

Wilga Wilson Precinct

Land Rezoning - Acoustic Assessment

Client: Mirvac Homes (NSW) Pty Ltd

ABN: 22 006 922 998

Prepared by

AECOM Australia Pty Ltd

Gadigal Country, Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 1800 868 654 www.aecom.com

ABN 20 093 846 925

30-Apr-2025

Job No.: 60734253

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Wilga Wilson Precinct

Ref 60734253

Date 30-Apr-2025

Originator Tom Roseby

Checker/s Geoff Lucas

Verifier/s Gayle Greer

Revision History

Rev	Revision Date	e Details	Approved		
ivev	Nevision Date	Details	Name/Position	Signature	
A	22-Apr-2025	Draft	Gayle Greer Technical Director - Acoustics	Gegle Gree	
В	30-Apr-2025	Final	Gayle Greer Technical Director - Acoustics	Gegle Gree	

Table of Contents

1.0	Introduction	1
	1.1 Background	1
	1.2 Study objective	1
	1.3 Study area	1
	1.4 Policies and guidelines	1
2.0	Existing Acoustic Environment	2 2 4
	2.1 Noise measurement methodology	2
	2.2 Noise measurement results	
	2.2.1 Unattended noise monitoring results	4
	2.2.2 Short term attended noise measurements	4
	2.3 Road noise monitoring results	4
	2.4 Road traffic counts	4 5 6
3.0	Noise criteria	6
	3.1 Development Near Rail Corridors and Busy Roads – Interim Guideline	6
	3.2 State Environment Planning Policy (Transport and Infrastructure) 2021	6
4.0	Road traffic noise modelling methodology	8
	4.1 Road traffic modelling	8
	4.2 Road traffic volumes	10
	4.2.1 Validation noise model	10
5.0	Road traffic noise impact assessment	11
	5.1 Road traffic noise impacts	11
	5.2 Noise mitigation measures	11
	5.2.1 Treatment of noise at source	11
	5.2.2 Treatment of noise path	11
	5.3 Treatment at receivers	12
6.0	Conclusion	13
Apper	ndix A	
	Acoustic terminology	Α
Apper	ndix B	
	Wilga Wilson Precinct Concept Masterplan Layout	В
Apper		
	Road Traffic Noise Contours and Mitigation Categories	С

1.0 Introduction

1.1 Background

AECOM Australia Pty Ltd (AECOM) was commissioned by Mirvac Home (NSW) Pty Ltd to provide an acoustic assessment of the likely impact of road traffic noise on the proposed residential subdivision within Wilga Wilson Precinct, Ingleside, NSW.

This report presents an assessment of the likely impact of road traffic noise on the proposed subdivision including:

- Establishment of appropriate road traffic noise criteria;
- Details of forecast road traffic flows affecting the proposed subdivision;
- Details of the prediction method used to calculate the road traffic noise levels;
- The predicted levels of road traffic noise at sensitive receiver locations with the expected future (2027) road traffic volumes; and
- Provision of general acoustic recommendations where the established noise criteria are exceeded.

Acoustic terminology can be found in Appendix A.

1.2 Study objective

The purpose of this acoustic assessment is to support the Planning Proposal which will seek to rezone the project site to enable new residential and associated urban development. The acoustic assessment will investigate the existing and future noise environments and provide recommendations for the proposed development in accordance with Council and State Government requirements.

1.3 Study area

The study area for this investigation, shown in Figure 1, is located within Ingleside and currently consists of mostly residential receivers. The site is bound by Wilson Avenue and Powderworks Road to the north and east, Wilga Street to the south and the Monash Country Club to the west.

The Wilga Wilson Precinct concept masterplan layout is presented in Appendix B.

1.4 Policies and guidelines

The following policies and guidelines are relevant for this assessment:

- State Environment Planning Policy (Transport and Infrastructure), 2021
- Development Near Rail Corridors and Busy Roads Interim Guideline, Department of Planning, 2008
- NSW Road Noise Policy (RNP), Department of Environment, Climate Change and Water, 2011
- Calculation of Road Traffic Noise, UK Department of Transport, 1988
- Road Noise Model Validation Guideline, Transport for NSW, 2022.

2.0 Existing Acoustic Environment

2.1 Noise measurement methodology

Ambient noise monitoring was previously undertaken for the Ingleside Precinct Masterplan at 240 Powderworks Road, Ingleside between Tuesday 3 December and Tuesday 10 December 2013. The results of the previous noise monitoring were presented in report reference 60312114-RPNV-01_M Ingleside Precinct Noise and Vibration Impact Assessment dated 21 October 2016. Traffic counting was also simultaneously conducted during the noise measurements.

The traffic counts and results of the previous noise measurements were used to understand the influence of road traffic at the existing site and validate the road traffic noise model.

The location of previous noise monitoring is shown in Figure 1.

Ingleside - Noise Logging Locations

Noise Logger LocationProject Boundary

Haither AECOVA strates for the accuracy model for the contract of the contract of Customer Service make our presentations or warmen singular than accuracy models for accuracy for the accuracy models for the accuracy for the sole use of the Client based on the Client's description of its requirements having required to the assumptions and other limitations set out in this report, including page 2.

Figure 1: Project boundary and noise logger locations

2.2 Noise measurement results

2.2.1 Unattended noise monitoring results

The unattended measured noise levels were extracted from the *Ingleside Precinct Noise and Vibration Impact Assessment* and are presented in Table 1.

Table 1 Ambient and background noise measurements

	Ambient no	ise level dB(A	()	Rating background level, dB(A)			
Noise logger	Day (7am to 6pm) L _{Aeq,15 hour}	Evening (6pm to 10pm) L _{Aeq,4 hour}	Night (10pm to 7am) L _{Aeq,9 hour}	Day (7am to 6pm) L _{A90,15 min}	Evening (6pm to 10pm) L _{A90,15 min}	Night (10pm to 7am) L _{A90,15 min}	
240 Powderworks Road, Ingleside	63	59	56	49	41	30	

2.2.2 Short term attended noise measurements

The unattended measured noise levels were extracted from the *Ingleside Precinct Noise and Vibration Impact Assessment* and presented in Table 2.

Table 2: Attended noise measurements

Location	Date	Time	L _{Aeq} dB(A)	L _{A90} dB(A)	Comments
240 Powderworks Road	11/12/2013	09:44	61	53	Noise from traffic along Powderworks Road dominant. Birds and cicadas also noted.

2.3 Road noise monitoring results

The unattended traffic noise levels were extracted from logging data used in the *Ingleside Precinct Noise and Vibration Impact Assessment*. This 2013 logging data has since been reviewed and data unrelated to traffic noise has been excluded. The revised logging data is presented in Table 3.

Noise logging data from this location has been used to validate the road traffic noise model for the proposal.

These measured road traffic noise levels have been compared to the predicted noise levels from the validation noise model. It was found that the measured levels correlated well with the predicted levels. This provides confidence that the future road traffic noise levels can be accurately predicted for the operational noise assessment. Further information on the noise modelling and validation of noise model outputs is provided in Section 4.2.1.

Table 3 Existing road traffic noise levels

Noise logging location	Ambient road traffic noise level, dB(A)			
Noise logging location	Day ¹ (L _{Aeq,15 hr})	Night ¹ (L _{Aeq,9 hr})		
240 Powderworks Road, Ingleside	61.8	55.9		

Notes:

2.4 Road traffic counts

The existing traffic counts conducted in 2013 were extracted from the *Ingleside Precinct Noise and Vibration Impact Assessment* and a represented in Table 4. The road traffic survey conducted between Wattle Road and Wilson Avenue.

Table 4 Existing road traffic volumes

		Daytime (7am – 10pm)		Night-time (10pm – 7am)		Vehicle
Location	Direction	Traffic volume	Heavy vehicle ratio	Traffic volume	Heavy vehicle ratio	speed, km/h
Powderworks Road	Eastbound	5,355	4%	423	4%	60
	Westbound	5,160	3%	792	5%	60

^{1.} Day is defined as 7:00 am to 10:00 pm. Night is defined as 10:00 pm to 7:00 am.

3.0 Noise criteria

3.1 Development Near Rail Corridors and Busy Roads – Interim Guideline

The NSW Government Department of Planning guideline, the *Development Near Rail Corridors and Busy Roads – Interim Guideline* provides additional information for the implementation of the SEPP (2021) will be referred to for assessing the impact of airborne noise. The airborne noise trigger levels contained within the guideline are provided in Table 5.

Table 5 Airborne (internal) noise trigger levels

Receiver	Time of day	Airborne Noise Criteria, L _{Aeq} dB(A)
Residential	Day (7 am – 10 pm)	40
	Night (10 pm – 7 am)	35
Schools, educational institutions, places of worship	When in use	40
Places of Worship	When in use	40

The guideline also states the following with regard to natural ventilation:

If internal noise levels with windows or doors open exceed the criteria by more than 10 dBA, the design of the ventilation for these rooms should be such that occupants can leave windows closed, if they so desire, and also to meet the ventilation requirements of the Building Code of Australia.

Assuming a reduction of 10 dB from external noise levels to indoors with windows and doors open, mechanical ventilation must be provided when external noise levels exceed 60 dB(A) during the day and 55 dB(A) at night.

3.2 State Environment Planning Policy (Transport and Infrastructure) 2021

Where residential development is on land adjacent to a road corridor with an annual average daily traffic volume of more than 20,000 vehicles the State Environment Planning Policy (Transport and Infrastructure) 2021 (SEPP (Transport and Infrastructure)) applies.

The SEPP (Transport and Infrastructure) provides internal noise level criteria for residential developments impacted by road noise. The following road internal noise criteria were extracted from the SEPP (Transport and Infrastructure):

2.120 Impact of road noise or vibration on non-road development

- (1) This section applies to development for any of the following purposes that is on land in or adjacent to the road corridor for a freeway, a tollway or a transitway or any other road with an annual average daily traffic volume of more than 20,000 vehicles (based on the traffic volume data published on the website of TfNSW) and that the consent authority considers is likely to be adversely affected by road noise or vibration— (a) residential accommodation,
 - (b) a place of public worship,
 - (c) a hospital,
 - (d) an educational establishment or centre-based child care facility.
- (2) Before determining a development application for development to which this section applies, the consent authority must take into consideration any guidelines that are issued by the Planning Secretary for the purposes of this section and published in the Gazette.

- (3) If the development is for the purposes of residential accommodation, the consent authority must not grant consent to the development unless it is satisfied that appropriate measures will be taken to ensure that the following LAeq levels are not exceeded—
 (a) in any bedroom in the residential accommodation—35 dB(A) at any time between 10 pm and 7 am,
 - (b) anywhere else in the residential accommodation (other than a garage, kitchen, bathroom or hallway)—40 dB(A) at any time...

Assuming a conservative 10 dB reduction through a partially open window the external noise criteria are listed in Table 6.

Table 6 External noise level criteria

Type of occupancy	External noise level dB(A)	Time period
Bedroom	55	10pm – 7am
Other habitable rooms	60	Any time

4.0 Road traffic noise modelling methodology

4.1 Road traffic modelling

Road traffic noise levels for future traffic volumes were calculated using SoundPLAN v8.2 software, which implements the Calculation of Road Traffic Noise (CoRTN) algorithm. The United Kingdom (UK) Department of Transport devised the CoRTN algorithm and with suitable corrections, this method has been shown to give accurate predictions of road traffic noise under Australian conditions.

Recently in NSW, adjustments have been used to CoRTN predictions to improve accuracy. This includes the use of three source heights for trucks (Tyres, engines and exhausts) in Australia compared with the UK, where CoRTN was developed.

As noted in the *Road Noise Model Validation Guideline* the objective of model validation is to demonstrate that the noise model is an accurate representation of the real world within the limitations of the algorithm. Validation of the existing noise model is presented in Section 4.2.1.

This noise model takes into account source directivity, terrain, shielding, location of buildings, air and ground absorption and distance attenuation. The modelling parameters which are included in the model are detailed in Table 7.

Table 7 Modelling noise parameters

Parameter	Comment						
Calculation search radius	2,000 metres						
Source heights and	Four noise source heights were u	Four noise source heights were used in the model as follows:					
corrections	Source	Height (m)	Correction (dB)				
	Light vehicles engine and tyres	0.5	0.0				
	Heavy vehicles tyres	0.5	-5.4				
	Heavy vehicles engine	1.5	-2.4				
	Heavy vehicles exhaust	3.6	-8.5				
Existing road alignment	The existing roads were modelled	l using satellite imag	ery.				
Road gradient	The road gradient was calculated (ELVIS) data.	based on elevation	information system				
Existing pavement	The road pavements modelled we	ere as dense grade a	asphalt (DGA).				
	DGA pavement correction = 0 dB						
L ₁₀ to L _{eq}	-3 dB correction						
Receiver heights	1.5 metres for single storey and 4	.5 metres for double	storey.				
Receiver locations	1 metre from the façade of receive	ers.					
Buildings, structures and walls	All buildings and structures were included where acoustically relevant.						
Ground absorption	A ground absorption factor of 0.75 ground absorption factor of 0.50 v						
	A ground absorption factor of 0 we ground absorption factor of 1 wou density vegetation is acoustically considered appropriate.	ld represent totally a	absorptive ground. High				
Topography	1 metre interval data up to 2 kilom	netres either side of	the proposal.				
Traffic volumes	Traffic volumes were obtained from traffic count data recorded on Powderworks Road, carried out close to the time noise monitoring was conducted. Future 2027 traffic volumes accounting for development growth were provided by PDC Traffic and Transport Consultants.						
Traffic speeds	For model validation, the speeds measured during the traffic counting and the posted speed limits were used.						
Buildings	The height of all buildings within the study area was determined through satellite imagery. Where building heights were unable to be determined, buildings were assumed to be one storey. The proposed new buildings generally comprised two storeys except for apartment buildings which comprised three storeys.						

4.2 Road traffic volumes

The year 2027 has been taken as the design year, when the residential subdivision has been fully developed. Predicted (2027) road traffic data (daytime and night-time flows) for Powderworks Road have been provided by the traffic consultant in order to determine future road traffic noise levels in the area. The future traffic volumes are presented in Table 8.

Table 8 Road traffic volumes (2027)

		Daytime (7am – 10pm)		Night-time (10pm – 7am)		Vehicle
Location	Direction	Traffic volume	Heavy vehicle ratio	Traffic volume	Heavy vehicle ratio	speed, km/h
Powderworks Road	Eastbound	6,819	10%	650	18%	60
	Westbound	6,811	5%	865	7%	60

The traffic speed on Powderworks Road has been assumed to remain at 60 km/h.

4.2.1 Validation noise model

An existing road traffic noise model was developed incorporating the existing traffic flows and alignment for validation with road traffic noise measurements. The model was validated in accordance with the *Road Noise Model Validation Guideline*. The *Road Noise Model Validation Guideline* provides guidance and procedures for validating road traffic noise models.

Provided below in Table 9 is a summary of the noise logger validation results. The results in Table 9 show that the noise model is performing within the acceptable limits of ± 2 dB(A), hence the noise model has been proven to be performing well and can be relied upon for this project.

Table 9 Noise logger validation

Address	Daytime L _{Aeq,15hr} , dB(A)			Night-time L _{Aeq,9hr} , dB(A)		
Address	Predicted	Measured	Difference	Predicted	Measured	Difference
240 Powderworks Road, Ingleside	63.1	61.8	+1.3	56.3	55.9	+0.4

5.0 Road traffic noise impact assessment

To assess the potential impacts of road traffic noise on the proposed residential land subdivision areas, future road traffic noise levels along Powderworks Road in 2027 have been modelled.

5.1 Road traffic noise impacts

Noise impacts from road traffic to the Wilga Wilson Precinct have been predicted and the results are presented as noise contour maps in Appendix C. The predicted noise levels indicate that the Road Traffic Noise Criteria presented in Section 3.0 are likely to be exceeded at some of the future proposed residential dwellings within the Ingleside subdivision. Noise mitigation measures which could be considered are detailed in the following sections.

5.2 Noise mitigation measures

Noise mitigation measures should be implemented in the following hierarchy:

- Treatment of noise at source: Integrated design measures such as road design and traffic management, as well as road surface treatment;
- Treatment of noise path: In-corridor barriers; and
- Treatment at receivers: At-property treatments and receiver building layouts.

Prioritising noise treatment in this order is the most efficient means of reducing impacts. Accordingly, noise mitigation measures that attenuate noise path and receivers should be considered as the design of the individual lots within the Wilga Wilson Precinct are further refined.

5.2.1 Treatment of noise at source

Treatment of road traffic noise at the source includes changes to gradients, alignments, road design, administrative controls and road surface treatment.

It is understood that changes to Powderworks Road are outside of the scope and are therefore not considered further.

5.2.2 Treatment of noise path

Noise path treatment involves the attenuation of noise paths between a source and receiver. This typically involves shielding of receivers with noise barriers.

5.2.2.1 Noise walls and barriers

Acoustic barriers provide immediate reductions in road traffic noise at the shielded properties. The acoustic effectiveness of a barrier depends on its density, height, length and location. The higher the barrier (compared to the direct line-of-sight from the source to the receiver) and the closer its location to either the source or the receiver, the greater the noise attenuation provided. The barrier also needs to have a sufficient length.

All residences adjacent to Powderworks Road appear to have access driveways on Powderworks Road only. Therefore, any noise wall will require gaps for driveways and as a result not provide sufficient noise reduction.

In addition, as residential buildings along the northern and eastern boundary of the site may be multiple storeys in height, standard noise barriers would only be effective to ground floor rooms within the residences. Noise intrusion to upper floor rooms (bedrooms) is the defining factor determining potential treatment to residences within the proposal area. As noise walls would not be effective to these areas, they may not prove to be an acceptable noise mitigation measure for this project.

5.2.2.2 Setbacks

Buffer zones and adequate set back areas may be utilised to distance road noise sources from receivers. Lots and internal roads may be arranged in order to create a sufficient buffer zone from noise sensitive receivers which can reduce the requirement for other mitigation types. Treatment at receivers.

5.3 Treatment at receivers

Noise mitigation measures implemented at receivers include planning layouts of buildings and rooms and treatment to building façades.

5.3.1.1 Property layout

Where residential properties are located adjacent to major roads, buildings should be oriented such that the buildings shield outdoor living areas such as courtyards and private open spaces.

The layout of the rooms within a building is important in determining individual noise exposure. Where possible the less noise sensitive rooms such as garages, bathrooms and laundries should be located closer to the noise source to provide a buffer zone to noise sensitive areas such as bedrooms and frequently used living areas.

5.3.1.2 Construction materials and methods

Windows and doors present acoustic weaknesses which control the overall sound transmission loss of the composite wall. Buildings should be constructed so that facades most exposed to the noise source have a minimum number of windows and doors to reduce the internal noise levels.

Where road traffic noise levels exceed the external noise criteria within habitable rooms fresh air must be provided to these rooms so windows can be left closed, in order to meet the SEPP (Transport and Infrastructure) internal noise criteria.

Table 10 presents the categories of façade construction required for each new residential and apartment building based on the noise traffic exposure level. Appendix C presents the required construction categories for each precinct building facade.

Table 10: Standard construction categories required for each precinct building

Precinct building No.	Construction category	Air-conditioning required?	Description
A1-A4	1	No	Minimum 3 storey apartment building
R1-161, R163-179,R181-185,R187-190,R192-R195,R197-205,R207-214,R216-223,R225-263,R265-278,R280-285,R287-295,R297-299,R301-302,R304-305,R307-310	1	No	Minimum 2 storey building
R162, R306	2	No	
R180,R186,R191,R196, R206, R215, R224,R296,R300,R303,R311,R312, R313,R314,R316,R317,R320	3	Yes	
R264,R279,R286,R315,R318,R319, R321,R322	4	Yes	

Table 11 presents the required construction for each category.

Table 11: Standard construction categories

Treatment type	Glazing system	Wall construction	Roof/ceiling system construction
Type 1	Standard Construction (4 mm glass)	Brick veneer construction consisting of single leaf of 110 mm brick, one layer of 10 mm standard plasterboard screw fixed to 90 mm timber stud or 92 mm steel stud frame spaced a minimum 20 mm off masonry or Alternative system with minimum R _w rating of 53	Pitched concrete or terracotta tile or metal sheet roof with sarking, 10 mm plasterboard ceiling fixed to ceiling joists, R2 insulation batts in roof cavity.
Type 2	6.38 mm laminated glass (R _w 32)		
Type 3	10.38 mm laminated glass (R _w 36)		Pitched concrete or terracotta tile or metal sheet roof with sarking, 1 layer of 13 mm sound- rated plasterboard fixed to ceiling joists, R2 insulation batts in roof cavity.
Type 4	12.76 mm laminated glass (R _w 40)		

The above recommendations are based on provisional lot layouts and should be reviewed at the detailed design stage for construction requirements to achieve the internal noise criteria.

The recommendations have been based on the following assumptions:

- Lounges will have minimum room dimensions of 6 x 6 x 2.7 m and bedrooms will have minimum room dimensions of 4 x 3 x 2.7 m;
- Lounges and bedrooms may be located on either the ground floor, first floor or second floor;
- Lounges and bedrooms have been assessed assuming the facade has a maximum of 50% glazing;
- Rooms will include soft furnishings typical of the rooms usage, i.e. lounge or bedroom;
- External doors facing Powderworks Road will be solid core (and acoustically sealed) and achieve Rw 33;
- Window detailing will have gaps between the window frames and the house frame/masonry sealed with flexible mastic.
- Hinged or casement windows are preferred over sliding windows as the former two have more
 effective sealing mechanisms. The overall intent is to form an air-tight construction.
- Acoustic insulation such as polyester or rock wool/glass wool batts placed between the wall studs
 of brick veneer and timber framed buildings and in the roof cavity and will reduce the noise
 entering the building.
- Where external windows and doors are to remain closed to achieve the internal noise criteria (lots listed in Table 10), air conditioning or alternative ventilation systems should be provided.

6.0 Conclusion

AECOM Australia Pty Ltd (AECOM) was commissioned by Mirvac Homes (NSW) Pty Ltd to provide an acoustic assessment of the likely impact of road traffic noise on the proposed residential subdivision within Wilga Wilson Precinct, Ingleside, NSW.

Road traffic noise levels in 2027 were predicted and road traffic noise contours have been presented. The road traffic noise model considered traffic noise from Powderworks Road. It was noted that road traffic noise levels are likely to exceed the criteria presented in the State Environmental Planning Policy (Transport and Infrastructure) 2021, where proposed residential areas are in close proximity to Powderworks Road.

Indicative recommendations were provided which may be required to achieve the criteria. It is noted that residential development directly adjacent to Powderworks Road would provide acoustic shielding to development set back further from these roads. Recommendations should be confirmed at the detailed design stage for each lot.

Appendix A

Acoustic terminology

Appendix A Acoustic terminology

The following is a brief description of acoustic terminology used in this report.

Sound power level The total sound emitted by a source

Sound pressure level The amount of sound at a specified point

Decibel [dB] The measurement unit of sound

A Weighted decibels [dB(A)] The A weighting is a frequency filter applied to measured noise

levels to represent how humans hear sounds. The A-weighting filter emphasises frequencies in the speech range (between 1kHz and 4 kHz) which the human ear is most sensitive to, and places less emphasis on low frequencies at which the human ear is not so

sensitive. When an overall sound level is A-weighted it is

expressed in units of dB(A).

Decibel scale The decibel scale is logarithmic in order to produce a better

representation of the response of the human ear. A 3 dB increase in the sound pressure level corresponds to a doubling in the sound energy. A 10 dB increase in the sound pressure level corresponds to a perceived doubling in volume. Examples of decibel levels of

common sounds are as follows:

0 dB(A) Threshold of human hearing

30 dB(A) A quiet country park
40 dB(A) Whisper in a library
50 dB(A) Open office space

70 dB(A) Inside a car on a freeway

80 dB(A) Outboard motor

90 dB(A) Heavy truck pass-by

100 dB(A) Jackhammer/Subway train

110 dB(A) Rock Concert

115 dB(A) Limit of sound permitted in industry

120 dB(A) 747 take off at 250 metres

Frequency [f] The repetition rate of the cycle measured in Hertz (Hz). The

frequency corresponds to the pitch of the sound. A high frequency corresponds to a high pitched sound and a low frequency to a low

pitched sound.

Equivalent continuous sound

level [Lea]

The constant sound level which, when occurring over the same period of time, would result in the receiver experiencing the same

amount of sound energy.

 L_{max} The maximum sound pressure level measured over the

measurement period

 L_{min} The minimum sound pressure level measured over the

measurement period

 L_{10} The sound pressure level exceeded for 10% of the measurement

period. For 10% of the measurement period it was louder than the

L₁₀.

 L_{90} The sound pressure level exceeded for 90% of the measurement

period. For 90% of the measurement period it was louder than the

L₉₀.

Ambient noise The all-encompassing noise at a point composed of sound from all

sources near and far.

Background noise The underlying level of noise present in the ambient noise when

extraneous noise (such as transient traffic and dogs barking) is removed. The L₉₀ sound pressure level is used to quantify

background noise.

Traffic noise The total noise resulting from road traffic. The Leq sound pressure

level is used to quantify traffic noise.

Day The period from 0700 to 1800 h Monday to Saturday and 0800 to

1800 h Sundays and Public Holidays.

Evening The period from 1800 to 2200 h Monday to Sunday and Public

Holidays.

Night The period from 2200 to 0700 h Monday to Saturday and 2200 to

0800 h Sundays and Public Holidays.

Assessment background

level [ABL]

The overall background level for each day, evening and night period

for each day of the noise monitoring.

Rating background level

[RBL]

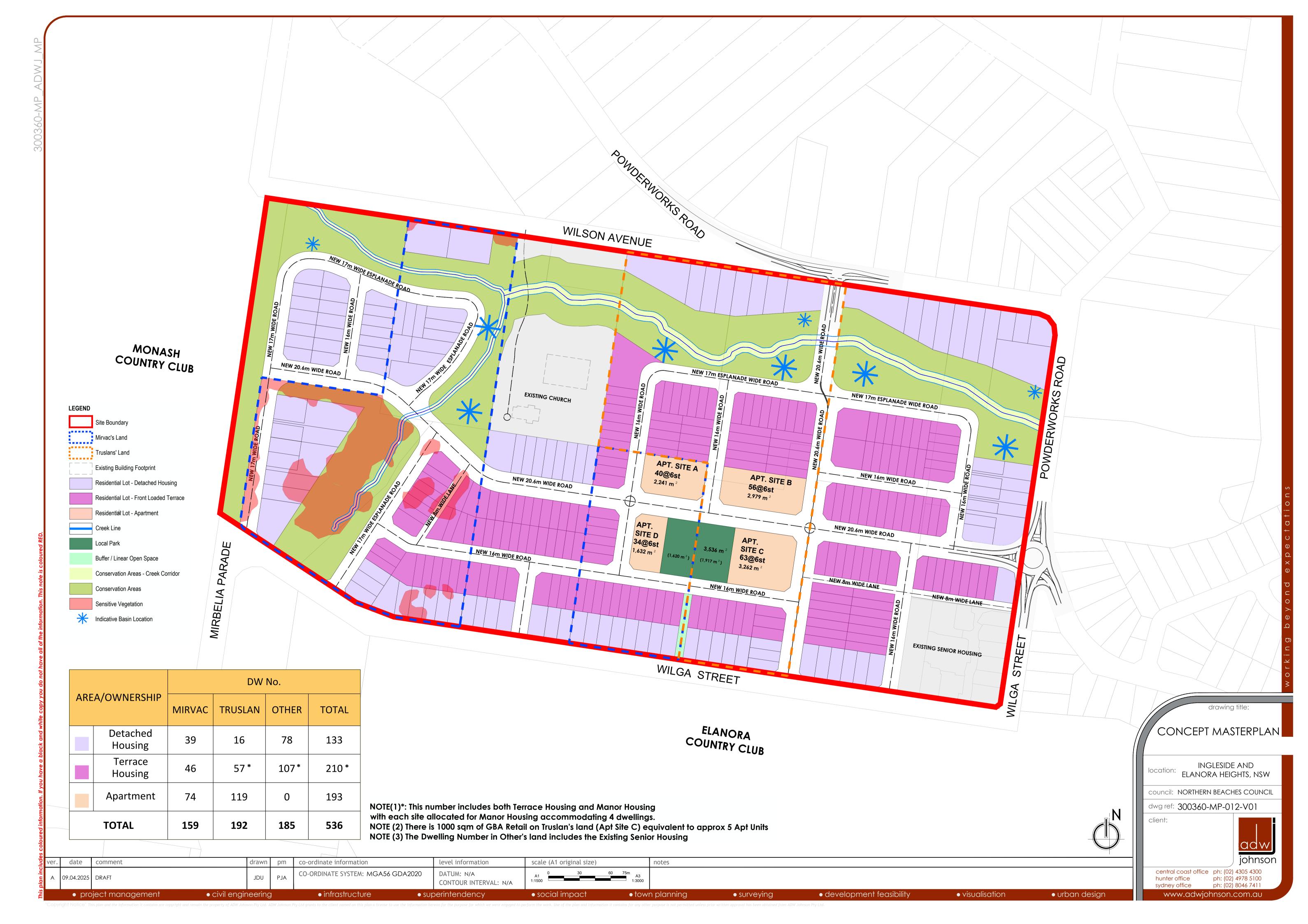
The overall background level for each day, evening and night period

for the **entire length** of noise monitoring.

Weighted sound reduction

index [R_w]

A single figure representation of the air-borne sound insulation of a partition based upon the R values for each frequency measured in a


laboratory environment.

^{*}Definitions of a number of terms have been adapted from Australian Standard AS1633:1985 "Acoustics – Glossary of terms and related symbols", the EPA's Noise Policy for Industry and Road Noise Policy.

Appendix B

Wilga Wilson Precinct Concept Masterplan Layout

Appendix B Wilga Wilson Precinct Concept Masterplan Layout

Appendix C

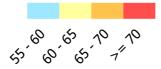
Road Traffic Noise
Contours and Mitigation
Categories

Appendix C Road Traffic Noise Contours and Mitigation Categories

Wilga Wilson Noise Contours - Day

Existing Precinct Buildings

Residential Detached Buildings


Residential Terrace Buildings

Apartment Buildings

Site Boundary

Project Layout

L_{Aeq, 15hr} Day Sound Pressure Level, dB(A)

AECOM

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 4.0 Australia licence @ Department of Customer Service 2020, (Digital Cadastral Database and/or Digital

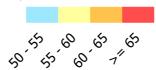
The terms of Creative Commons Attribution 4.0 Australia License are available from https://creativecommons.org/licenses/by/4.0/

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Customer Service make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with section 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

Wilga Wilson Noise Contours - Night

Existing Precinct Buildings

Residential Detached Buildings


Residential Terrace Buildings

Apartment Buildings

Site Boundary

Project Layout

L_{Aeq, 9hr} Night Sound Pressure Level, dB(A)

AECOM

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 4.0 Australia licence © Department of Customer Service 2020, (Digital Cadastral Database and/or Digital

The terms of Creative Commons Attribution 4.0 Australia License are available from https://creativecommons.org/licenses/by/4.0/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Customer Service make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with section 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Cilent based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

AECOM

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 4.0 Australia licence © Department of Customer Service 2020, (Digital Cadastral Database).

Topographic Database).

The terms of Creative Commons Attribution 4.0 Australia License are available from https://creativecommons.org/licenses/by/4.0/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Customer Service make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with section 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

AECOM

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 4.0 Australia licence © Department of Customer Service 2020, (Digital Cadastral Database and/or Digital Tooographic Database).

The terms of Creative Commons Attribution 4.0 Australia License are available from https://creativecommons.org/licenses/by/4.0/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Customer Service make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with section 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

AECOM

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 4.0 Australia licence © Department of Customer Service 2020, (Digital Cadastral Database and/or Digital Topographic Databases).

The terms of Creative Commons Attribution 4.0 Australia License are available from https://creativecommons.org/licenses/by/4.0/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Customer Service make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with section 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

AECOM

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 4.0 Australia licence © Department of Customer Service 2020, (Digital Cadastral Database and/or Digital

The terms of Creative Commons Attribution 4.0 Australia License are available from https://creativecommons.org/licenses/by/4.0/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Customer Service make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with section 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.