<10	<10	
Sodium	7440-23-5	10	mg/kg	40	130	70	20	
Potassium	7440-09-7	10	mg/kg	<10	<10	<10	<10	

Page : 4 of 4

Work Order : ES2241203 Amendment 1

Client : PELLS SULLIVAN MEYNINK T/A PSM Admin PTY LTD

Project : PSM4864

