

Geotechnical Assessment

Project: Alterations & Additions
115 Narrabeen Park Parade, Mona Vale NSW

Prepared for: Jocelyn Goyen 19 Mullens Street Balmain, NSW 2041 **Ref:** AG 21075 23 March 2022

Geotechnical Assessment

For Alterations & Additions at

115 Narrabeen Park Parade, Mona Vale

Document Status			Approved for Issue	
Version	Author	Reviewer	Signature Date	
2	Ben Morgan	Ben Morgan MAIG RPGeo	F	22.03.2022
Document Distribution				
Version	Copies	То	Date	
2	1	PDF	Jocelyn Goyen	22.03.2022
2	1	PDF	ArchieNovus Architecture Design & Planning	22.03.2022

Limitations

This report has been prepared for Jocelyn Goyen, c/ ArchieNovus Architecture Design & Planning in accordance with Ascent Geotechnical Consulting's ('Ascent') Fee Proposal dated 9 March 2021.

The report is provided for the exclusive use of the property owners, ArchieNovus Architecture Design & Planning and their nominated agents for the specific development and purpose as described in the report. This report must not be used for purposes other than those outlined in the report or applied to any other projects.

The information contained within this report is considered accurate at the time of issue with regard to the current conditions on site as identified by Ascent and the documentation provided by others.

The report should be read in its entirety and should not be separated from its attachments or supporting notes. It should not have sections removed or included in other documents without the express approval of Ascent.

Contents

1	Overv	iew	3
	1.1	Backgroun	d3
	1.2	Proposed [Development3
	1.3	Relevant In	struments3
2	Site D	escription	4
	2.1	Summary .	4
	2.2	Geology ar	nd Geological Interpretation5
	2.3	Fieldwork.	5
3	Geote	chnical Asses	ssment6
	3.1	Site Classif	ication6
	3.2	Groundwa	ter 6
	3.3	Surface Wa	nter
	3.4	Slope Insta	bility
	3.5	Coastal Pro	ocesses
	3.6	Geotechnic	cal Hazards and Risk Analysis
	3.7	Recommer	ndations8
4	Refere	ences	
5	Apper	ndices	
	Apper	ndix A:	General notes
			CSIRO Publishing, 2012. 'Foundation Maintenance and Footing Performance: A Homeowners Guide', Sheet BTF-18.
			Australian GeoGuide LR8, 2007. 'Examples of Good/Bad Hillside Construction Practice'.
			Australian Geomechanics, 2007. 'Practice Note Guidelines for Landslide Management', Appendix C: Qualitative Terminology.
	Apper	ndix B:	Site Plan/Ground Test Locations & Geological Cross Section
	Apper	ndix C:	Engineering logs
	Appei	ndix D:	Northern Beaches Council – Pittwater Geotechnical Forms 1 & 1A
	Appei	ndix E:	Coastal Engineers Report – Horton Coastal Engineering Pty Ltd

1 Overview

1.1 Background

This report presents the findings of a geotechnical assessment carried out at 115 Narrabeen Park Parade, Mona Vale (the 'Site'), by Ascent Geotechnical Consulting. This assessment has been prepared to meet Northern Beaches Council lodgement requirements for Development Application (DA), as well as informing detailed structural design and construction methodology.

1.2 Proposed Development

Details of the development are outlined in a series of architectural drawings prepared by ArchieNovus Architecture Design & Planning, drawing numbers A-201—A-204, A310—A-312, A-410, revision 01, dated 12 August 2021.

The works comprise the following:

- Partial demolition of existing residence and landscaping elements
- Construction of new internal passenger lift
- Construction of new lower ground floor outdoor area
- Various internal modifications, including modification to ground floor balcony
- Various landscaping detail.

The proposed development will take place on Lot 8 in DP 16692, being 115 Narrabeen Park Parade, Mona Vale.

1.3 Relevant Instruments

This geotechnical assessment has been prepared in accordance with the following relevant guidelines and standards:

- Northern Beaches Council Pittwater Local Environment Plan (LEP) 2016 and Pittwater Development Control Plan (DCP) 2016
- Appendix 5 (to Pittwater P21) Geotechnical Risk Management Policy for Pittwater 2009.
- Australian Geomechanics Society's 'Landslide Risk Management Guidelines' (AGS 2007)
- Australian Standard 1726–2017 Geotechnical Site Investigations
- Australian Standard 2870–2011 Residential Slabs and Footings
- Australian Standard 1289.6.3.2–1997 Methods of Testing Soils for Engineering Purposes
- Australian Standard 3798–2007 Guidelines on Earthworks for Commercial and Residential Developments.

2 Site Description

2.1 Summary

A summary of site conditions identified at the time of our assessment is provided in Table 1.

Table 1. Summary of site conditions

Parameter	Description
Site visit	Ben Morgan, Ascent Geotechnical – 24/3/2021
Site address	115 Narrabeen Park Parade, Mona Vale – Lot 8 in DP 16692
Site area m² (approx.)	885.20 m ² (by Title) 890.2 m ² (by Calc.)
Existing development	Two level rendered brick residence with metal roof.
Slope aspect	South-east
Average gradient	~20 degrees
Vegetation	Small to medium sized shrubs and trees, lower south-eastern portion of the block densely overgrown with weeks and shrubs.
Retaining structures	Masonry walls. Sandstone block retaining walls supporting landscaped terraces across lower south-eastern portion of the block. No evidence of significant movement or deterioration.
Neighbouring environment	Residentially developed to the south-west and north-east. Narrabeen Park Parade to the north-west. Coastal escarpment and Warriewood Beach to the south-east.

Image 1. Site location – 115 Narrabeen Park Parade, Mona Vale (© SIX Maps NSW Gov)

2.2 Geology and Geological Interpretation

The Sydney 1:100,000 Geological Sheet 9130 (NSW Dept. Mineral Resources, 1983) indicates that the site is underlain by the Newport Formation of the upper Narrabeen Group (Rnn). The Newport Formation geology is comprised of interbedded laminite, shale and quartz, to lithic-quartz sandstones.

The soil profile consists of bioturbated organic sandy/silty topsoil and shallow uncontrolled fill (O & A Horizons) overlying silty clay (B Horizon) and weathered bedrock (C Horizon). Based on our observations and the results of testing onsite, we would expect competent weathered bedrock to be found within 1800-2500mm from current surface levels across the site.

Note: The local geology is comprised predominantly of sandstones and shales. The sandstone and shale bedrock are often found in benched terraces, subsequently ground conditions on site may alter significantly across short distances. This variability should be anticipated and accounted for in the design and construction of any new foundations.

2.3 Fieldwork

A site investigation was undertaken on the 24 March 2021, which included a geotechnically focused visual assessment of the property and its surrounds, geotechnical mapping, photographic record and limited subsurface investigation.

Three (3) Dynamic Cone Penetrometer (DCP) tests were carried out to determine the relative density of the subgrade and the depth to weathered rock (if encountered). These tests were conducted to the

Australian Standard for ground testing: AS 1289.6.3.2–1997. Possible locations of testing were constrained by existing structures, sandstone floaters, hard surfaces and the presence of utilities. The location of these tests is shown on the site plan provided and summary of the test results is presented below in Table 2, with full details in the engineering logs presented in Appendix C.

Table 2. Summary DCP test results

Test	DCP 1	DCP 2	DCP 3
Summary	Practical refusal @ 1.65m in weathered bedrock. Red/orange dust on dry tip.	Practical refusal @ 2.05m in weathered bedrock. Red/orange dust on dry tip.	Practical refusal @ 1.95m in weathered bedrock. Red/orange dust on dry tip.

Hand Auger Borehole Testing

One Hand Auger borehole (BH01) test was drilled at the approximate location shown on the site plan to visually identify the subsurface material. An Engineering log of the hand auger borehole is presented in Appendix C.

Note: The equipment chosen to undertake ground investigations provides the most cost-effective method for understanding the subsurface conditions. Our interpretation of the subsurface conditions is limited to the results of testing undertaken and the known geology in the area. While every care is taken to accurately identify the subsurface conditions on site, variation between the interpreted model presented herein and the actual conditions on site may occur. Should actual ground conditions vary from those anticipated, we would recommend the geotechnical engineer be informed as soon as possible to advise if modifications to our recommendations are required.

3 Geotechnical Assessment

3.1 Site Classification

Due to the characteristics of the soil profile on site, the site is classified as **"S"** in accordance with AS 2870:2011.

3.2 Groundwater

Normal groundwater seepage is expected to move downslope through the soil profile along the interface with underling bedrock or any impervious horizons in the profile such as clays.

Due to the position of the block relative to the slope and the underlying geology, no significant standing water table is expected to influence the site.

3.3 Surface Water

Overland or surface flows entering the site from the adjoining areas were not identified at the time of our inspection; however, normal overland runoff could enter the site from adjacent areas during heavy or extended rainfall.

3.4 Slope Instability

A landslide hazard assessment of the existing slope has been undertaken in accordance with Australian Geomechanics Society's 'Landslide Risk Management', published March 2007.

- No evidence of significant soil creep, tension cracks or landslip instability were identified across the site or on adjacent properties, as viewed from the subject site at the time of our inspection.
- The coastal escarpment was assessed visually from the beach below, the exposed cliff is comprised of sub-horizontally bedded sedimentary rocks (shales/siltstones and sandstones), and is free of significant undercutting, jointing or other geological defects. The base of the cliff is set back from the active wave impact zone. The cliff directly seaward of the subject site will be affected by both chemical and mechanical weathering, with an approximate rate of regression of 5mm per year (this rate considers projected sea level rise). Based on the geology and geomorphology of the cliff, the above-mentioned regression rate, the effects of chemical and mechanical weathering leading to coastal regression, nor coastal inundation are considered to pose no significant risk to the subject site when applied to a design life of 100 years.
- The property is classified as **Geotechnical Hazard H1** with reference to Northern Beaches Council PLEP (**Image 2**).

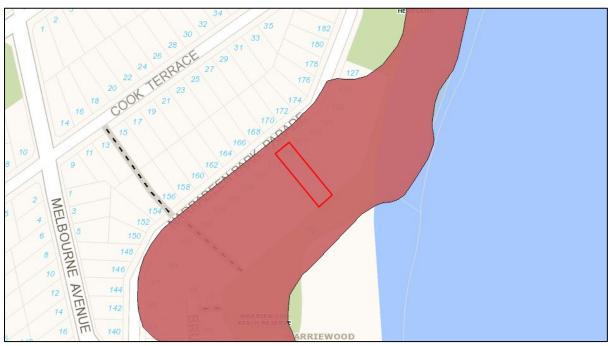


Image 2. PLEP Landslip Risk Map
– 115 Narrabeen Park Parade, Mona Vale (© NBC Maps)

3.5 Coastal Processes

The seaward property boundary is at 23.2m AHD; the base of the cliff is at 4.4m AHD. The proposed works are located above 31.0m AHD. Coastal inundation is not considered to be a significant risk (IrJ0546, 22 March 2022). The lower portion of the inclined lift below 8.0m AHD may be impacted by wave runup in extreme storm events.

With reference to section 5.2 of the Horton Coastal Engineering report (IrJ0546, 22 March 2022), the cliff directly seaward of the subject site will be affected by both chemical and mechanical weathering, with an approximate combined rate of regression of 7–12mm per year (this rate considers projected sea level rise).

Based on the geology and geomorphology of the cliff, the above-mentioned regression rate and information provided in the Horton Coastal engineering report, the effects of chemical and mechanical weathering leading to coastal regression nor coastal inundation are considered to pose a significant risk to the subject site when applied to a design life of 100 years.

3.6 Geotechnical Hazards and Risk Analysis

The slope across the subject site has an average gradient of ~20 degrees. The soil profile is interpreted to be comprised of shallow uncontrolled fill, with silty soil and silty clay overlying weathered bedrock at depths anticipated to be 1500mm to 2500mm across the area of proposed works.

The likelihood of the slope failing is assessed as 'UNLIKELY', the consequences of such a failure are assessed as 'MINOR'. The risk to property is 'LOW'. The existing conditions and proposed development are considered to constitute an 'ACCEPTABLE' risk to life and a 'LOW' risk to property provided that the recommendations outlined in Section 3.7 are adhered to.

3.7 Recommendations

The proposed development is considered to be suitable for the site. No significant geotechnical hazards will result from the completion of the proposed development provided the recommendations presented in Table 3 are adhered to.

Table 3. Geotechnical Recommendations

Recommendation	Description
Soil Excavation	Soil excavation will be required to establish pad levels and new footings across the site. It is anticipated that these excavations will encounter shallow uncontrolled fill and sandy topsoil, clayey sand and weathered bedrock. The excavation of soil, clay and extremely weathered rock should be possible with the use of bucket excavators and rippers, or for piered footings, traditional auger attachments.

Recommendation	Description
	For shallow excavations (<1.0m), provided the residual soil is battered back to a minimum of 45 degrees, they should remain stable without support for a short period until permanent support is in place.
	If permanent batters are proposed, the unsupported batter must not be steeper in gradient than 35 degrees and should be supported by geotextile fabric pinned to the slope and planted with soil binding vegetation.
Rock Excavation	All excavation recommendations as outlined below should be read in conjunction with Safe Work Australia's <i>Code of Practice: Excavation Work</i> , published October 2018.
	While significant hard rock excavation is not anticipated, it is essential that any excavation through rock that cannot be readily achieved with a bucket excavator or ripper should be carried out initially using a rock saw to minimise the vibration impact and disturbance on the adjoining properties, existing structures and any previously installed supporting systems. Any rock breaking must be carried out only after the rock has been sawed, and in short bursts (2–5 seconds) to prevent the vibration amplifying. The break in the rock from the saw must be between the rock to be broken and the closest adjoining structure. All excavated material is to be removed from the site in accordance with current Office of Environment and Heritage (OEH) regulations.
Vibrations	Australian Standard AS2670.1–2001 'Evaluation of human exposure to whole-body vibration General requirements. Part 1: General requirements suggests a daytime limit of 5mm/s component PPV for human comfort is acceptable. We would suggest that allowable vibration limits be set at 5mm/s PPV and monitoring devices installed at the footing level of any adjacent structures. It is expected that rock hammers with an approximate weight of 300–500kg will be adequate to operate within these tolerances. It may be necessary to move to smaller rock hammers or to rotary grinders or rock saws if vibrations limits cannot be met. (Manufactures of the plant should be contacted for information regarding peak vibration output.) The propagation of vibrations can be mitigated by pulsing the use of rock hammers, i.e. short bursts, utilising line sawing along boundaries.
Excavation Support	Temporary batter slopes of 1.0V:1.0H are recommended for excavations in soil and clay up to 1.0m. Due to the gradient and composition of the site,

Recommendation	Description		
	excavations >1.0m are to be supported by temporary or permanent supporting systems prior to or immediately after excavation.		
	If required, vertical or sub-vertical excavation through weathered bedrock should stand unsupported until permanent supporting structures are installed. Careful inspection of cut faces by Ascent should be carried out to ensure no significant geological defects such as clay seems, joints or fractures are present in the rock.		
Retaining Structures	Bulk unit weights of 20kN/m³ and 22kN/m³ should be adopted for the retained soil and weathered rock, respectively.		
	Any retaining structures to be constructed as part of the site works are to be backfilled with suitable free-draining materials wrapped in a non-woven geotextile fabric (i.e. Bidim A34 or similar) to prevent the clogging of the drainage with fine-grained sediment.		
Footings	All pad, strip or piered footings should be founded on and socketed a minimum of 500mm into the in situ underlying weathered bedrock. For fully cleaned footings, the allowable bearing pressure is 600 kPa .		
	Higher allowable bearing capacities ($^{\sim}800-1000$ kPa) may be achievable subject to inspection and certification by Ascent.		
	It is essential that the foundation materials of all footing excavations be inspected and approved before steel reinforcement and concrete is placed.		
Sediment and Erosion Control	Appropriate design and construction methods shall be required during site works to minimise erosion and provide sediment control. In particular, any stockpiled soil will require erosion control measures, such as siltation fencing and barriers, to be designed by others.		
Fills	Any fill that may be required is to comprise local sand, clay and weathered rock. Existing organic topsoil is to be cleared in preparation for the introduction of fill.		
	Any new fill material is to be placed in layers not more than 250 mm thick and compacted to not less than 95% of Standard Optimum Dry Density at plus or minus 2% of Standard Optimum Moisture Content.		
	All new fill placement is to be carried out in accordance with AS 3798–2007 'Guidelines on earthworks for commercial and residential developments.'		

Recommendation	Description		
Stormwater Disposal	All stormwater collected from hard surfaces is to be collected and piped to the council stormwater network through any storage tanks or on-site detention that may be required by the regulating authorities, and in accordance with all relevant Australian Standards and the detailed stormwater management plan by others.		
Inspections	It is essential that the foundation materials of all footing excavations be visually assessed and approved by Ascent before steel reinforcement and concrete is placed. Failure to engage Ascent for the required hold point/excavation/foundation material inspections may negate our ability to provide final geotechnical sign off or certification.		
Conditions Relating to Design and Construction Monitoring	To comply with Northern Beaches Council conditions and enable the completion of Forms 2B and 3, as required by Council's Geotechnical Risk Management Policy, it will be necessary at the following stages for Ascent to: • review the geotechnical content of all structural designs prior to the issue of Construction Certificate – Form 2B • complete the abovementioned excavation hold point and foundation material inspections during construction to ensure compliance to design with respect to stability and geotechnical design parameters • at Occupation Certificate stage (project completion), Ascent must have inspected and certified excavations and foundation materials. A final site inspection will be required at this stage – Form 3.		

Should you have any queries regarding this report, please do not hesitate to contact the author of this report, undersigned.

For and on behalf of AscentGeo Consulting Geotechnical Engineers,

Ben Morgan BSc, MAIG RPGeo General Manager | Engineering Geologist

4 References

Australian Geomechanics Society (March 2007), Landslide Risk Management, Australian Geomechanics 42(1).

Australian Standard 1726–2017 Geotechnical Site Investigations.

Australian Standard 2870–2011 Residential Slabs and Footings.

Australian Standard 1289.6.3.2–1997 Methods of Testing Soils for Engineering Purposes.

Australian Standard AS2670.1–2001 Evaluation of human exposure to whole-body vibration. Part 1: General requirements.

Australian Standard 3798–2007 Guidelines for Earthworks for Commercial and Residential Developments.

GHD Geotechnics, 2007. 'Geotechnical Hazard Mapping of the Pittwater LGA-2007'. Pittwater Council's Geotechnical Risk Management Map P21CDP-BC-MDCP083.

Herbert C., 1983, Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney.

NSW Department of Finance, Services and Innovation, Spatial Information Viewer, maps.six.nsw.gov.au.

Safe Work Australia (October 2018). Code of Practice: Excavation Work.

Appendix A

Information Sheets

General Notes About This Report

INTRODUCTION

These notes have been prepared by Ascent Geotechnical Consulting Pty Ltd (Ascent) to help our Clients interpret and understand the limitations of this report. Not all sections below are necessarily relevant to all reports.

SCOPE OF SERVICES

This report has been prepared in accordance with the scope of services set out in Ascent's proposal under Ascent's Terms and Conditions, or as otherwise agreed with the Client. The scope of work may have been limited by a range of factors including time, budget, access and/or site constraints.

RELIANCE ON INFORMATION PROVIDED

In preparing the report, Ascent has necessarily relied upon information provided by the Client and/or their Agents. Such data may include surveys, analyses, designs, maps and design plans. Ascent has not verified the accuracy or completeness of the data except as stated in this report.

GEOTECHNICAL AND ENVIRONMENTAL REPORTING

Geotechnical and environmental reporting relies on the interpretation of factual information, based on judgment and opinion, and is far less exact than other engineering or design disciplines.

Geotechnical and environmental reports are prepared for a specific purpose, development, and site, as described in the report, and may not contain sufficient information for other purposes, developments, or sites (including adjacent sites), other than that described in the report.

SUBSURFACE CONDITIONS

Subsurface conditions can change with time and can vary between test locations. For example, the actual interface between the materials may be far more gradual or abrupt than indicated.

Therefore, actual conditions in areas not sampled may differ from those predicted, since no subsurface investigation, no matter how comprehensive, can reveal all subsurface details and anomalies.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations can also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. Ascent should be kept informed of any such events, and should be retained to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

GROUNDWATER

Groundwater levels indicated on borehole and test pit logs are recorded at specific times. Depending on ground permeability, measured levels may or may not reflect actual levels if measured over a longer time period. Also, groundwater levels and seepage inflows may fluctuate with seasonal and environmental variations and construction activities.

INTERPRETATION OF DATA

Data obtained from nominated discrete locations, subsequent laboratory testing and empirical or external sources are interpreted by trained professionals in order to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions in accordance with any relevant industry standards, guidelines or procedures.

SOIL AND ROCK DESCRIPTIONS

Soil and rock descriptions are based on AS 1726 – 1993, using visual and tactile assessment, except at discrete locations where field and / or laboratory tests have been carried out. Refer to the accompanying soil and rock terms sheet for further information.

COPYRIGHT AND REPRODUCTION

The contents of this document are and remain the intellectual property of Ascent. This document should only be used for the purpose for which it was commissioned and should not be used for other projects, or by a third party without written permission from Ascent

This report shall not be reproduced either totally or in part without the permission of Ascent. Where information from this report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimise the likelihood of misinterpretation.

FURTHER ADVICE

Ascent would be pleased to further discuss how any of the above issues could affect a specific project. We would also be pleased to provide further advice or assistance including:

Assessment of suitability of designs and construction
techniques;
Contract documentation and specification;

Construction advice (foundation assessments,

excavation support).

Abbreviations, Notes & Symbols

SUBSURFACE INVESTIGATION

		o	

METHOD						
Borehole	e Logs	Excavation Logs				
AS#	Auger screwing (#-bit)	ВН	Backhoe/excavator bucket			
AD#	Auger drilling (#-bit)	NE	Natural exposure			
В	Blank bit	HE	Hand excavation			
V	V-bit	Χ	Existing excavation			
T	TC-bit					
HA	Hand auger	Cored Borehole Logs				
R	Roller/tricone	NMLC	NMLC core drilling			
W	Washbore	NQ/HQ	Wireline core drilling			
AH	Air hammer					
AT	Air track					
LB	Light bore push tube					
MC	Macro core push tube					

SUPPORT

DT

Borehole Logs		Excava	ation Logs
С	Casing	S	Shoring
M	Mud	В	Benched

SAMPLING

В	Bulk sample
D	Disturbed sample

U# Thin-walled tube sample (#mmdiameter)

ES

sample

EW Environmental water sample

Dual core push tube

FIELD TESTING

PP	Pocket penetrometer (kPa)
DCP	Dynamic cone penetrometer
PSP	Perth sand penetrometer
SPT	Standard penetration test
PBT	Plate bearing test

Vane shear strength peak/residual (kPa) and vane size (mm)

N* SPT (blows per 300mm) Nc SPT with solid cone Refusal

*denotes sample taken

BOUNDARIES

 Known
 Probable
 Possible

SOIL

MOISTURE CONDITION

D	Dry
M	Moist
W	Wet
Wp	Plastic Limit
WI	Liquid Limit
MC	Moisture Content

CONSISTENCY **DENSITY INDEX** Very Loose Very Soft VLs Soft Loose F Medium Dense Firm MD St Stiff D Dense VSt Very Stiff VD Very Dense

Hard Friable

USCS SYMBOLS

GW	Well graded gravels and gravel-sand mixtures, little or no fines
GP	Poorly graded gravels and gravel-sand mixtures, little or no

Silty gravels, gravel-sand-silt mixtures GM GC Clayey gravels, gravel-sand-clay mixtures

SW	Well graded sands and gravelly sands, little orno fines
SP	Poorly graded sands and gravelly sands, little or no fines

SM Silty sand, sand-silt mixtures SC Clayey sand, sand-clay mixtures

ML Inorganic silts of low plasticity, very fine sands, rock flour, silty

or clayey fine sands

CI Inorganic clays of low to medium plasticity, gravelly clays,

OL

organic clays of low of mediam plasticity, gravely sandy clays, silty clays
Organic silts and organic silty clays of low plasticity
Inorganic clays of high plasticity
Organic clays of medium to high plasticity
Deat much and other highly organics pile МН СН ОН

Peat muck and other highly organicsoils

ROCK

WEATHE	WEATHERING		GTH
RS	Residual Soil	EL	Extremely Low
XW	Extremely Weathered	VL	Very Low
HW	Highly Weathered	L	Low
MW	Moderately Weathered	M	Medium
DW*	Distinctly Weathered	Н	High
SW	Slightly Weathered	VH	Very High
FR	Fresh	EH	Extremely High

*covers both HW & MW

ROCK QUALITY DESIGNATION (%)

= sum of intact core pieces > 100mm x 100 total length of section being evaluated

CORE RECOVERY (%)

= core recovered x 100

core IIft

NATURAL FRACTURES

T	ν	b	е	

JŤ. **Joint** BP Bedding plane SM Seam FΖ Fractured zone

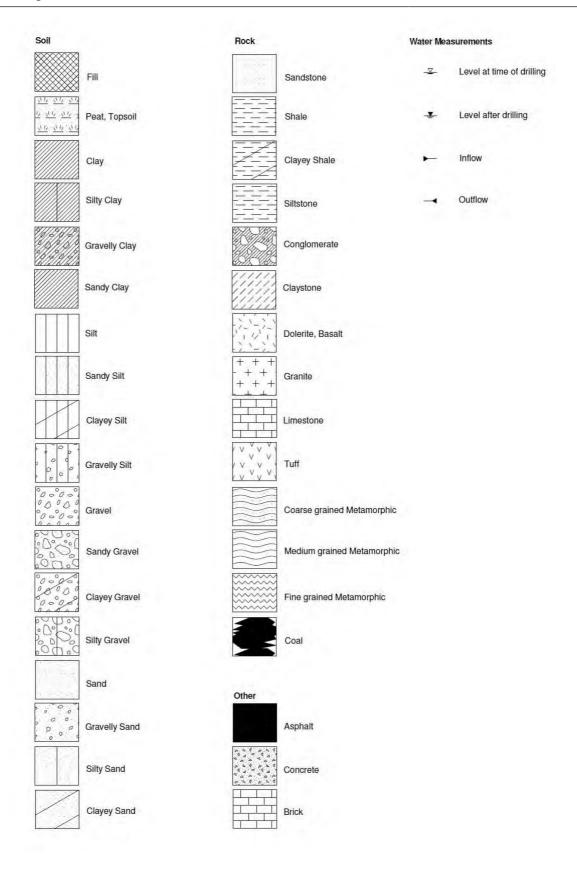
S7 Shear zone VN

Infill or Coating

IIIIIIII OI	Coating
Cn	Clean
St	Stained
Vn	Veneer
Co	Coating
CI	Clay
Ca	Calcite
Fe	Iron oxide
Mi	Micaceous
Qz	Quartz

Shape

pl	Planar
cu	Curved
un	Undulose
st	Stepped
ir	Irregular


Roughness

pol	Polished
slk	Slickensided
smo	Smooth
rou	Rough

Soil & Rock Terms

SOIL				STRENGTH			
MOISTURE CON				Term	Is50 (MPa)	Term	Is50 (MPa)
Term	Description			Extremely Low	< 0.03	High	1 – 3
Dry		dry. Cohesive and		Very Low Low	0.03 – 0.1	Very High	3 – 10
	hard, friable or powdery. Uncemented granular soils run freely through the hand.				0.1 – 0.3 0.3 – 1	Extremely High	> 10
Moist		larkened in colour.		WEATHERING			
Wet	As for moist, but handled.	with free water for	ming on hands when	Term Residual Soil	Description Soil developed	on extremely weathe	red rock; the mass
	s, moisture content		bed in relation to an, > greater than, <		structure and s	ubstance fabric are n	o longer evident
less than, << muc	ch less than].			Extremely Weathered		red to such an extent t either disintegrates	
CONSISTENCY Term	c (kPa)	Term	c (kPa)		remoulded, in v visible	vater. Fabric of origin	al rock is still
Very Soft	u < 12	Very Stiff	ս 100 200	Highly	Rock strenath	usually highly change	d by weathering:
Soft	12 - 25	Hard	> 200	Weathered		ghly discoloured	,
Firm	25 - 50	Friable	-	Moderately	Rock strength	usually moderately ch	anged by
Stiff	50 - 100			Weathered	weathering; roo	k may be moderately	discoloured
DENSITY INDEX	I _D (%)	Term	I _D (%)	Distinctly Weathered	See 'Highly We	athered' or 'Moderate	ely Weathered'
Very Loose Loose	< 15 15 – 35	Dense Very Dense	65 – 8 > 85	Slightly Weathered		discoloured but show gth from fresh rock	vs little or no
Medium Dense	35 – 65			Fresh	Rock shows no	signs of decomposit	ion or staining
PARTICLE SIZE				NATURAL FRAC	CTURES		
Name	Subdivision	Size (mm)		Type	Description		
Boulders Cobbles		> 200 63 - 200		Joint	A discontinuity	or crack across whic ength. May be open	
Gravel	coarse	20 - 63		Redding plane		layers of mineral gra	
	medium	6 - 20		Bedding plane	or composition	layers of fillileral gra	iiiis oi siiiiidi sizes
0 1	fine	2.36 - 6		Seam	•	osited soil (infill), extr	emely weathered
Sand	coarse medium	0.6 -2.36 0.2 - 06		Coam	insitu rock (XW), or disoriented usua e host rock (crushed)	illy angular
Silt & Clay	fine	0.075 0.2 < 0.075		Shear zone	material interse	nly parallel planar bou	ed (generally <
MINOR COMPO	NENTS				50mm) joints a	nd /or microscopic fra	cture (cleavage)
Term	Proportion by	fine grained			planes		
	Mass coarse grained			Vein	Intrusion of any mass. Usually i	shape dissimilar to t gneous	he adjoining rock
Trace	≤ 5%	≤ 15%					
Some	5 - 2%	15 - 30%		Shape	Description		
				Planar	Consistent orie	ntation	
SOIL ZONING				Curved	Gradual chang	e in orientation	
Layers	Continuous expo			Undulose	Wavy surface		
Lenses		yers of lenticular sh		Stepped	One or more w	ell defined steps	
Pockets	Irregular inclusio	ons of different mate	rial	Irregular	Many sharp ch	anges in orientation	
SOIL CEMENTIN Weakly	IG Easily broken up	b by hand		Infill or	Description		
Moderately		I to break up the so	il by hand	Coating Clean	No visible cost	ng or discolouring	
•	·			Stained		ng or discolouring ng but surfaces are d	iscoloured
SOIL STRUCTUR				Veneer		g of soil or mineral, to	
Massive		ny partings both ve ced at greater than			may be patchy	,	·
	disturbed approx	nd barely observab c. 30% consist of pe	le on pit face. When eds smaller than	Coating	described as se	≤ 1mm thick. Tickers eam	oli material
Weak	7()()mm	intinat in condint on	dsoil When	Roughness	Description		
	100mm		a son. Wileli	Polished	Shiny smooth s		
Weak	Peds are quite d		naller than 100mm		Grooved or stri	atad aurfaga wayally	
	Peds are quite d	consists of peds sn	naller than 100mm	Slickensided			•
	Peds are quite d		naller than 100mm	Smooth	Smooth to touc	h. Few or no surface	irregularities
Strong ROCK SEDIMENTARY	Peds are quite d disturbed >60%	consists of peds sn			Smooth to touc Many small sur		irregularities plitude generally <
Strong ROCK SEDIMENTARY Rock Type	Peds are quite d disturbed >60% ROCK TYPE DEFII Definition (more	consists of peds sn NITIONS e than 50% of rock of		Smooth Rough	Smooth to touc Many small sur 1mm). Feels lik	h. Few or no surface face irregularities (am e fine to coarse sand	irregularities politude generally < paper
Strong ROCK SEDIMENTARY I Rock Type Conglomerate	Peds are quite d disturbed >60% ROCK TYPE DEFII Definition (more gravel sized (consists of peds sn NITIONS e than 50% of rock or the same same same same same same same sam		Smooth Rough Note: soil and roc	Smooth to touc Many small sur 1mm). Feels lik	h. Few or no surface face irregularities (am e fine to coarse sand generally in accorda	irregularities politude generally < paper
Strong ROCK SEDIMENTARY Rock Type	Peds are quite d disturbed >60% ROCK TYPE DEFII Definition (more gravel sized (sand sized (0	consists of peds sn NITIONS e than 50% of rock of	consists of)	Smooth Rough Note: soil and roc	Smooth to touc Many small sur 1mm). Feels lik	h. Few or no surface face irregularities (am e fine to coarse sand generally in accorda	irregularities politude generally < paper
Strong ROCK SEDIMENTARY I Rock Type Conglomerate Sandstone	Peds are quite d disturbed >60% ROCK TYPE DEFII Definition (more gravel sized (sand sized (<0.1 silt sized (<0.1 clay, rock is n	NITIONS e than 50% of rock or 2mm) fragments .06 to 2mm) grains 06mm) particles, ro	consists of) ck is not laminated	Smooth Rough Note: soil and roc	Smooth to touc Many small sur 1mm). Feels lik	h. Few or no surface face irregularities (am e fine to coarse sand generally in accorda	irregularities politude generally < paper

Graphic Symbols Index

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
Α	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement from moisture changes
M	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
H	Highly reactive clay sites, which can experience high ground movement from moisture changes
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
P	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- · Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear

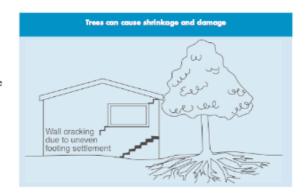
Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sunk heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).


Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of comice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical—i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred. The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken nubble is used as fill. Water that runs along these trenches can be responsible for scrious crosion, interstrata scepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

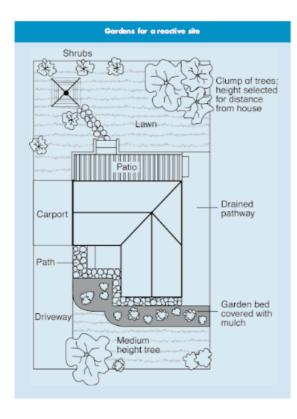
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most senious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly	⊲ mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5-15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

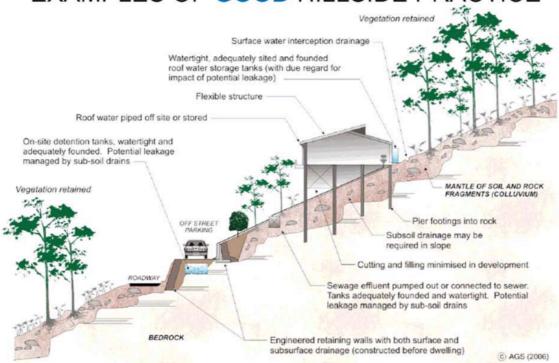
Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

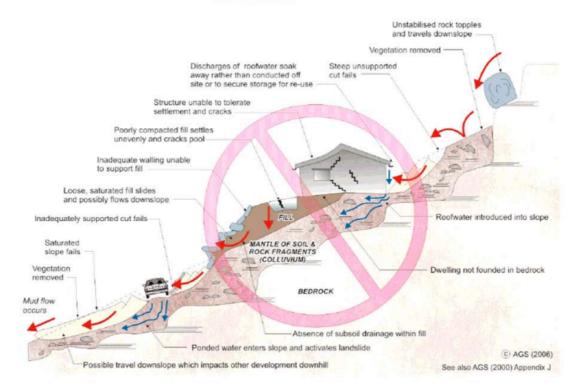
The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.


Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia


Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited

EXAMPLES OF GOOD HILLSIDE PRACTICE

EXAMPLES OF POOR HILLSIDE PRACTICE

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: LANDSLIDE RISK ASSESSMENT

QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate A	Approximate Annual Probability	Implied Indicative Landslide	e Landslide	- ;;		1
Indicative Value	Notional Boundary	Recurrence Interval	Interval	Description	Descriptor	revel
10.1	5v10 ⁻²	10 years		The event is expected to occur over the design life.	ALMOST CERTAIN	A
10-2	0A10	100 years	20 years	The event will probably occur under adverse conditions over the design life.	LIKELY	В
10^{-3}	OIXC	1000 years	2000 years	The event could occur under adverse conditions over the design life.	POSSIBLE	C
10-4	5x10"	10,000 years	Superv 000 0C	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10-5	5x10°	100,000 years	zo,ooo years	The event is conceivable but only under exceptional circumstances over the design life.	RARE	Ξ
10^{-6}	OIXC	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	F

The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa. Ξ Note:

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate	Approximate Cost of Damage]
Indicative Value	Notional Boundary	Description	Describior	revel
200%	70001	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	1
%09	0,001	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.	MAJOR	2
20%	%0\ \	Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3
5%	10%	Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4
0.5%		Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5

The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the 8 Notes:

The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property. 3

(4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: - QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (CONTINUED)

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

LIKELIHOOD	000	CONSEQUI	CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)	RTY (With Indicative	ve Approximate Cost	of Damage)
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10.1	HA	ΑH	ΗΛ	Н	M or L (5)
B - LIKELY	10-2	НΛ	ΗΛ	Н	M	Т
C - POSSIBLE	10 ⁻³	НА	Н	M	M	ΛΓ
D - UNLIKELY	10-4	н	M	Т	Г	ΛΓ
E - RARE	10-5	М	L	Г	VL	ΛΓ
F - BARELY CREDIBLE	10-6	Т	ΛΓ	ΛΓ	ΛΓ	ΛΓ

ଡିଡ Notes:

For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current

RISK LEVEL IMPLICATIONS

	Risk Level	Example Implications (7)
		Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment
ΗΛ	VERY HIGH RISK	options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the
		property.
	Win Hom	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce
II.	HIGH KISK	risk to Low. Work would cost a substantial sum in relation to the value of the property.
		May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and
M	MODERATE RISK	implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be
		implemented as soon as practicable.
-	ASIG MOT	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is
1	LOW MISK	required.
171	ABIG INO I AGGIA	Acceptable. Manage by normal slope maintenance procedures.
A.	VERT LOW KISK	

The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide. Note: (7)

Appendix B

Site Plan | Testing Locations

<u>LEGEND</u>

DCP LOCATIONS

BOREHOLE LOCATION

SITE PLAN/GROUND TEST LOCATIONS

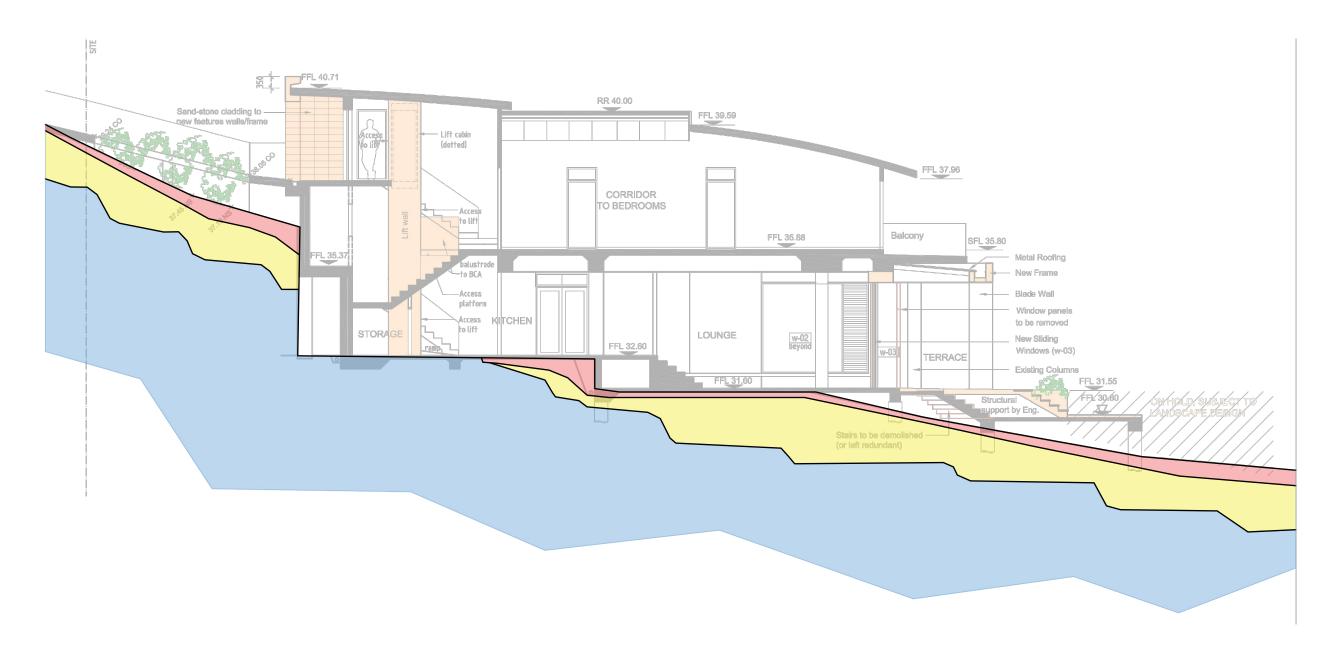
SCALE NTS

Α	16.08.21	PRELIMINARY ISSUE	VT	ВМ
REV	DATE	REVISION DESCRIPTION	REV BY	CHCKD

ABN: 71 621 428 402 www.ascentgeo.com.au

(02) 9913 3179 admin@ascentgeo.com.au

1457 Pittwater Road North Narrabeen NSW 2101


CLIENT: JOCELYN GOYEN

COPYRIGHT:
THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE
PROPERTY OF ASCENT GEOTECHNICAL CONSULTING,
COPYING OF THIS MATERIAL IN WHOLE OR IN PART WITHOUT
THE WRITTEN PERMISSION OF ASCENT GEOTECHNICAL
CONSULTING CONSTITUTES AN INFRINGEMENT OF COPYRIGHT
I AWS

SITE PLAN/GROUND TEST LOCATIONS AT 115 NARRABEEN PARK PARADE MONA VALE NSW

	DATE:	16/08/2021
S	SCALE:	AS SHOWN @ A3
	DRAWING TIT	SITE PLAN
	DRAWING NO	AG21075- S1

INTERPRETED SUBSURFACE SECTION ONLY. ACTUAL GROUND CONDITIONS MAY VARY.

<u>LEGEND</u>

SILTY TOPSOIL/UNCONTROLLED FILL

SILTY CLAY

NEWPORT FORMATION

INFERRED GEOLOGICAL SECTION

SCALE NTS

Α	16.08.21	PRELIMINARY ISSUE	VT	ВМ	
REV	DATE	REVISION DESCRIPTION	REV BY	CHCKD	

ABN: 71 621 428 402 www.ascentgeo.com.au

(02) 9913 3179 admin@ascentgeo.com.au

1457 Pittwater Road North Narrabeen NSW 2101

JOCELYN GOYEN

COPYRIGHT:
THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE
PROPERTY OF ASCENT GEOTECHNICAL CONSULTING,
COPYING OF THIS MATERIAL IN WHOLE OR IN PART WITHOUT
THE WRITTEN PERMISSION OF ASCENT GEOTECHNICAL
CONSULTING CONSTITUTES AN INFRINGEMENT OF COPYRIGHT
I AWS

INFERRED GEOLOGICAL SECTION AT 115 NARRABEEN PARK PARADE MONA VALE NSW

DATE:	16/08/2021
SCALE:	AS SHOWN @ A3
DRAWING TIT	SECTION
DRAWING NO:	AG21075- S2

Appendix C

Bore Hole Logs | DCP Testing Results

GEOTECHNICAL LOG - BORE HOLE

Client:	Jocelyn Go	yen	Job No: AG 21075				BOREHOLE NO.: BH01			
Project:		and Additions	Date:	24/03/2021	<u> </u>		1			
Location:	115 Narrab	een Park Parade	Operator:	BM		Sheet 1 of 1	N/I			
S W T A A A M T B P E L L R E E S	DEPTH (m)		DESCRIPTION OF DRILLED PRODUCT , grain size, plasticity, minor components, observations) Dark brown/grey. Fine to medium grained. Rootlets				M O - S T U R E			
	0 _	TOPSOIL . SILTY SAND. Dark brown/grey	. Fine to medium grain	ed. Rootlets	SM	LOOSE	D			
	0.15	SILTY CLAY. Firm to Very Stiff - increasing grey/orange with depth. Moderate plast	g down hole. Pale brov icity. Minor indurated	vn/ grey - trending sandstone gravel.	CL	F-VS	M			
NOTE: D - d WT -		nple U - undisturbed tube sample er table or free water explanation sheets for meaning of all des		netration Test (SPT)	Equip Hole	ractor: N/A oment: Hand Auger width (mm): e from Vertical (°):				

1457 Pittwater Road, North Narrabeen NSW 2101

Tel: (02) 9913 3179

Mail: Admin@ascentgeo.com.au

Dynamic Cone Penetration Test Report

Client: Jocelyn Goyen AG 21075 Job No: Project: **Alterations and Additions** 24/03/2021 Date:

Location: 115 Narrabeen Park Parade, Mona Vale **Operator:** BM

Test Procedure:	AS 1289.6.3	.2 – 1997						
			Test	Data				
Test No: DCP 1	Test No	: DCP 2	Test No	: DCP 3	Test	No:	Test	No:
Test Location:	Test Location:		Test Lo	cation:	Test Lo	cation:	Test Lo	cation:
Refer to Site Plan	Refer to S	Site Plan	Refer to S	Site Plan				
RL:	RL:		RI	_:	RI	_:	RI	L:
Soil Classification:	Soil Classification:		Soil Class	ification:	Soil Class	ification:	Soil Class	ification:
Α	Д	A A		١				
Depth (m) Blows	Depth (m)	Blows	Depth (m)	Blows	Depth (m)	Blows	Depth (m)	Blows
0.0 - 0.3 4	0.0 - 0.3	1 D	0.0 - 0.3	3				
0.3 - 0.6	0.3 - 0.6	3	0.3 - 0.6	2				
0.6 - 0.9 14			0.6 - 0.9	9				
0.9 - 1.2 22	0.9 - 1.2	15	0.9 - 1.2	12				
1.2 - 1.5 42	1.2 - 1.5	29	1.2 - 1.5	26				
1.5 - 1.8 25 Pr	1.5 - 1.8	39	1.5 - 1.8	37				
1.8 - 2.1	1.8 - 2.1	45 Pr	1.8 - 2.1	40 Pr				
2.1 - 2.4	2.1 - 2.4		2.1 - 2.4					
2.4 - 2.7	2.4 - 2.7		2.4 - 2.7					
2.7 - 3.0	2.7 - 3.0		2.7 - 3.0					
3.0 - 3.3	3.0 - 3.3		3.0 - 3.3					
3.3 - 3.6	3.3 - 3.6		3.3 - 3.6					
3.6 - 3.9	3.6 - 3.9		3.6 - 3.9					
3.9 - 4.2	3.9 - 4.2		3.9 - 4.2					
4.2 - 4.5	4.2 - 4.5		4.2 - 4.5					
4.5 - 4.8	4.5 - 4.8		4.5 - 4.8					
DCP 1: Practical	DCP 2: Practical		DCP 3: Practical					
refusal @ 1.65m in	refusal @ 2.05m in		refusal @ 1.95m in					
weathered bedrock.	weathered		weathered bedrock.					
Red/orange dust on	Red/orange	dust on	Red/orange	dust on				
dry tip.	dry tip.		dry tip.					
Remarks: Available tes		•	_	isting hard	We	ight:		kg
surfaces and possible	ouried servic	es . No gro	undwater		Dro	p:	510	mm

encountered. Rod Diameter: 16 mm

Pr = Practical Refusal -- still penetrating slowing into weathered bedrock (most likely shale/siltstone, or extremely weathered sandstone)

Appendix D

Geotechnical Forms 1 & 1A

Northern Beaches Council | Pittwater LEP

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER

FORM NO. 1 – To be submitted with Development Application

	Development Application for Jocelyn Goyen Name of Applicant							
	Address of site	115 Narra	abeen Park Parade, Mona Vale					
Declarat	tion made by geotechnical eng	ineer or engineerir	ng geologist or coastal engineer (where applicable) as part of a geotechnical report					
l,	KAREN ALLAN	on behalf of	AscentGeo Consulting Geotechnical Engineers					
	(insert name)	_	(Trading or Company Name)					
on this	the 23.03.2	022	certify that I am a geotechnical engineer or engineering geologist or coastal engineer					
			or Pittwater - 2009 and I am authorised by the above organisation/company to issue this documen					
ind to ce	ertify that the organisation/cor	npany has a curren	t professional indemnity policy of at least \$2 million.					
_	nark appropriate box	nical Bonart rafora	need below in accordance with the Australia Coomechanics Society's Landslide Birk Management					
	-	•	nced below in accordance with the Australia Geomechanics Society's Landslide Risk Management Management Policy for Pittwater - 2009					
\boxtimes		am willing to technically verify that the detailed Geotechnical Report referenced below has been prepared in accordance with the Australian Geomechanics Society's Landslide Risk Management Guidelines (AGS 2007) and the Geotechnical Risk Management Policy for Pittwater - 2009						
	Geotechnical Risk Managemer	nt Policy for Pittwate	opment in detail and have carried out a risk assessment in accordance with paragraph 6.0 of the err - 2009. I confirm the results of the risk assessment for the proposed development are in compliance om Pittwater - 2009 and further detailed geotechnical reporting is not required for the subject site.					
	Minor Development/Alteratio	lave examined the site and the proposed development/alteration in detail and am of the opinion that the Development Application only involves finor Development/Alterations that do not require a Detailed Geotechnical Risk Assessment and hence my report is in accordance with the leotechnical Risk Management Policy for Pittwater – 2009 requirements for Minor Development/Alterations.						
		lave examined the site and the proposed development/alteration is separate form and not affected by a Geotechnical Hazard and does not require a leotechnical report or Risk Assessment and hence my Report is in accordance with the Geotechnical Risk Management Policy for Pittwater – 2009 equirements						
	Provided the coastal process a	ovided the coastal process and coastal forces analysis for inclusion in the Geotechnical Report						
Seotechi	nical Report Details:							
	rt Title: Geotechnical Ass 21075)	sessment Repo	rt for Alterations & Additions at 115 Narrabeen Park Parade, Mona Vale					
Repo	rt Date: 23 March 2022							
Autho	or: Ben Morgan							
Autho	or's Company/Organisati	on: AscentGeo	Consulting Geotechnical Engineers					
Oocume	entation which relate to or are	relied upon in repo	ort preparation:					
	ectural design plans prepar , revision 01, dated 12 Augu		us Architecture Design & Planning, drawing numbers A-201–A-204, A310–A-312,					
			for the abovementioned site is to be submitted in support of a Development Beaches Council as the basis for ensuring that the Geotechnical Risk Management aspects					

of the proposed development have been adequately addressed to achieve an "Acceptable Risk Management" level for the life of the structure, taken as at least 100 years unless otherwise stated and justified in the Report and that reasonable and practical measures have been identified to remove foreseeable risk.

		3
_ :	Signature C	
	_{Name} Ben Mor	gan
	Chartered Professiona	Status MAIG RPGeo (Geotechnical & Engineering)
	Membership No.	10269
	Company	AscentGeo Consulting Geotechnical Engineers

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER

FORM NO. 1(a) - Checklist of Requirements for

Geotechnical Risk Management Report for Development Application

Develop	pment Application for	Jocelyn Go				
			Name of Applicant			
Address	s of site	115 Narrabeen Park Parade, Mona Vale				
-	_		ments to be addressed in a Geotechnical Risk Management the Geotechnical Report and its certification (Form No. 1).			
	eotechnical Report Deta					
Donort	: Title: Coatachnical A	Assassment Dene	et for Altorations and Additions at 115 Norrahaan Dark Darada			
Mona '	Vale (AG 21075)	•	rt for Alterations and Additions at 115 Narrabeen Park Parade,			
Report	: Date: 23 March 2022	2				
Author	r: Ben Morgan					
Author	's Company/Organisa	ation: AscentGeo	Consulting Geotechnical Engineers			
Please m	ark appropriate box					
	Comprehensive site map	pping conducted /0320	021.			
\boxtimes	(date) Mapping details presented on contoured site plan with geomorphic mapping to a minimum scale of 1:200 (as appropriate) Subsurface investigation required ☐ No Justification					
	☐ Yes Date conducted (03/2021 Geotechnical model developed and reported as an inferred subsurface type-section Geotechnical hazards identified ☐ Above the site					
	 ☑ On the site ☐ Below the site ☐ Beside the site Geotechnical hazards described and reported Risk assessment conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 					
	 ☑ Consequence analysis ☑ Frequency analysis 					
	Risk calculation Risk assessment for <u>property</u> conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 Risk assessment for <u>loss of life</u> conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 Assessed risks have been compared to "Acceptable Risk Management" criteria as defined in the Geotechnical Risk Management					
\boxtimes	Policy for Pittwater - 2009 Opinion has been provided that the design can achieve the "Acceptable Risk Management" criteria provided that the specified conditions are achieved.					
\boxtimes	Design Life Adopted:	abla	1100 years			
			Other			
\boxtimes			specify our phases as described in the Geotechnical Risk Management Policy for			
\boxtimes	Pittwater – 2009 have been specified Additional action to remove risk where reasonable and practical have been identified and included in the report. Risk Assessment within Bushfire Asset Protection Zone					
I am aware geotechnic level for th	e that Pittwater Council w cal risk management aspe	rill rely on the Geotech ects of the proposal ha en as at least 100 year	hnical Report, to which this checklist applies, as the basis for ensuring that the ave been adequately addressed to achieve an "Acceptable Risk Management" irs unless otherwise stated, and justified in the Report and that reasonable and			
		Signature				
		D M	urgan			
		Name Ben Mol				
		Membership No.	10269			
	-	Company	AscentGeo Consulting Geotechnical Engineers			

Appendix E

Coastal Engineers Report – Horton Coastal Engineering Pty Ltd

Horton Coastal Engineering

Coastal & Water Consulting

HORTON COASTAL ENGINEERING PTY LTD

18 Reynolds Cres
Beacon Hill NSW 2100
+61 (0)407 012 538
peter@hortoncoastal.com.au
www.hortoncoastal.com.au
ABN 31 612 198 731
ACN 612 198 731

Jocelyn Goyen
19 Mullens Street
Balmain NSW 2041
C/- Ascent Geotechnical
Attention: Ben Morgan
(sent by email only to ben@ascentgeo.com.au)

22 March 2022

Coastal Engineering Advice on 115 Narrabeen Park Parade Mona Vale

1. INTRODUCTION AND BACKGROUND

It is proposed to undertake alterations and additions at 115 Narrabeen Park Parade Mona Vale, for which a Development Application (DA2021/2672) has been submitted to Northern Beaches Council. The property is located within a "Bluff/Cliff Instability" area designated on the *Coastal Risk Planning Map* (Sheet CHZ_018) that is referenced in *Pittwater Local Environmental Plan 2014*. Therefore, the property is subject to Chapter B3.4 of the DCP¹, and the *Geotechnical Risk Management Policy for Development in Pittwater*. Based on Chapter 6.5(i) of this policy, "a coastal engineer's report on the impact of coastal processes on the site and the coastal forces prevailing on the bluff must be incorporated into the geotechnical assessment as an appendix and the Coastal Engineer's assessment must be addressed through the Geotechnical Report and structural specification". Accordingly, this coastal engineering report is set out herein.

The report author, Peter Horton [BE (Hons 1) MEngSc MIEAust CPEng NER], is a professional Coastal Engineer with 30 years of coastal engineering experience. He has postgraduate qualifications in coastal engineering, and is a Member of Engineers Australia and Chartered Professional Engineer (CPEng) registered on the National Engineering Register. He is also a member of the National Committee on Coastal and Ocean Engineering (NCCOE) and NSW Coastal, Ocean and Port Engineering Panel (COPEP) of Engineers Australia. Peter has prepared coastal engineering reports for numerous cliff/bluff properties in the former Pittwater Local Government Area in recent years, including along Narrabeen Park Parade. He undertook a specific inspection of the subject property and adjacent cliff face on 25 February 2022.

Note that all levels given herein are to Australian Height Datum (AHD). Zero metres AHD is approximately equal to mean sea level at present. Completed Form No. 1 as given in the *Geotechnical Risk Management Policy for Pittwater* is attached at the end of the document herein.

2. INFORMATION PROVIDED

Horton Coastal Engineering was provided with a total of 8 ArchieNovus architectural drawings, all Revision 1 and dated 13 August 2021. A site survey by D&C Surveying was also provided, Dwg # 278-20SP, Revision A and dated 1 December 2020.

¹ The Pittwater 21 DCP up to Amendment No. 27, which came into effect on 18 January 2021, was considered herein.

3. EXISTING SITE DESCRIPTION

The subject property is located adjacent to the northern end of Warriewood Beach. Vertical and oblique aerial views are provided in Figure 1 and Figure 2 respectively, with a section location denoted as Section A² depicted in Figure 1.

Figure 1: Aerial view of subject property (red outline), with location of Section A shown in blue (aerial photograph taken 25 January 2021)

Coffey & Partners (1987) noted that the cliff/bluff at the northern end of Warriewood Beach was comprised of interbedded shales, siltstones and sandstone. Photographs of the cliff seaward of the property are provided in Figure 3 and Figure 4. Dense vegetation partly obscures the near-vertical lower cliff face. Based on Airborne Laser Scanning (ALS) data held by Horton Coastal Engineering that was collected in 2020, elevations along Section A (from Figure 1) perpendicular to the cliff face are depicted in Figure 5.

² Note that the property boundary depicted in Figure 1 is only approximate.

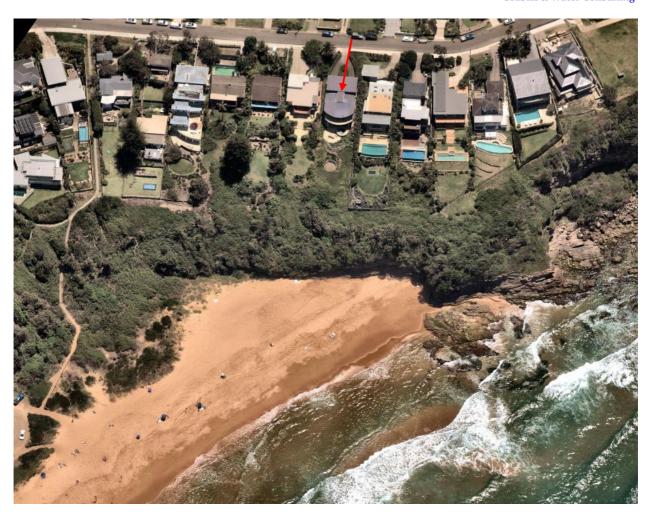


Figure 2: Oblique aerial view of subject property (at arrow) on 25 January 2021, facing NW

Figure 3: Broad view of cliff face SE of subject property (at arrow) on 25 February 2022, facing north

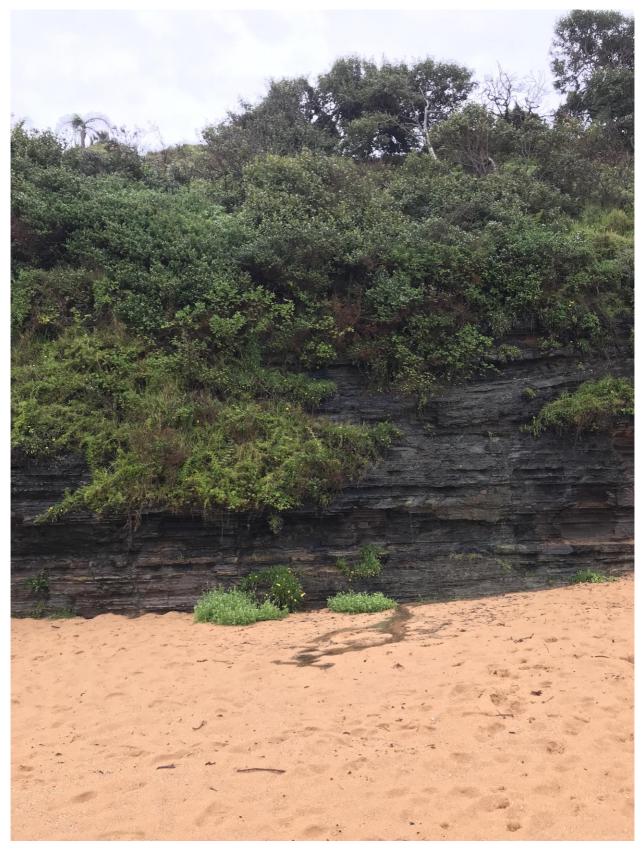


Figure 4: Close view of cliff face SE of subject property on 25 February 2022, facing NW to NNW

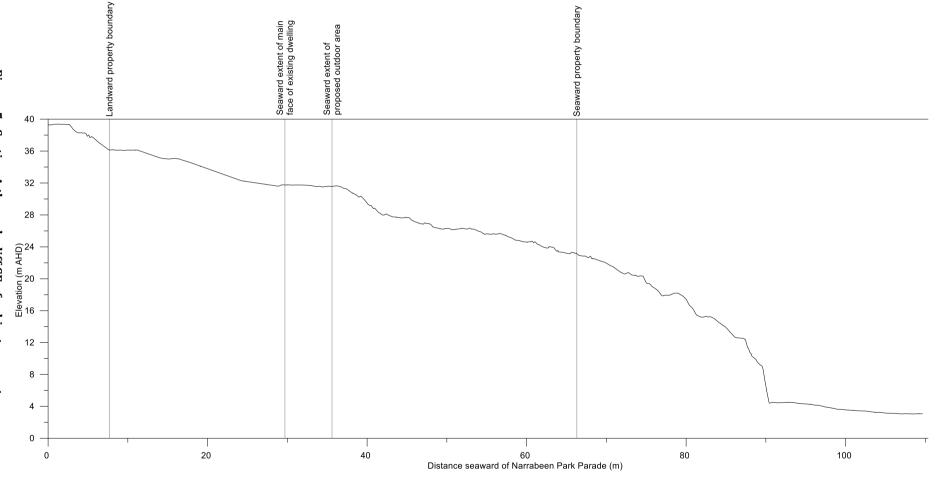


Figure 5: Section A through cliff SE of subject property

© 2022 Horton Coastal Engineering Pty Ltd

Ground elevations along Section A approximately vary from about 39.3m AHD at Narrabeen Park Parade, 23.2m AHD at the seaward property boundary, and 9.0m and 4.4m AHD at the top and bottom respectively of the near-vertical (average slope of 79°) cliff portion at the base (with the portion above the top of the near-vertical portion to Narrabeen Park Parade having an average slope of 19°). Sand levels at the base of the cliff may vary in response to coastal erosion and subsequent post-storm recovery.

4. PROPOSED DEVELOPMENT

It is proposed to undertake alterations and additions at the subject property, including a new internal lift and extended outdoor area on the seaward side of the property. The minimum habitable floor level of the development is 31.6m AHD.

5. MECHANISMS FOR CLIFF EROSION

5.1 Preamble

Erosion of sheer cliffs can occur in two forms (Public Works Department, 1985), either:

- a slow, relatively gradual attrition of cliff material due to the effects of weathering; or
- relatively infrequent but sudden collapse of large portions of cliff face, due to undercutting, wave impact forces, changed groundwater conditions, rock shattering or increased loadings related to construction, and other processes.

Weathering may induce undercutting and toppling failure of overhanging blocks if the rate of weathering is highest near the base of the cliff or at other levels below the top of the cliff. Erosion of steep slopes tends to occur suddenly in association with heavy rainfall or changes to drainage patterns, slope undercutting, and increases in load on the slope.

5.2 Weathering and Erosion

Both chemical and mechanical weathering can reduce the strength of cliff material (Sunamura, 1983). Chemical weathering includes hydration and solution, caused by the interaction between cliff material and sea water. Mechanical weathering comprises:

- the wetting and drying process in the intertidal zone;
- generation of repeated stresses in cliff material by periodic wave action (particularly waves that break on the cliff); and
- frost effects in cold latitudes.

The base of the cliff seaward of the subject property, at a typical level of about 4.4m AHD, is usually well above the intertidal zone (above 1m AHD). However, the base of the cliff would be impacted by wave runup during coastal storms with large waves and elevated water levels, if significant erosion of Warriewood Beach occurred. This wave runup could extend up to levels of about 8m AHD at present in a 100 year Average Recurrence Interval (ARI) storm, increasing to around 9m AHD in 100 years if projected sea level rise is realised.

Given this, it should be assumed that both chemical and mechanical weathering would apply at this site. A weathering rate (in the absence of waves), based on chemical weathering rates in coastal environments, of about 2mm per year is considered to be appropriate. An additional allowance of 5mm per year of wave-induced recession/weathering is considered to be reasonable (that is, a total allowance of 7mm per year).

This is consistent with, and at the upper end of historical rates of recession for softer beds of Sydney coastline sandstone cliffs, which include chemical weathering, of 2mm to 5mm per year determined by Dragovich (2000). It is also consistent with average rates of recession for Sydney Northern Beaches coastline sandstone cliffs of 4mm per year determined by Crozier and Braybrooke (1992).

Therefore, an allowance for recession/weathering of the cliff base (up to 9m AHD) of 7mm per year is considered to be reasonable. This rate is considered to be reasonable to apply over a design life of 100 years, including allowance for projected sea level rise. Sensitivity testing could be undertaken applying the maximum rates of recession for Sydney Northern Beaches coastline sandstone cliffs of 12mm per year as determined by Crozier and Braybrooke (1992).

Therefore, an allowance for recession/weathering of the cliff face of about 7mm to 12mm per year should be considered and assessed by the geotechnical engineer.

The geotechnical engineer should consider these estimated rates in conjunction with an understanding of the particular nature of the cliff materials SE of the subject property, their resistance to erosion, and potential failure planes related to geotechnical issues such as the joint spacing³.

This should be confirmed by the geotechnical engineer, but it is expected that the erosion/weathering described above would lead to undercutting and collapse of blocks on the cliff face over the long term, with failure planes at the joints. That stated, any future failure of the upper slope of the cliff may be unrelated to coastal processes at the base of the cliff.

6. COASTAL INUNDATION

With minimum floor levels above 31m AHD, coastal inundation is not a significant risk for the existing and proposed development over a planning period of well over 100 years.

7. MERIT ASSESSMENT

7.1 Preamble

The merit assessment herein has been undertaken assuming that the geotechnical engineer will find that the proposed development is at an acceptably low risk of damage from coastal erosion/recession of the cliff seaward of the property for a design life of at least 100 years.

7.2 State Environmental Planning Policy (Resilience and Hazards) 2021

7.2.1 Preamble

Based on *State Environmental Planning Policy (Resilience and Hazards) 2021* (SEPP Resilience)⁴ and its associated mapping, the subject property is just within a "proximity to littoral rainforest" area⁵ (see Section 7.2.2), partly within the "Coastal Environment" area (see Section 7.2.3), and within the "Coastal Use" area (see Section 7.2.4).

³ Coffey & Partners (1987) noted that the controlling feature of interbedded sandstone/siltstone cliffs was the bedding spacing and relative proportion of sandstone/siltstone.

⁴ Formerly State Environmental Planning Policy (Coastal Management) 2018.

⁵ In Council's "Natural Environment Referral Response – Coastal" dated 25 January 2022, they stated that the property was within the "proximity to Coastal Wetlands" area, which is not correct.

7.2.2 Clause 2.8

Based on Clause 2.8(1) of SEPP Resilience, "development consent must not be granted to development on land identified as 'proximity area for coastal wetlands' or 'proximity area for littoral rainforest' on the Coastal Wetlands and Littoral Rainforests Area Map unless the consent authority is satisfied that the proposed development will not significantly impact on:

- the biophysical, hydrological or ecological integrity of the adjacent coastal wetland or littoral rainforest, or
- the quantity and quality of surface and ground water flows to and from the adjacent coastal wetland or littoral rainforest".

The littoral rainforest in proximity to the subject property is about 90m SW of the property, in the back beach area of Warriewood Beach, with no part of the built development footprint in this proximity area (the proximity area covers about 5m of the SW tip of the property). It is understood that stormwater runoff is not to be significantly altered as part of the proposed development. Therefore, significant changes to surface and groundwater flows, and impacts to the hydrological integrity of the littoral rainforest, would not be expected as a result of the proposed development.

7.2.3 Clause 2.10

Based on Clause 2.10(1) of SEPP Resilience, "development consent must not be granted to development on land that is within the coastal environment area unless the consent authority has considered whether the proposed development is likely to cause an adverse impact on the following:

- (a) the integrity and resilience of the biophysical, hydrological (surface and groundwater) and ecological environment,
- (b) coastal environmental values and natural coastal processes,
- (c) the water quality of the marine estate (within the meaning of the *Marine Estate Management Act 2014*), in particular, the cumulative impacts of the proposed development on any of the sensitive coastal lakes identified in Schedule 1,
- (d) marine vegetation, native vegetation and fauna and their habitats, undeveloped headlands and rock platforms,
- (e) existing public open space and safe access to and along the foreshore, beach, headland or rock platform for members of the public, including persons with a disability,
- (f) Aboriginal cultural heritage, practices and places,
- (g) the use of the surf zone".

This is not a coastal engineering matter, but it can be noted that with regard to (a), the proposed development would not be expected to adversely affect the biophysical, hydrological (surface and groundwater) and ecological environments, being in an existing developed area and not altering the existing stormwater drainage arrangements.

With regard to (b), the proposed development would not be expected to adversely affect coastal environmental values or natural coastal processes over an acceptably long design life, as it would be founded on a cliff well above wave action for an acceptably rare storm.

With regard to (c), the proposed development would not be expected to adversely impact on water quality, with the residential land use, as long as appropriate construction environmental

controls are applied. No sensitive coastal lakes are located in the vicinity of the proposed development.

With regard to (d), the proposed development would not impact marine vegetation, undeveloped headlands and rock platforms, with none of these items in proximity to the development (being on an already developed headland, and being well above and landward of the rock platforms at the northern end of Warriewood Beach for an acceptably rare storm and acceptably long life). No significant impacts on marine fauna and flora would be expected as a result of the proposed development, as the development would not interact with subaqueous areas for an acceptably rare storm and acceptably long life. Assuming that there are no species of native vegetation and fauna and their habitats of significance that would be impacted at the property, (d) is satisfied.

With regard to (e), it can be noted that the proposed development is entirely within the subject property boundary and will not alter existing public access arrangements outside of the property.

With regard to (f), a search of the Heritage NSW "Aboriginal Heritage Information Management System" (AHIMS) was undertaken on 22 March 2022. This resulted in no Aboriginal sites nor Aboriginal places being recorded or declared within at least 1km of the subject property.

With regard to (g), the proposed development would not interact with the surf zone for an acceptably rare storm occurring over an acceptably long life, so would not impact on use of the surf zone.

Based on Clause 2.10(2) of SEPP Resilience, "development consent must not be granted to development on land to which this clause applies unless the consent authority is satisfied that:

- (a) the development is designed, sited and will be managed to avoid an adverse impact referred to in subclause (1), or
- (b) if that impact cannot be reasonably avoided—the development is designed, sited and will be managed to minimise that impact, or
- (c) if that impact cannot be minimised—the development will be managed to mitigate that impact".

The proposed development has been designed and sited to avoid any potential adverse impacts referred to in Clause 2.10(1).

7.2.4 Clause 2.11

Based on Clause 2.11(1) of SEPP Resilience, "development consent must not be granted to development on land that is within the coastal use area unless the consent authority:

- (a) has considered whether the proposed development is likely to cause an adverse impact on the following:
 - (i) existing, safe access to and along the foreshore, beach, headland or rock platform for members of the public, including persons with a disability,
 - (ii) overshadowing, wind funnelling and the loss of views from public places to foreshores,
 - (iii) the visual amenity and scenic qualities of the coast, including coastal headlands,
 - (iv) Aboriginal cultural heritage, practices and places,
 - (v) cultural and built environment heritage, and

- (b) is satisfied that:
 - (i) the development is designed, sited and will be managed to avoid an adverse impact referred to in paragraph (a), or
 - (ii) if that impact cannot be reasonably avoided—the development is designed, sited and will be managed to minimise that impact, or
 - (iii) if that impact cannot be minimised—the development will be managed to mitigate that impact, and
- (c) has taken into account the surrounding coastal and built environment, and the bulk, scale and size of the proposed development".

With regard to Clause (a)(i), the proposed development is entirely on private property and will not affect public foreshore, beach, headland or rock platform access.

Clauses (a)(ii) and a(iii) are not coastal engineering matters so are not considered herein. With regard to (a)(iv), no Aboriginal sites nor Aboriginal places have been recorded or declared within at least 1km of the subject property, as noted in Section 7.2.3.

With regard to (a)(v), the nearest environmental heritage item to the subject property listed in Schedule 5 of *Pittwater Local Environmental Plan 2014* is the house at 66 Elimatta Road Mona Vale. This heritage item is located about 730m from the subject property. The proposed development would not be expected to impact on this heritage item.

With regard to (b), the proposed development has been designed and sited to avoid any potential adverse impacts referred to in Clause 2.11(1) for the matters considered herein. Clause (c) is not a coastal engineering matter so is not considered herein.

7.2.5 Clause 2.12

Based on Clause 2.12 of SEPP Resilience, "development consent must not be granted to development on land within the coastal zone unless the consent authority is satisfied that the proposed development is not likely to cause increased risk of coastal hazards on that land or other land".

Assuming that the geotechnical engineer will find that the proposed development is at an acceptably low risk of damage from erosion/recession over a 100 year design life, and given that the proposed development is well above and landward of projected wave runup over 100 years, the proposed development would not even be expected to interact with coastal processes over its design life, let alone affect any other land. That is, the proposed development is unlikely to cause increased risk of coastal hazards on that land or other land over its design life.

7.2.6 Clause 2.13

Based on Clause 2.13 of SEPP Resilience, "development consent must not be granted to development on land within the coastal zone unless the consent authority has taken into consideration the relevant provisions of any certified coastal management program that applies to the land". No certified coastal management program applies at the subject property.

7.2.7 Synthesis

The proposed development satisfies the requirements of *State Environmental Planning Policy* (*Resilience and Hazards*) 2021 for the matters considered herein.

7.3 Clause 7.5 of Pittwater Local Environmental Plan 2014

Clause 7.5 of *Pittwater Local Environmental Plan 2014* (LEP 2014) applies at the subject property, as the property is identified as "Bluff/Cliff Instability" on the Coastal Risk Planning Map Sheet CHZ_018. Based on Clause 7.5(3) of LEP 2014, "development consent must not be granted to development on land to which this clause applies unless the consent authority is satisfied that the development:

- (a) is not likely to cause detrimental increases in coastal risks to other development or properties, and
- (b) is not likely to alter coastal processes and the impacts of coastal hazards to the detriment of the environment, and
- (c) incorporates appropriate measures to manage risk to life from coastal risks, and
- (d) is likely to avoid or minimise adverse effects from the impact of coastal processes and the exposure to coastal hazards, particularly if the development is located seaward of the immediate hazard line, and
- (e) provides for the relocation, modification or removal of the development to adapt to the impact of coastal processes and coastal hazards, and
- (f) has regard to the impacts of sea level rise, and
- (g) will have an acceptable level of risk to both property and life, in relation to all identifiable coastline hazards".

With regard to (a) and (b), the proposed development would not increase coastal risks nor alter coastal processes and the impacts of coastal hazards, as it would not affect the wave impact process at the base of the cliff.

Items (c), (d) and (g) are for the geotechnical engineer to assess, with consideration of the findings herein. Assuming that they find that the proposed development is at an acceptably low risk of damage over a 100 year planning period with appropriate measures incorporated in design and construction, (c), (d) and (g) would be met. On this basis, (e) should not be necessary, noting that this would be more applicable in a sandy beach environment. With regard to (f), sea level rise has been considered herein.

8. FORM

A completed *Geotechnical Risk Management Policy for Pittwater* Form No. 1 is attached at the end of the document herein. Note that the declaration on Form No. 1 is not appropriate for a coastal report, with the revised declaration below:

"I am aware that the above Coastal Report, prepared for the abovementioned site is to be submitted to assist with a geotechnical investigation for a Development Application for this site, with that geotechnical investigation relied on by Northern Beaches Council as the basis for ensuring that the Geotechnical Risk Management aspects of the proposed development have been adequately addressed. No declaration can be made on the geotechnical investigation as this has not been prepared nor reviewed by me, and nor do I have geotechnical engineering expertise".

9. CONCLUSIONS

An allowance for erosion/weathering of 7mm/year of the cliff seaward of 115 Narrabeen Park Parade Mona Vale, with sensitivity testing up to 12mm/year, should be considered and

assessed by the geotechnical engineer. The geotechnical engineer should consider these estimated rates in conjunction with an understanding of the particular nature of the cliff materials east of the subject property, their resistance to erosion, and potential failure planes related to geotechnical issues such as the joint spacing. That stated, any future failure of the upper slope of the cliff may be unrelated to coastal processes at the base of the cliff.

Coastal inundation is not a significant risk for the proposed development over a planning period of well over 100 years. Given this, and assuming that the geotechnical engineer will find that the development is at an acceptably low risk of damage from erosion/recession over a 100 year design life, the proposed development satisfies the requirements of *State Environmental Planning Policy (Resilience and Hazards) 2021* (Clauses 2.8, and 2.10 to 2.13), and Clause 7.5 of *Pittwater Local Environmental Plan 2014* for the matters considered herein.

10. REFERENCES

Coffey & Partners (1987), "Coastal Management Study, Assessment of Bluff Areas", *Report No. S8002/1-AA*, March, for Warringah Shire Council

Crozier, PJ and JC Braybrooke (1992), "The morphology of Northern Sydney's rocky headlands, their rates and styles of regression and implications for coastal development", 26th Newcastle Symposium on Advances in the Study of the Sydney Basin, University of Newcastle

Dragovich, Deirdre (2000), "Weathering Mechanisms and Rates of Decay of Sydney Dimension Sandstone", pp. 74-82 in *Sandstone City, Sydney's Dimension Stone and Other Sandstone Geomaterials*, edited by GH McNally and BJ Franklin, Environmental, Engineering and Hydrogeology Specialist Group (EEHSG), Geological Society of Australia, Monograph No. 5

Public Works Department (1985), "Coastal Management Strategy, Warringah Shire, Report to Working Party", *PWD Report 85016*, June, prepared by AD Gordon, JG Hoffman and MT Kelly, for Warringah Shire Council

Sunamura, Tsuguo (1983), "Processes of Sea Cliff and Platform Erosion", Chapter 12 in *CRC Handbook of Coastal Processes and Erosion*, editor Paul D Komar, CRC Press Inc, Boca Raton, Florida. ISBN 0-8493-0208-0

11. SALUTATION

If you have any further queries, please do not hesitate to contact Peter Horton via email at peter@hortoncoastal.com.au or via mobile on 0407 012 538.

Yours faithfully

HORTON COASTAL ENGINEERING PTY LTD

Peter Horton

Director and Principal Coastal Engineer

This report has been prepared by Horton Coastal Engineering on behalf of and for the exclusive use Jocelyn Goyen (the client) and Ascent Geotechnical and is subject to and issued in accordance with an agreement between the client and Horton Coastal Engineering. Horton Coastal Engineering accepts no liability or responsibility whatsoever for the report in respect of any use of or reliance upon it by any third party. Copying this report without the permission of the client or Horton Coastal Engineering is not permitted.

Geotechnical Risk Management Policy for Pittwater Form No. 1 is attached overleaf

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER

FORM NO. 1 – To be submitted with Development Application Development Application for Jocelyn Goyen Address of site 115 Narrabeen Park Parade Mona Vale Declaration made by geotechnical engineer or engineering geologist or coastal engineer (where applicable) as part of a geotechnical report on behalf of ____ Horton Coastal Engineering Pty Ltd Peter Horton (Insert Name) (Trading or Company Name) 22 March 2022 on this the ______ certify that I am a geotechnical engineer or engineering geologist or coastal engineer as defined by the Geotechnical Risk Management Policy for Pittwater - 2009 and I am authorised by the above organisation/company to issue this document and to certify that the organisation/company has a current professional indemnity policy of at least \$2million. Please mark appropriate box have prepared the detailed Geotechnical Report referenced below in accordance with the Australia Geomechanics Society's Landslide Risk Management Guidelines (AGS 2007) and the Geotechnical Risk Management Policy for Pittwater - 2009 am willing to technically verify that the detailed Geotechnical Report referenced below has been prepared in accordance with the Australian Geomechanics Society's Landslide Risk Management Guidelines (AGS 2007) and the Geotechnical Risk Management Policy for Pittwater - 2009 have examined the site and the proposed development in detail and have carried out a risk assessment in accordance with Section 6.0 of the Geotechnical Risk Management Policy for Pittwater - 2009. I confirm that the results of the risk assessment for the proposed development are in compliance with the Geotechnical Risk Management Policy for Pittwater - 2009 and further detailed geotechnical reporting is not required for the subject site. have examined the site and the proposed development/alteration in detail and I am of the opinion that the Development Application only involves Minor Development/Alteration that does not require a Geotechnical Report or Risk Assessment and hence my Report is in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 requirements. have examined the site and the proposed development/alteration is separate from and is not affected by a Geotechnical Hazard and does not require a Geotechnical Report or Risk Assessment and hence my Report is in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 requirements. have provided the coastal process and coastal forces analysis for inclusion in the Geotechnical Report Coastal Geotechnical-Report Details: Report Title: Coastal Engineering Advice on 115 Narrabeen Park Parade Mona Vale Report Date: 22 March 2022 Author: **Peter Horton** Author's Company/Organisation: Horton Coastal Engineering Pty Ltd Documentation which relate to or are relied upon in report preparation: See Section 2 and Section 10 of coastal report + am-aware that the above-Geotechnical Report, prepared-for-the abovementioned - site is te-be-submitted in support of a Development Application for this site and will be relied on by Pittwater Council as the basis for ensuring that the Geotechnical Risk Management aspects of the proposed-development-have been adequately-addressed to achieve-an "Acceptable Risk-Management" level for the life of the structure, taken-as-at-least 100 years-unless otherwise-stated-and-justified in the Report-and that reasonable and practical-measures have been See revised declaration in Section 8 of report identified to remove foreseeable risk. Name Peter Horton Chartered Professional Status...MIEAust CPEng NER Company, Horton Coastal Engineering Pty Ltd

P21 DCP Appendix 5 Page 20

Adopted: 21 September 2009 In Force From: 12 October 2009