

REPORT 190328R1

Revision 0

Noise Impact Assessment Proposed Retail and Commercial Development The Emporium 6 The Corso and 46-48, 50 East Esplanade, Manly NSW 2095

PREPARED FOR:
Aspiring Properties Pty Ltd
151 Darley Road
Manly NSW 2095

4 September 2019

Noise Impact Assessment

Proposed Retail and Commercial Development

The Emporium

6 The Corso and 46-48, 50 East Esplanade, Manly NSW 2095

PREPARED BY:

Rodney Stevens Acoustics Pty Ltd

Telephone: 61 2 9943 5057 Facsimile 61 2 9475 1019 Email: info@rodneystevensacoustics.com.au Web: www.rodneystevensacoustics.com.au

DISCLAIMER

Reports produced by Rodney Stevens Acoustics Pty Ltd are prepared for a particular Client's objective and are based on a specific scope, conditions and limitations, as agreed between Rodney Stevens Acoustics and the Client. Information and/or report(s) prepared by Rodney Stevens Acoustics may not be suitable for uses other than the original intended objective. No parties other than the Client should use any information and/or report(s) without first conferring with Rodney Stevens Acoustics.

The information and/or report(s) prepared by Rodney Stevens Acoustics should not be reproduced, presented or reviewed except in full. Before passing on to a third party any information and/or report(s) prepared by Rodney Stevens Acoustics, the Client is to fully inform the third party of the objective and scope and any limitations and conditions, including any other relevant information which applies to the material prepared by Rodney Stevens Acoustics. It is the responsibility of any third party to confirm whether information and/or report(s) prepared for others by Rodney Stevens Acoustics are suitable for their specific objectives.

DOCUMENT CONTROL

Reference	Status	Date	Prepared	Checked	Authorised
190328R1	Revision 0	4 September 2019	Thomas Carney	Rodney Stevens	Rodney Stevens

TABLE OF CONTENTS

1	INTRODUCTION			4
2	PRO	POSED	DEVELOPMENT	4
	2.1	Develo	opment Site	4
3	BAS	ELINE N	NOISE SURVEY	5
	3.1	Unatte	ended Noise Monitoring	5
	3.2	Data F 3.2.1	Processing Noise Emission (<i>Noise Policy for Industry</i>)	5 5
4	NOIS	SE GUID	DELINES AND CRITERIA	6
	4.1	4.1.1 4.1.2 4.1.3	tional Noise Project Trigger Noise Levels Intrusiveness Noise Levels Amenity Noise Levels Area Classification Project Specific Trigger Noise Levels	6 6 6 7
5	MEC	HANICA	AL NOISE IMPACT	7
6	REC	OMMEN	NDATIONS	7
7	CON	ICLUSIC	ON	8
APPI	ENDIX	Ά	ACOUSTIC TERMINOLOGY	9
APPI	ENDIX	В	LOGGER GRAPHS	13
APPI	ENDIX	С	CALIBRATION CERTIFICATE	21
APPI	ENDIX	(D	ARCHITECTURAL PLANS	23
Table Table	e 3-1 e 4-1		ured Baseline Noise Levels Corresponding to Defined NPfI Periods tional Project Trigger Noise Levels	5 7
Figur	e 2-1	Site Lo	ocation	4

1 INTRODUCTION

Rodney Stevens Acoustics Pty Ltd (here forth referred to as RSA) has been engaged by Aspiring Properties Pty Ltd to prepare a mechanical noise impact assessment for the proposed commercial development at 6 The Corso and 46-48, 50 East Esplanade, Manly NSW 2095.

This report details the results of an ambient noise survey and establishes the noise criteria for mechanical plant for the development.

Specific acoustic terminology is used in this report. An explanation of common acoustic terms is provided in Appendix A.

2 PROPOSED DEVELOPMENT

2.1 Development Site

The proposed retail and commercial development is to be located at The Emporium, 6 The Corso and 46-48, 50 East Esplanade, Manly NSW 2095. The development site is bounded by adjoining receivers to the north, south, east and west.

Figure 2-1 shows an aerial image of the site area and the surrounding environment.

Man Logger Locations

Logger Locations

Logger Locations

Name of the property of the proposed dependent of the proposed d

Figure 2-1 Site Location

Image Courtesy of Google Maps © 2019.

3 BASELINE NOISE SURVEY

3.1 Unattended Noise Monitoring

In order to characterise the existing acoustical environment of the area unattended noise monitoring was conducted between the dates of Tuesday 16th July and Tuesday 23rd July 2019 at the logging location shown in Figure 2-1.

Logger locations were selected with consideration to other noise sources which may influence readings, security issues for noise monitoring equipment and gaining permission for access from residents and landowners.

Instrumentation for the survey comprised of a RION NL-42 environmental noise logger (serial number 184112) and a NGARA environmental noise logger (serial number 8780EA) fitted with microphone windshields. Calibration of the loggers were checked prior to and following measurements. Drift in calibration did not exceed ±0.5 dB(A). All equipment carried appropriate and current NATA (or manufacturer) calibration certificates. Measured data has been filtered to remove data measured during adverse weather conditions upon consultation with historical weather reports provided by the Bureau of Meteorology (BOM).

The logger determines La1, La10, La90 and Laeq levels of the ambient noise. La1, La10, La90 are the levels exceeded for 1%, 10% and 90% of the sample time respectively (see Glossary for definitions in Appendix A). Detailed results at the monitoring location are presented in graphical format in Appendix B. The graphs show measured values of La1, La10, La90 and Laeq for each 15-minute monitoring period

3.2 Data Processing

3.2.1 Noise Emission (Noise Policy for Industry)

In order to assess noise emission from the proposed commercial development, the data obtained from the noise loggers has been processed in accordance with the procedures contained in the NSW Environmental Protection Authority's (EPA) *Noise Policy* for Industry (NPfI, 2017) to establish representative noise levels that can be expected in the residential vicinity of the site. The monitored baseline noise levels are detailed in Table 3-1.

Table 3-1 Measured Baseline Noise Levels Corresponding to Defined NPfl Periods

	Management	Measured Noise Level – dB(A) re 20 μPa			
Location	Measurement — Descriptor	Daytime 7 am - 6 pm	Evening 6 pm – 10 pm	Night-time 10 pm – 7 am	
4C 40 The Ferlands	L _{Aeq}	69	66	63	
46-48 The Esplanade	RBL (Background)	59	59	56	
The Orange	L _{Aeq}	62	60	59	
The Corso	RBL (Background)	54	50	43	

Notes: All values expressed as dB(A) and rounded to nearest 1 dB(A);

L_{Aeq} Equivalent continuous (energy average) A-weighted sound pressure level. It is defined as the steady sound level that contains the same amount of acoustic energy as the corresponding time-varying sound.

L_{A90} Noise level present for 90% of time (background level). The average minimum background sound level (in the absence of the source under consideration).

4 NOISE GUIDELINES AND CRITERIA

Northern Beaches Council utilises the criteria from Manly DCP 2013, Part 3, Section 3.9.3 states:

3.9.3 Noise from Mechanical Plant

External mechanical plant systems (for pools, air conditioning and the like) must be acoustically enclosed and located centrally and away from neighbours living areas of neighbouring properties and side and rear boundaries.

See also paragraph 3.4.2.4 Acoustical Privacy.

Note: Excessive noise from the operation of mechanical plant such as air conditioning units, swimming pool pumps, and ventilation and refrigeration systems can disturb residents, disrupt sleep, interfere with normal daily activities or significantly impact on people's health.

4.1 Operational Noise Project Trigger Noise Levels

Responsibility for the control of noise emissions in New South Wales is vested in Local Government and the EPA. The EPA oversees the Noise Policy for Industry (NPfI) October 2017 which provides a framework and process for deriving project trigger noise level. The NPfI project noise levels for industrial noise sources have two (2) components:

- Controlling the intrusive noise impacts for residents and other sensitive receivers in the short term; and
- Maintaining noise level amenity for particular land uses for residents and sensitive receivers in other land uses.

4.1.1 Intrusiveness Noise Levels

For assessing intrusiveness, the background noise generally needs to be measured. The intrusiveness noise level essentially means that the equivalent continuous noise level (LAeq) of the source should not be more than 5 dB(A) above the measured Rated Background Level (RBL), over any 15 minute period.

4.1.2 Amenity Noise Levels

The amenity noise level is based on land use and associated activities (and their sensitivity to noise emission). The cumulative effect of noise from industrial sources needs to be considered in assessing the impact. The noise levels relate only to other industrial-type noise sources and do not include road, rail or community noise. The existing noise level from industry is measured.

If it approaches the project trigger noise level value, then noise levels from new industrial-type noise sources, (including air-conditioning mechanical plant) need to be designed so that the cumulative effect does not produce total noise levels that would significantly exceed the project trigger noise level.

4.1.3 Area Classification

The NPfI characterises the "Urban" noise environment as an area with an acoustical environment that:

- is dominated by 'urban hum' or industrial source noise,
- where urban hum means the aggregate sound of many unidentifiable, mostly traffic and/or industrial related sound sources
- has through-traffic with characteristically heavy and continuous traffic flows during peak periods
- is near commercial districts or industrial districts
- has any combination of the above.

The area surrounding the proposed development falls under the "Urban" area classification.

4.1.4 Project Specific Trigger Noise Levels

Having defined the area type, the processed results of the attended noise monitoring have been used to determine project specific project trigger noise level. The intrusive and amenity project trigger noise level for nearby residential premises are presented in Table 4-1. These project trigger noise levels are nominated for the purpose of assessing potential noise impacts from the proposed development.

In this case, the ambient noise environment is not controlled by industrial noise sources and therefore the project amenity noise level are assigned as per Table 2.2 of the NPfI (Recommended Amenity Noise Levels). For each assessment period, the lower (i.e. the more stringent) of the amenity or intrusive project trigger noise level are adopted. These are shown in bold text in Table 4-1.

Table 4-1 Operational Project Trigger Noise Levels

Receiver	Time of Day	ANL ¹	Measured		Project Trigger Noise Levels	
		LAeq(15min)	RBL ² L _{A90(15min)}	Existing LAeq(Period)	Intrusive LAeq(15min)	Amenity L _{Aeq(15min)}
	Day	60	54	62	59	63
Residential -	Evening	50	50	60	55	53
	Night	45	43	59	48	48
Commercial	When in use					65

Note 1: ANL = "Amenity Noise Level" for residences in Urban Areas.

Note 2: RBL = "Rating Background Level".

5 MECHANICAL NOISE IMPACT

Precise mechanical plant equipment has not been determined at this stage of development. It is understood that most external plant items will be located on the roof. Sensible selection of mechanical plant equipment and design of the plant space will ensure compliance with regulatory criteria which has been established in Table 4-1.

For mechanical plant operating during the night time period the accumulative level that the plant can achieve at the nearest boundary is **48 dB(A)**.

6 RECOMMENDATIONS

Whilst the mechanical plant is not yet known, the following is recommended to ensure compliance with regulatory criteria under all circumstances at all times:

- Items of mechanical plant should be located within a dedicated roof mounted plant room; or
- Items of mechanical plant should be screened using acoustic screening with a minimum NRC rating of 0.8.

Final selection of plant, plant rooms or acoustic screening should be approved by a qualified acoustic consultant at Construction Certificate stage.

7 CONCLUSION

A noise impact assessment has been conducted in relation to the operation of the proposed mechanical plant servicing the proposed development at 6 The Corso and 46-48, 50 East Esplanade, Manly NSW.

This assessment has been conducted and appropriate noise emission criteria have been established in accordance with Northern Beaches Council's requirements.

Recommendations in this report can ensure that under the most conservative operating scenarios and the implementation of the recommendations, operational noise emission from the proposed mechanical plant will achieve the established criteria at neighbouring residences.

A detailed mechanical plant analysis should be conducted by a qualified acoustic consultant at Construction Certificate stage when final plant selection is detailed.

Approved:-

Rodney Stevens

Manager/Principal

odney O. Stermo

Appendix A Acoustic Terminology

A-weighted sound pressure

The human ear is not equally sensitive to sound at different frequencies. People are more sensitive to sound in the range of 1 to 4 kHz (1000 - 4000 vibrations per second) and less sensitive to lower and higher frequency sound. During noise measurement an electronic 'A-weighting' frequency filter is applied to the measured sound level dB(A) to account for these sensitivities. Other frequency weightings (B, C and D) are less commonly used. Sound measured without a filter is denoted as linear weighted dB(linear).

Ambient noise

The total noise in a given situation, inclusive of all noise source contributions in the near and far field.

Community annoyance

Includes noise annoyance due to:

- character of the noise (e.g. sound pressure level, tonality, impulsiveness, low-frequency content)
- character of the environment (e.g. very quiet suburban, suburban, urban, near industry)
- miscellaneous circumstances (e.g. noise avoidance possibilities, cognitive noise, unpleasant associations)
- human activity being interrupted (e.g. sleep, communicating, reading, working, listening to radio/TV, recreation).

Compliance

The process of checking that source noise levels meet with the noise limits in a statutory context.

Cumulative noise level

The total level of noise from all sources.

Extraneous noise

Noise resulting from activities that are not typical to the area. Atypical activities may include construction, and traffic generated by holiday periods and by special events such as concerts or sporting events. Normal daily traffic is not considered to be extraneous.

Feasible and reasonable measures

Feasibility relates to engineering considerations and what is practical to build; reasonableness relates to the application of judgement in arriving at a decision, taking into account the following factors:

- Noise mitigation benefits (amount of noise reduction provided, number of people protected).
- Cost of mitigation (cost of mitigation versus benefit provided).
- Community views (aesthetic impacts and community wishes).
- Noise levels for affected land uses (existing and future levels, and changes in noise levels).

Impulsiveness

Impulsive noise is noise with a high peak of short duration or a sequence of these peaks. Impulsive noise is also considered annoying.

Low frequency Noise containing major components in the low-frequency range (20 to

250 Hz) of the frequency spectrum.

Noise criteria The general set of non-mandatory noise levels for protecting against

intrusive noise (for example, background noise plus 5 dB) and loss of

amenity (e.g. noise levels for various land use).

Noise level (goal)A noise level that should be adopted for planning purposes as the highest

acceptable noise level for the specific area, land use and time of day.

Noise limits Enforceable noise levels that appear in conditions on consents and

licences. The noise limits are based on achievable noise levels, which the proponent has predicted can be met during the environmental assessment. Exceedance of the noise limits can result in the requirement

for either the development of noise management plans or legal action.

Performancebased goals

(RBL)

Goals specified in terms of the outcomes/performance to be achieved, but

not in terms of the means of achieving them.

Rating Background Level

The rating background level is the overall single figure background level representing each day, evening and night time period. The rating background level is the 10th percentile min L_{A90} noise level measured over

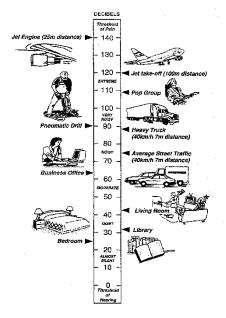
all day, evening and night time monitoring periods.

Receptor The noise-sensitive land use at which noise from a development can be

heard.

Sleep disturbance Awakenings and disturbance of sleep stages.

Sound and decibels (dB)


Sound (or noise) is caused by minute changes in atmospheric pressure that are detected by the human ear. The ratio between the quietest noise audible and that which should cause permanent hearing damage is a million times the change in sound pressure. To simplify this range the sound pressures are logarithmically converted to decibels from a reference

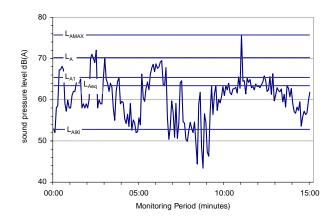
level of 2 x 10-5 Pa.

The picture below indicates typical noise levels from common noise sources.

Page 10

dB is the abbreviation for decibel – a unit of sound measurement. It is equivalent to 10 times the logarithm (to base 10) of the ratio of a given sound pressure to a reference pressure.

Sound power Level (SWL)


The sound power level of a noise source is the sound energy emitted by the source. Notated as SWL, sound power levels are typically presented in dB(A).

Sound Pressure Level (SPL) The level of noise, usually expressed as SPL in dB(A), as measured by a standard sound level meter with a pressure microphone. The sound pressure level in dB(A) gives a close indication of the subjective loudness of the noise.

Statistic noise levels

Noise levels varying over time (e.g. community noise, traffic noise, construction noise) are described in terms of the statistical exceedance level.

A hypothetical example of A weighted noise levels over a 15 minute measurement period is indicated in the following figure:

Key descriptors:

L_{Amax} Maximum recorded noise level.

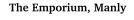
L_{A1} The noise level exceeded for 1% of the 15 minute interval.

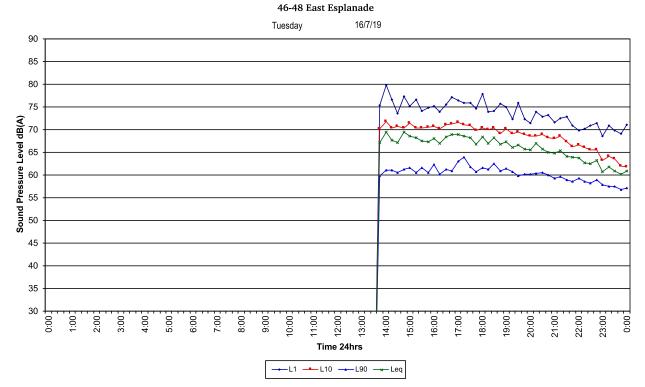
L_{A10} Noise level present for 10% of the 15 minute interval. Commonly referred to the average maximum noise level.

L_{Aeq} Equivalent continuous (energy average) A-weighted sound pressure level. It is defined as the steady sound level that contains the same amount of acoustic energy as the corresponding time-varying sound.

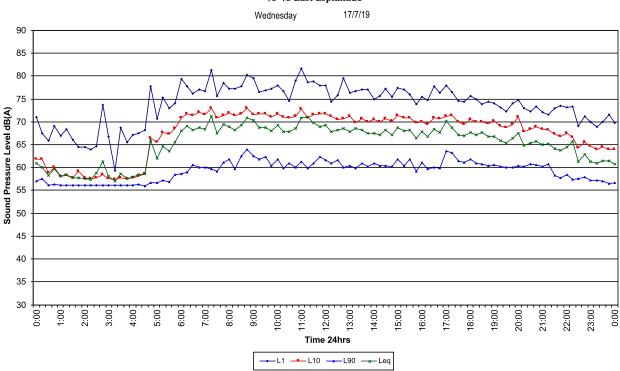
L_{A90} Noise level exceeded for 90% of time (background level). The average minimum background sound level (in the absence of the source under consideration).

Threshold

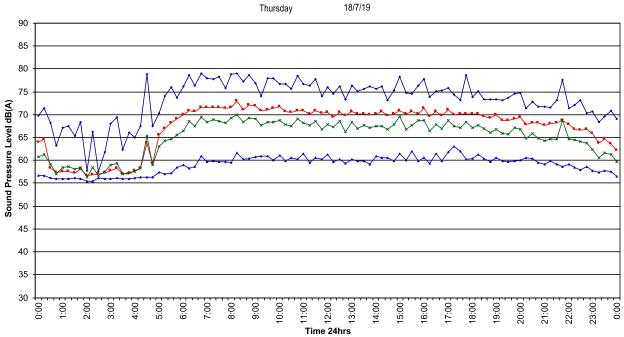

The lowest sound pressure level that produces a detectable response (in an instrument/person).

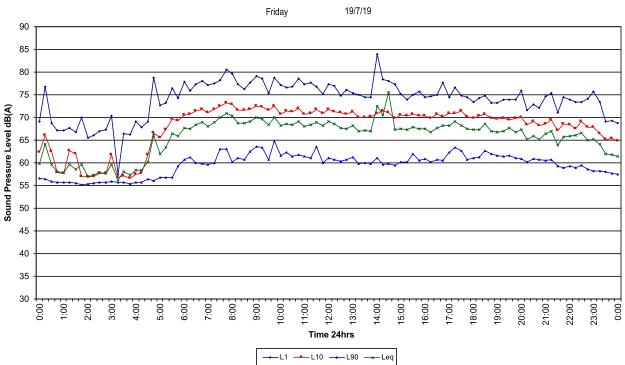

Tonality

Tonal noise contains one or more prominent tones (and characterised by a distinct frequency components) and is considered more annoying. A 2 to 5 dB(A) penalty is typically applied to noise sources with tonal characteristics



Appendix B Logger Graphs

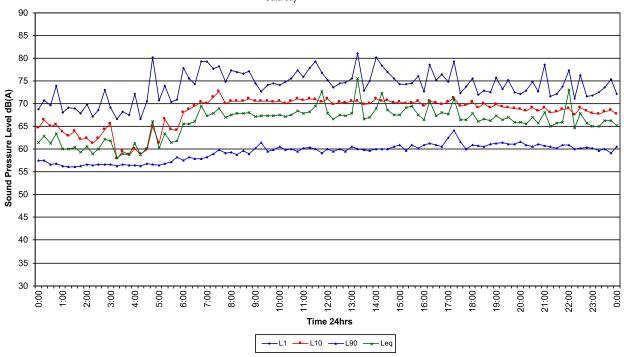

The Emporium, Manly

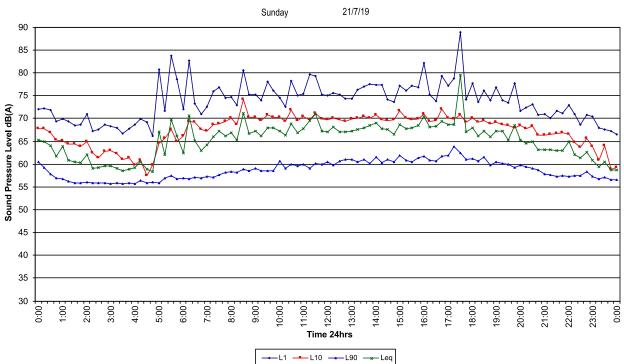


The Emporium, Manly

46-48 East Esplanade

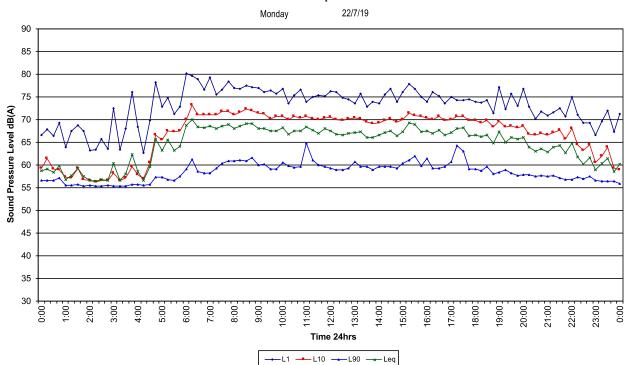
The Emporium, Manly

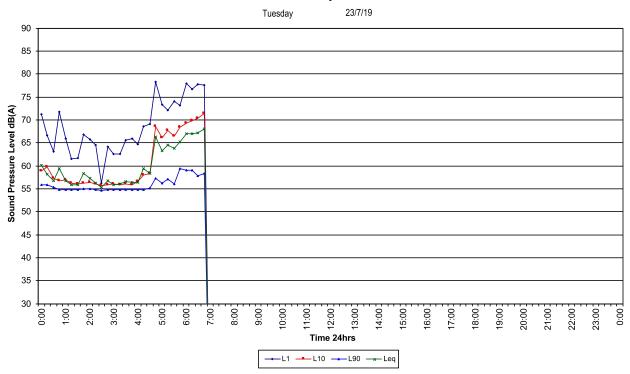



The Emporium, Manly

46-48 East Esplanade

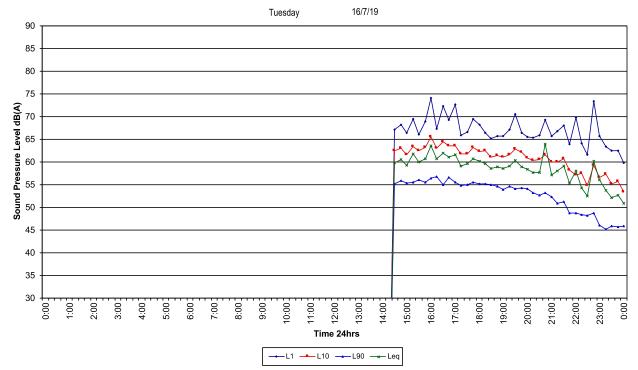
Saturday 20/7/19


The Emporium, Manly

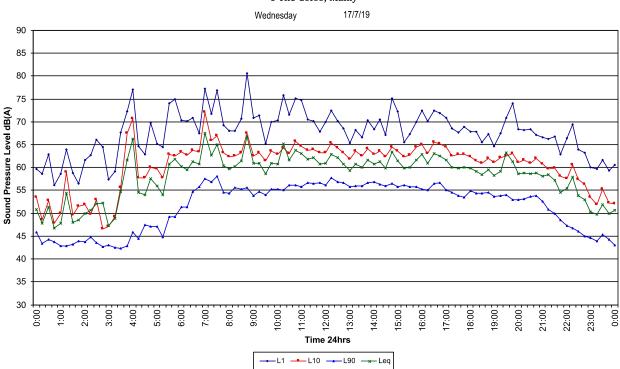


The Emporium, Manly

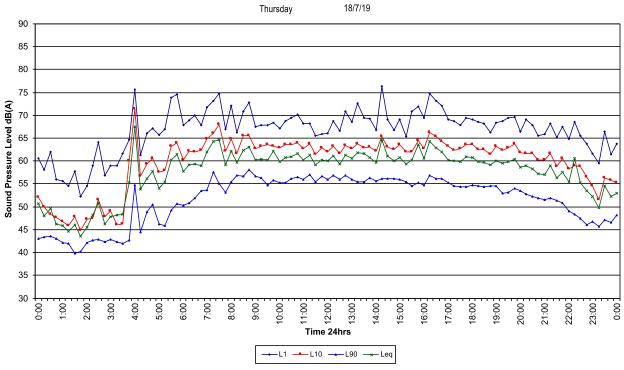
46-48 East Esplanade



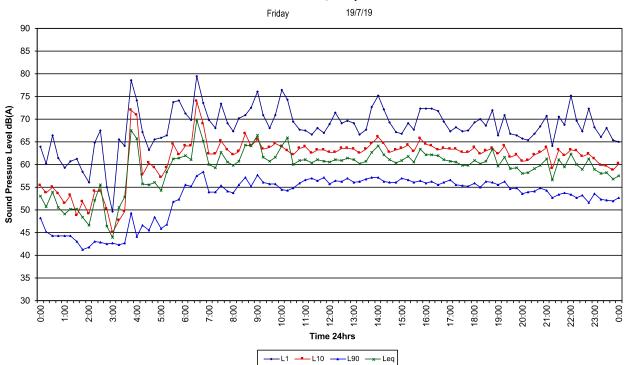
The Emporium, Manly



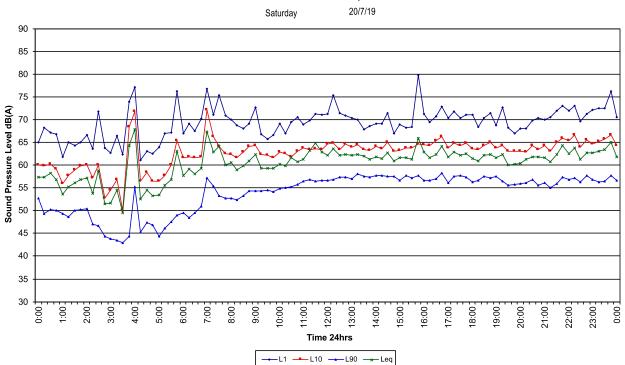
6 The Corso, Manly



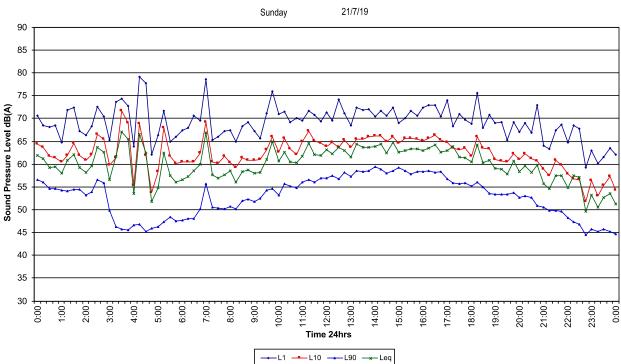
The Emporium



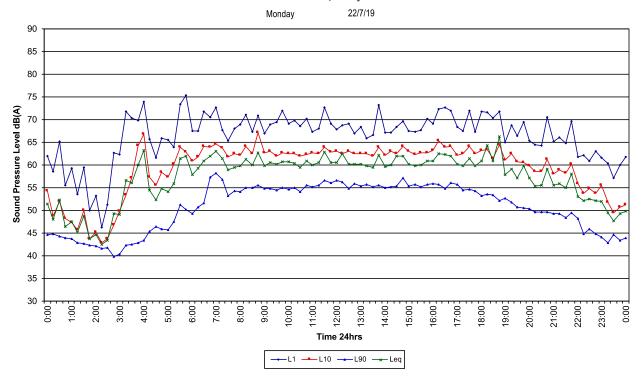
6 The Corso, Manly



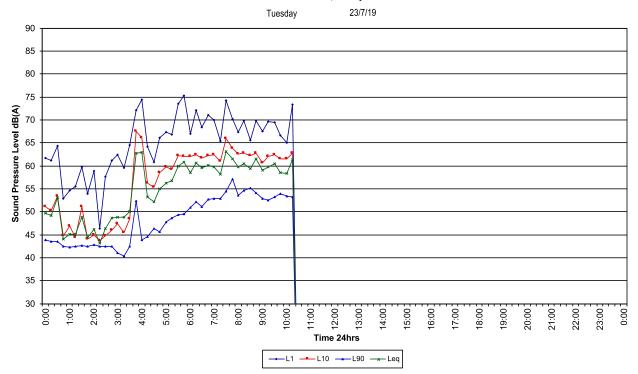
The Emporium



6 The Corso, Manly



The Emporium



6 The Corso, Manly

The Emporium

Appendix C **Calibration Certificate**

Acoustic Level 7 Building 2 423 Pennant Hills Rd Pennant Hills NSW AUSTRALIA 2120 Research Ph: +61 2 9484 0800 A.B.N. 65 160 399 119 Labs Pty Ltd | www.acousticresearch.com.au

Sound Level Meter IEC 61672-3.2013

Calibration Certificate

Calibration Number C18124

Client Details Rodney Stevens Acoustics Pty Ltd

1 Majura Close

St Ives Chase NSW 2075

Secondary Check:

Report Issue Date:

Equipment Tested/ Model Number: Rion NL-42EX Instrument Serial Number: 00184112

Microphone Serial Number: 173008 Pre-amplifier Serial Number : 74638

Pre-Test Atmospheric Conditions

Ambient Temperature: 22.8°C 57.6%

Relative Humidity: Barometric Pressure: 99.35kPa Post-Test Atmospheric Conditions

Ambient Temperature: 22.3°C Relative Humidity: 58.2% Barometric Pressure: 99.37kPa

Riley Cooper

5 Mar 2018

Calibration Technician: Vicky Jaiswal Calibration Date: 5 Mar 2018

Approved Signatory:

Juan Aguero

Clause and Characteristic Tested	Result	Clause and Characteristic Tested	Result
12: Acoustical Sig. tests of a frequency weighting	Pass	17: Level linearity incl. the level range control	Pass
13: Electrical Sig. tests of frequency weightings	Pass	18: Toneburst response	Pass
14: Frequency and time weightings at 1 kHz	Pass	19: C Weighted Peak Sound Level	Pass
15: Long Term Stability	Pass	20: Overload Indication	Pass
16: Level linearity on the reference level range	Pass	21: High Level Stability	Pass

The sound level meter submitted for testing has successfully completed the class 2 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed.

However, no general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1:2013 because evidence was not publicly available, from an independent testing organisation responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013 and because the periodic tests of IEC 61672-3:2013 cover only a limited subset of the specifications in IEC 61672-1:2013.

Least Uncertainties of Measurement -

Acoustic Tests 31.5 Hz to 8kHz 12.5kHz 16kHz Electrical Tests

31.5 Hz to 20 kHz

±0.15dB $\pm 0.21dB$ ±0.29dB **Environmental Conditions** Temperature Relative Humidity

Barometric Pressure

±0.07°C ±0.58% ±0.017kPa

±0.12dB

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF

ACOUSTIC Level 7 Building 2 423 Pennant Hills Rd Pennant Hills NSW AUSTRALIA 2120 Ph; +612 9484 0800 A.B.N. 65 160 399 119 La DS Pty Ltd | www.acousticresearch.com.au

Sound Level Meter IEC 61672-3.2013

Calibration Certificate

Calibration Number (17632)

Client Details - Acoustic Research Labs Pty Ltd.

Lavel 7, Bid 3, 423 Pennant Hills Road

Pointant Hills NSW 2120

Equipment Tested/ Model Number: ARL Nearn

8780EA Instrument Serial Number: Microphone Scrial Number: 519483 Pre-amplifier Serial Number: 28071

Pre-Pest Almospheric Conditions Ambient Temperature: 22.7°C Relative Humidity: 54.2%

Barometrie Pressure: 98.66kPa

Post-Test Atmospheric Conditions

Ambient Temperature: 22.8°C 5G.2% Relative Hamidity: Barometrie Pressure: 98.59kPa

Calibration Technician: Vic.y Jaiswal Secondary Cheek: Riley Cooper Calibration Date: 05/12/2017 Report (sine Bate: 05/12/2017

Approved Signatory : 42

Kan Williams

			200
Clause and Characteristic Tested	Result	Clause and Characteristic Tested	Result.
12. Admistical Nig. tosts of a frequency weighting	Pa25	17: Love, linearity inci. the lovel range control	25/0
 Electrical Sig. tests of Trequency exciplinings 	Para	18: Tar eberst response	Pass
24. Frequency and time weightings at 1 kHz	Para	19; C Weighted Feety Sound Level	AMI
15 Forg Term Stability	Page	20: Over.oac Indication	Care
(6) cycl fineanty on the reference level pints.	Pass	21: (figh Level Signifity	8428

The found level mater submitted for vesting loss six a split yearing telepithe class 1 periodic rests of IEC 6: 672-3:2013. For the continuous talconditions under which the tests were performed.

Players the general statement of conclusion can be used about conference of the smooth and update to the full equiraments of IEC 61672 1 2003 because evaluated was not publishy twan after from an undependent testing organisation cooperable for patient opposests to demonstrate that the model of sound level as ter fully conformed to the requirements in IEC 61072-1;2903 and because the paties to tests of IEC 61072-61073 (2013) cover only a limited softeet of the appearance of IEC 61074-1;2003

Least Uncertainties of Vestsurement

Accordic Tests 21.2 viero Sina. 12.5kHz 10.1842 10.263 10.2342 198915 Floctrien, Tests

50.124R

Few minimental Conditions Volumentality Relative Hamishy Вистомуйл Егології

-0.78% +0.77787 tr

All resonantialization decimal or the 95% confidence level with a concrugation in of ${\mathbb Z}$

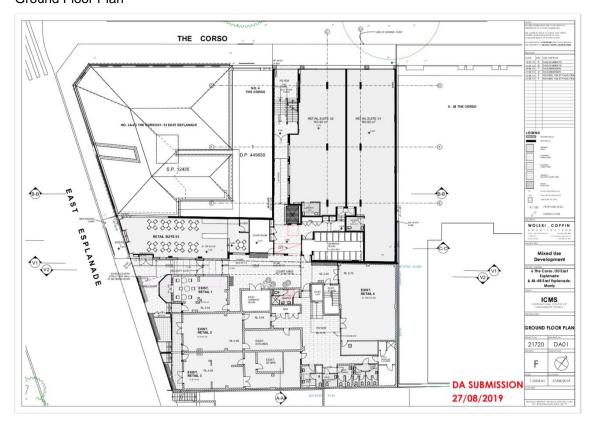
This calibration perticioste is to be read in 5% perotion with the colibration test report.

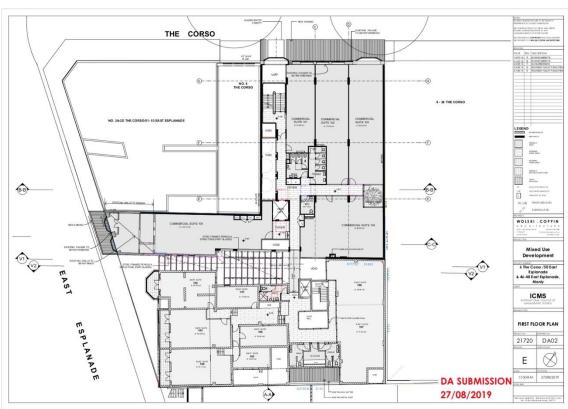
31.5 % to 30 kg.

Assume Research Take Fry Ltd is NATA Associated Laboratory Number 14170 Agus af ned file compliance with ISO(19017-1318) - calibration.

The results of the 6-48, political persion flows measurements included in this dictionart, are discretizate Australian/national standards.

NAMA is a signerary to the BoxC Mutual Recognition Arrangement for the month of new operation of the equivalence of a strong monard healing, caribration and inspection reports.


DAGE Lor?

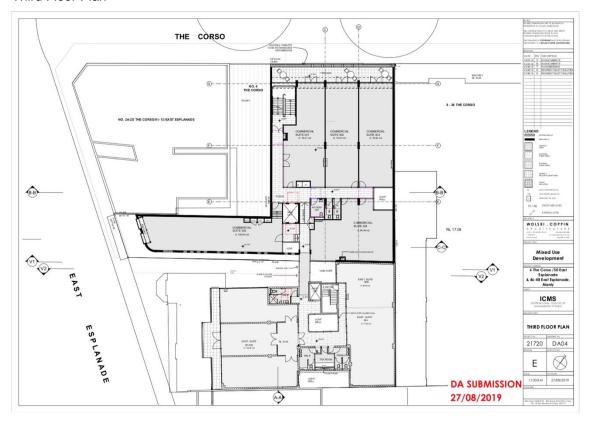

Appendix D A

Architectural Plans

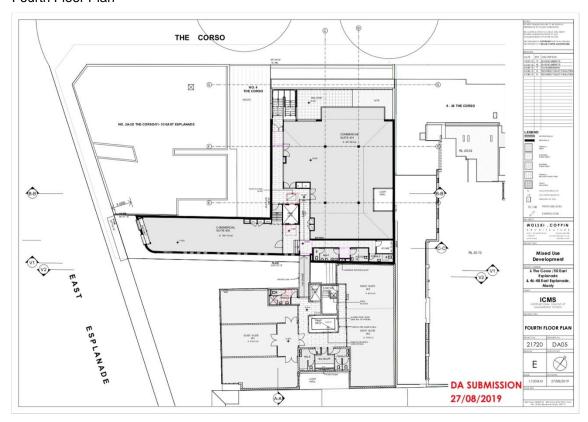
Ground Floor Plan



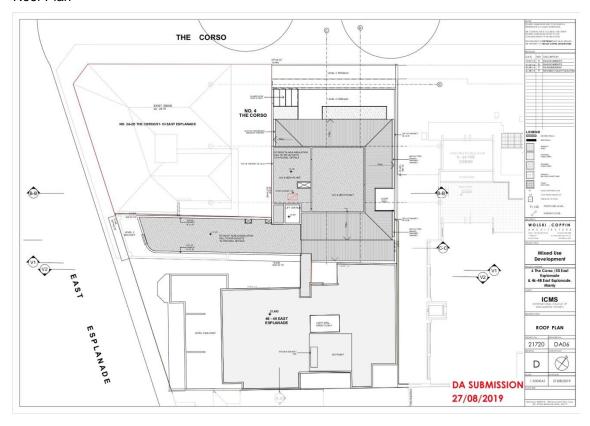
First Floor Plan



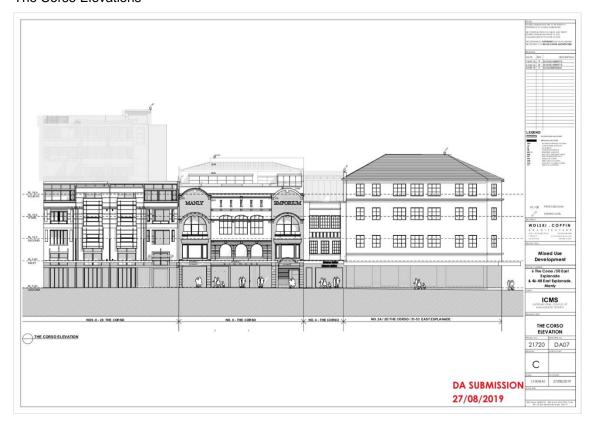
Second Floor Plan



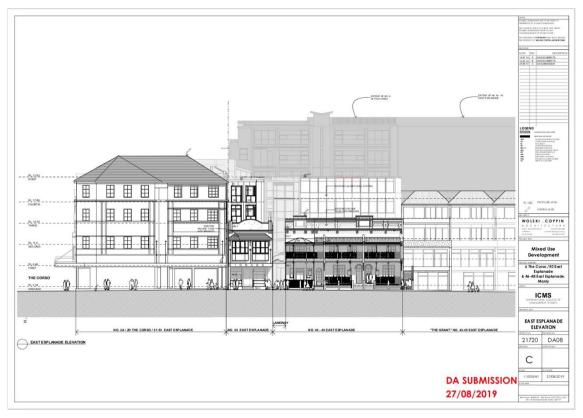
Third Floor Plan



Fourth Floor Plan



Roof Plan



The Corso Elevations

East Esplanade Elevations

