

REPORT TO

WILLIAMS RIVER STEEL

ON

GEOTECHNICAL INVESTIGATION

FOR

PROPOSED COMMERCIAL DEVELOPMENT

AT

61 DARLEY STREET, MONA VALE, NSW

Date: 8 December 2022

Ref: 35451Lrpt

JKGeotechnics www.jkgeotechnics.com.au

T: +61 2 9888 5000 JK Geotechnics Pty Ltd ABN 17 003 550 801

Report prepared by:

Linton Speechley

Principal | Geotechnical Engineer

Affeechlas

For and on behalf of JK GEOTECHNICS PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
35451Lrpt	Final Report	8 December 2022

© Document copyright of JK Geotechnics

This report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JKG) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKG and its Client and is therefore subject to:

- a) JKG's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKG;
- c) The terms of contract between JKG and the Client, including terms limiting the liability of JKG.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKG which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKG does so entirely at their own risk and to the fullest extent permitted by law, JKG accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

At the Company's discretion, JKG may send a paper copy of this report for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence. The USER shall ascertain the accuracy and the suitability of this information for the purpose intended; reasonable effort is made at the time of assembling this information to ensure its integrity. The recipient is not authorised to modify the content of the information supplied without the prior written consent of JKG.

Table of Contents

1	INTRODUCTION				
2	INVES	TIGATION PROCEDURE	1		
3	RESUI	TS OF INVESTIGATION	2		
	3.1	Site Description	2		
	3.2	Subsurface Conditions	3		
	3.3	Laboratory Test Results	4		
4	COM	MENTS AND RECOMMENDATIONS	5		
	4.1	Dilapidation	5		
	4.2	Demolition	6		
	4.3	Excavation	6		
		4.3.1 Excavation Conditions	6		
		4.3.2 Excavation Vibrations	7		
	4.4	Shoring	9		
	4.5	Hydrogeological Considerations	10		
	4.6	Footings	11		
	4.7	Basement Slabs	12		
	4.8	Further Geotechnical Input	13		
5	GENE	RAL COMMENTS	13		

ATTACHMENTS

Table A: Moisture Content, Atterberg Limits and Linear Shrinkage Test Report

Table B: Point Load Strength Index Test Report

Envirolab Services Certificate of Analysis No. 307950

Borehole Logs 1 to 3 Inclusive (With Core Photograph for BH1)

Figure 1: Site Location Plan

Figure 2: Borehole Location Plan

Vibration Emission Design Goals

Report Explanation Notes

1 INTRODUCTION

This report presents the results of a geotechnical investigation for the proposed commercial development at 61 Darley Street, Mona Vale, NSW. The location of the site is shown in Figure 1. The investigation was commissioned by Julie Wattus of Williams River Steel by Purchase Order JN136203 dated 30 August 2022 and was carried out in accordance with our proposal, Ref: P56674L, dated 24 May 2022.

Based on the provided concept architectural drawings prepared by WR Steel (Job No.: JN612721, Drawing No's: A03^{issue 13}, A04^{issue 10}, A05^{issue 10} and A07^{issue 10}, dated 3 February and 30 March 2022), we understand that it is proposed to construct a two-storey commercial building over a single level basement. The building will cover the majority of the site footprint. At this stage, no further details have been provided regarding the proposed basement level, and in this regard we have assumed that a maximum excavation depth of about 3m will be required at the south-western end of the site, with excavation depths reducing towards Darley Street. The basement footprint extends up to the north-western and south-western boundaries and to within about 1.8m and 0.8m of the south-eastern and north-eastern boundaries, respectively.

The purpose of the investigation was to obtain geotechnical information on the subsurface conditions, and to use this as a basis for providing comments and recommendations on excavation conditions, shoring, footings, hydrogeology and floor slabs.

This geotechnical investigation was carried out in conjunction with a preliminary waste classification assessment by our environmental division, JK Environments (JKE). Reference should be made to the separate report by JKE, Ref: E35451Blet-WC dated 4 November 2022, for the results of the waste classification assessment.

2 INVESTIGATION PROCEDURE

The fieldwork for the investigation was carried out on 12 October 2022 and comprised the drilling of three (3) boreholes, BH1, BH2 and BH3, using our track-mounted JK309 drilling rig to depths ranging from 1.9m (BH3) to 10.0m (BH1) below existing surface levels. The boreholes were drilled using spiral auger techniques and a Tungsten Carbide ('TC') bit to the refusal depths of 3.6m and 1.9m in BH2 and BH3, respectively. BH1 was initially spiral auger drilled to a depth of 4.7m and was then extended to a depth of 10m using an NMLC triple tube barrel fitted with a diamond coring bit and water flush.

Prior to the commencement of fieldwork, the borehole locations were electromagnetically scanned by a specialist contractor to identify the location of any buried services. The investigation locations, as shown on Figure 2, were set out using a tape measure from existing surface features. At the time of the fieldwork, no survey drawings had been provided and therefore the surface levels of the boreholes are unknown. Should a survey become available, it should be provided to JK Geotechnics so that the surface levels can be included on the borehole logs.

The strength of the subsurface soils was assessed from Standard Penetration Test (SPT) 'N' values, and augmented by hand penetrometer test results on cohesive samples recovered by the SPT split tube sampler. The strength of the underlying weathered bedrock in BH2 and BH3, as well as the upper weathered bedrock in BH1, was assessed by observation of the resistance to drilling using a Tungsten Carbide (TC) bit attached to the augers, together with inspection of the recovered rock chip samples and subsequent correlation with laboratory moisture content test results. Estimation of rock strength by these methods is approximate only and variations of one strength order should not be unexpected. Where the sandstone was diamond cored in BH1, the recovered rock core was returned to our laboratory where the strength was assessed by Point Load Strength Index (Is50) tests. The Point Load Strength results are shown on the borehole logs and in the attached Table A. Using established correlations, the estimated Unconfined Compressive Strength (UCS) of the rock was determined from the Is50 test results, which are also shown in Table A.

Groundwater observations were made in the boreholes during, on completion of drilling and at the end of the fieldwork. We note that water is introduced into the borehole during coring and therefore the water levels measured at completion of coring may be artificially high as the water levels have not had time to stabilise. In all three boreholes, Class 18 machine slotted PVC standpipes were installed and finished with a cast iron gatic cover to allow longer term groundwater monitoring to be completed. Details of the well installations are shown on the borehole logs. No longer term groundwater monitoring has been carried out.

Our geotechnical engineer (Ben Sheppard) was present full time during the fieldwork to set out the investigation locations, nominate the testing and sampling, and prepare the attached borehole logs. For more details of the investigation procedures and their limitations, and a definition of the logging terms and symbols used, reference should be made to the attached Report Explanation Notes.

Selected samples were returned to Soil Test Services Pty Ltd (STS) and Envirolab Services Pty Ltd (Envirolab), both NATA accredited laboratories, for laboratory testing of Moisture Content, Atterberg Limits, Linear Shrinkage and pH, sulphate content, chloride content and resistivity. The results of the tests are presented in the attached STS Tables A and B and Envirolab Certificate of Analysis No.307950.

3 RESULTS OF INVESTIGATION

3.1 Site Description

The site is located within gently undulating topography associated with the low-lying area situated between Mona Vale Beach and Pittwater Bay to the east and west, respectively. Ground levels within the area generally slope down to the north and north-east at about 3° to 4°. The site is bound to the north-east and south-east by Darley Street and Barrenjoey Road, respectively, and by commercial properties to the south-west and north-west.

At the time of the fieldwork, the site predominantly comprised of an Asphaltic Concrete (AC) surfaced carpark. The carpark was generally level along the rear (south-west), before sloping down to the north at about 4° to 5°. The AC pavement was generally in good condition, with some minor hairline cracking

observed in isolated areas across the site. A single storey brick and clad structure was located within the western corner and appeared to be in good external condition, based on a cursory inspection. A concrete driveway slopes down from the carpark towards Darley Street at about 8°. To the north-west of the driveway is a landscaped timber retaining wall, with heights ranging from 0.1m and 1.1m, increasing in height to the east. The timber retaining wall was in fair condition.

The neighbouring property to the north-west of the site (No.63 Darley Street) contained a two-storey brick commercial structure positioned at the eastern end of the property and appeared in good condition based on a cursory external inspection from within the subject site. The adjoining structure on No. 63 Darley Street abutted the subject site boundary. The remainder of the adjoining property at No. 63 comprised a concrete pavement which was assessed to be generally in good condition. Ground levels on the adjoining No. 63 were lower than the subject site by between about 0.7m and 1.2m, from west to east, respectively, with the subject site retained by a double brick retaining wall which appeared to be in good condition. No obvious signs of rotation, distress or displacement were noted within the brick retaining wall.

The neighbouring property to the south-west of the site (No.25 Barrenjoey Road) contained a one to two storey concrete commercial structure which appeared to be in good external condition, besides some isolated horizontal hairline cracks towards the basal 3m of the north-western wall. The structure extended across the majority of the property footprint and abutted the boundary with the subject site.

Grassed road reserves are located adjacent to the north-east and south-eastern common boundaries.

3.2 Subsurface Conditions

The Sydney 1:100,000 Geological Series Sheet 9130 indicates that the site is underlain by the Newport Formation which comprises "interbedded laminate, shale, and quartz, to lithic-quartz sandstone", however is close to the geological boundary to the overlying Quaternary aged alluvial deposits to the north.

The boreholes encountered a profile comprising pavements and fill overlying residual clays and weathered siltstone bedrock which graded into weathered sandstone bedrock at moderate to shallow depths. Groundwater was not encountered during augering of the boreholes. Reference should be made to the attached borehole logs for detailed subsurface descriptions at specific locations. A summary of the subsoil conditions, as encountered, is presented below.

Pavements and Fill

Asphaltic Concrete (AC) was encountered at all test locations and ranged from 30mm thick in BH2 to 150mm thick in BH1. Fill was encountered at all test locations underlying the AC to depths of 0.55m, 0.6m and 0.6m, in BH1, BH2 and BH3, respectively. The fill predominantly comprised of silty clay, besides a 120mm thick layer underlying the AC in BH2, which comprised a silty sandy gravel. Inclusions within the fill included ironstone and igneous gravel and ash.

Residual Soil

Residual silty clay was encountered below the fill in all boreholes and extended to depths ranging from 1.3m in BH1 to 2.0m in BH2 below existing ground levels. The silty clay was assessed to be of high plasticity and generally of very stiff to hard strength, besides the upper portion of the residual clays in BH2 which were of stiff to very stiff strength. The clays had varying amounts of ironstone gravels.

Extremely Weathered Siltstone Bedrock

Extremely weathered siltstone was encountered below the residual silty clays in all boreholes and these extremely weathered siltstones extended to depths ranging from 1.7m in BH3) to 3.5m in BH2. The extremely weathered siltstone was assessed to be of hard soil strength and will remould to a material with soil like properties. The extremely weathered siltstone layer was 1.1m, 1.5m and 0.3m thick in BH1, BH2 and BH3, respectively.

Weathered Sandstone Bedrock

Weathered sandstone bedrock was encountered at depths of 2.4m, 3.5m and 1.7m in BH1, BH2 and BH3, respectively. The sandstone within BH2 and BH3 was of high strength on initial contact, with TC bit refusal occurring shortly after initial contact. BH1 encountered very low strength sandstone bedrock on first contact which extended to a depth of 4.6m, before which the sandstone increased to high strength.

Within the cored portion of BH1, the sandstone bedrock was fine grained and generally moderately weathered and of high strength to about 5.7m, reducing to low to medium strength to the termination depth of 10m. There is a significant number of defects within the cored portion of the bedrock and these comprised extremely weathered seams and clay seams up to 24mm thick, sub-horizontal bedding partings, joints inclined at up to 90°, and incipient and healed joints up to 90°.

Groundwater

Groundwater seepage was not encountered during auger drilling of the boreholes, which were all dry on completion of auger drilling. Once coring is commenced water is introduced which obscures the true groundwater level. Further groundwater monitoring is recommended.

3.3 Laboratory Test Results

The STS laboratory results are summarised in the attached Tables A and B.

The results of the Atterberg Limits and Linear Shrinkage tests on the residual silty clay samples confirms they are of medium to high and high plasticity, and therefore they would have a high potential for shrink-swell movements with changes in moisture content.

The moisture content tests on the rock samples correlated reasonably well with the field strength assessments. The results of the Point Load Strength Index tests carried out on the recovered rock cores from BH1 correlated well with our field assessment of bedrock strength. Point Load Strength Index ($I_{s(50)}$) tests generally ranged from 0.2MPa to 0.4MPa, besides the upper 1m, which had point load strength index results of 2.1MPa and 3.8MPa. These are also plotted on the attached borehole logs. Estimated unconfined

compressive strength (UCS), based on the relationship of UCS = $20 \times I_{s(50)}$), ranged generally from 4MPa to 8MPa; however the upper rock profile had results of 42MPa and 76MPa.

The results of the pH, sulphate, chloride and resistivity tests are summarised in the table below. The Envirolab Certificate of Analysis No. 307950 is attached and provides further specific details for these tests.

Borehole	Depth (m)	Sample Type	рН	Sulphates SO ₄ (ppm)	Chlorides Cl (ppm)	Resistivity ohm.cm
1	0.6-1.05	Residual Silty Clay	4.6	76	10	16,000
2	1.5-1.8	Residual Silty Clay	4.6	39	<10	33,000
2	0.2-0.4	Silty Clay Fill	7.4	55	10	5100

The above results indicate that the fill and residual soil would have an exposure classification of "Non-Aggressive" and "Mild", respectively, when assessed in accordance with the criteria of concrete piling exposure classification given in Table 6.4.2 (C) of AS2159-2009 "Piling Design Installation". The above results also indicate that the samples would have an exposure classification of "Non Aggressive" when assessed in accordance with the criteria for steel piling exposure classification given in Table 6.5.2 (C) of AS2159-2009 "Piling Design Installation"

4 COMMENTS AND RECOMMENDATIONS

Exact details of the proposed basement level have not been provided at this stage, and therefore the following comments and recommendations are of a general nature only. These comments and recommendations are based on our assumption that the basement will require bulk excavation to a maximum depth of about 3m along the south-western boundary. Once further development details are provided, we recommend that we be requested to review these comments and recommendations to confirm that they are consistent and representative for the proposed development.

4.1 Dilapidation

Prior to the commencement of any site works, including demolition of existing buildings/structures, we recommend that detailed internal and external dilapidation reports be carried out on adjoining properties to the north-west (No.63 Darley Street) and to the south-west (No.25 Barrenjoey Road). Dilapidation reports provide a record of existing conditions prior to commencement of any site works. The dilapidation reports would therefore be used as a benchmark against which to set vibration limits during excavation, and for assessing possible future claims for damage arising from the works.

The respective owners of the neighbouring properties should be asked to confirm in writing that the dilapidation report presents a fair assessment of existing conditions on their property. As dilapidation reports are relied upon for the assessment of potential damage claims, they must be carried out thoroughly by

reputable companies with all defects rigorously described (i.e. defect type, defect location, crack width, crack length etc). The dilapidation reports should be reviewed by JK Geotechnics and the structural engineers prior to commencement of the works.

4.2 Demolition

There are nearby buildings and retaining walls around the site, and therefore demolition should be carried out with care, so as to not destabilise, or undermine any adjoining structures. This work will need to be carried out by suitably experienced (and insured) contractors.

Demolition of concrete slabs, possibly footings and paved surfaces will be required. We recommend that saw cut slots be provided near adjoining buildings, retaining walls and fences, such as near the south-western and north-western boundaries, and use be made of the buckets of hydraulic excavators to lift out pieces so as to reduce the risk of demolition vibrations being transferred to those adjoining structures.

Vibration monitoring should be undertaken at the commencement of demolition and during initial tracking of plant/equipment over the soils, to confirm that potentially damaging vibrations are not occurring. Whether further monitoring during demolition works are required would depend on the results of that initial monitoring. If concerns are raised about vibrations or damage to existing or adjoining structures then works should cease until an assessment can be made by the geotechnical and structural engineer or vibration specialists. A set of Vibration Emission Design Goals (VEDG) are attached for guidance. It would be advisable to try to obtain 'as built' drawings of any adjoining structures to assist with assessing the risk in this regard.

4.3 Excavation

Excavation recommendations provided below should be complemented by reference to the Code of Practice 'Excavation Work', prepared by Safe Work Australia July 2015 or latest revision at the time of works.

We have assumed excavation to a maximum depth of about 3m will be required for the proposed basement level, with excavation depths reducing toward Darley Street. The basement excavation will abut the north-western and south-western boundaries and extend to within about 1.8m and 0.8m of the north-eastern and south-western boundaries, respectively. Based on the depth to weathered bedrock, temporary excavation batters will not be feasible and all excavations will need to be supported by insitu shoring systems installed prior to excavation commencing..

4.3.1 Excavation Conditions

Based on the boreholes, excavation for the proposed basement will encounter silty clay fill, residual silty clay, extremely weathered siltstone and probably the upper portions of the weathered sandstone bedrock. Excavation of the soil profile and any extremely weathered or very low strength bedrock will be achievable using conventional earthmoving equipment using a 'digging' bucket fitted to a large size (say 20 tonne) hydraulic excavator. If layers of 'harder' iron-indurated bands or low strength siltstone/sandstone are

encountered, then these should be able to be excavated using ripping tynes, provided they are no thicker than about 0.3m.

Should sandstone of low or higher strength be encountered, which may occur in the lower portions towards the northern and north-eastern end of the basement excavation, then such materials will require the use of rock excavation techniques for effective excavation. Rock excavation techniques include rock saws (possibly in combination with some ripping with a ripping tyne fitted to a large excavator) or rock grinders. High strength sandstone bedrock was encountered at about 1.7m in BH3, which will almost certainly require rock excavation techniques. At this stage we do not recommend the use of hydraulic impact hammers for rock excavation due to the risk of causing vibrational damage to adjoining structures. Hydraulic impact hammers would only be considered for use, if continuous quantitative vibration monitoring on adjoining structures and retaining walls is carried out as discussed in Section 4.3.2 below. A copy of this report (including the borehole logs) should be provided to any potential excavation contractor, who should confirm that they have reviewed this report and have allowed to undertake the excavation and monitoring in accordance with these recommendations.

At Bulk Excavation Level (BEL) we expect variable subgrade conditions to be exposed. The subgrade materials will likely range from very low to high strength sandstone, extremely weathered siltstone and possibly residual clays towards the south. The clayey soils and extremely weathered siltstone would be expected to soften rapidly on contact with water, and so careful attention should be paid to maintaining drainage throughout the construction period. The clay subgrade at the site is expected to undergo a loss in strength when wet. Furthermore, the clay subgrade is expected to have a high shrink-swell reactive potential. Therefore, it is important to provide good and effective site drainage both during construction and for long-term site maintenance. A poorly drained clay subgrade may become untrafficable when wet. The earthworks should be carefully planned and scheduled to maintain good cross-falls during construction.

No groundwater was encountered during spiral auger drilling of the boreholes, which extended to a maximum depth of 4.7m in BH1. It is noted however, that the monitoring period was short, and groundwater levels may not have stabilised during this time. Groundwater monitoring wells have been installed in the boreholes to monitor the groundwater levels with time. We recommend that further groundwater measurements be carried out to check groundwater levels.

Provided the results of further groundwater monitoring show that no groundwater is present within the depth of excavation, then any groundwater seepage encountered during excavation is not likely to be a "groundwater table" as such, but rather ephemeral groundwater seepages flowing across the top of the bedrock or sitting in bedrock 'low points'. In that instance control of any groundwater seepage, is expected to be easily achieved by conventional sump and pump methods during construction.

4.3.2 Excavation Vibrations

Considerable caution must be taken during all demolition, excavation, shoring and footing construction on this site as there will likely be direct transmission of ground vibrations to the existing structures to the northwest and south-west which abut the common boundaries. Due to the relatively shallow depth to rock, we

expect that the neighbouring buildings may be founded on the bedrock, however paving and other minor structures and walls are unlikely to be founded on rock. We recommend the neighbours be approached to provide details on the footings and founding conditions for their structures. We also recommend that where adjoining structures or boundary retaining walls abut the subject site boundary, that a few test pits be excavated at any early stage of the design process to assess and/or confirm the footing system and its founding stratum. This will assist in shoring designs.

Excavation procedures and the dilapidation reports should be carefully reviewed by the geotechnical and structural engineers prior to the commencement of demolition and excavation, so that appropriate equipment is used.

If excavation of any rock using hydraulic impact hammers is being considered, then it should commence away from likely critical areas and boundaries, using a moderately sized excavator fitted with a relatively low energy hydraulic impact rock hammer.

We recommend continuous quantitative vibration monitoring be carried out during all site works (including demolition), but particularly if rock excavation using hydraulic impact hammers is to be used. Vibration monitors should be set up at locations nominated by the geotechnical engineers, but these are likely to be on adjoining structures and boundary walls. The vibration monitors should be fitted with flashing warning lights and sirens which would warn if vibrations exceed the pre-set limits.

Subject to review of the dilapidation reports by the structural and geotechnical engineers, vibrations, measured as Peak Particle Velocity (PPV), should be limited to no higher than 5mm/sec on boundary walls and adjoining structures, assuming the boundary walls and adjoining structures are confirmed to be founded on rock. If boundary walls or adjoining structures are not founded on rock, then a lower PPV may need to be adopted. This limit takes both human comfort and potential structural damage into account and assumes that the structural engineers inspect the adjoining structures to the north, south and west and confirm that these adjoining structures are not particularly sensitive to vibrations.

If during any site works (including demolition and excavation) it is found that transmitted vibrations are excessive, then it would be necessary to use a smaller rock hammer or alternative excavation techniques. The use of a rotary grinder or grid sawing in conjunction with ripping and hammering present alternative lower vibration excavation techniques.

We recommend to only use excavation contractors with experience on similar sized projects and with a competent and experienced supervisor who is aware of vibration damage risks. The contractor should be provided with a copy of this report and have all appropriate statutory and public liability insurances.

4.4 Shoring

Based on the limited space from the proposed basement excavation to the site boundaries, and the depth to variably weathered sandstone bedrock, temporary batters will not be suitable for this site and a full height retention system will need to be installed prior to the commencement of bulk excavation.

Suitable retention systems will comprise contiguous piled shoring walls and soldier pile shoring walls with shotcrete infill panels. Stiffer contiguous piled shoring walls are recommended adjacent to the adjoining structures (including adjoining boundary retaining walls) along the north-western and south-western boundaries, while soldier pile shoring systems would be suitable elsewhere provided there are no nearby adjoining movement sensitive services.

The shoring systems must be embedded to a suitable depth below bulk excavation level to provide overall lateral shoring wall stability. We note that BH2 and BH3 encountered refusal of our TC bit during drilling on inferred high strength sandstone bedrock at depths of 3.5m and 1.9m respectively. High strength sandstone bedrock was also encountered at a depth of 4.6m in BH1. Therefore, allowance must be made by the shoring contractor for encountering high strength sandstone bedrock, possibly above the bulk excavation level, and above the design shoring toe level. The shoring contractor should be provided with a copy of this report and should allow for suitable equipment to be able to penetrate through the high strength bedrock where necessary to satisfy the shoring design requirements.

Bored piles are considered suitable for the shoring system. At this stage, subject to further groundwater monitoring, we do not expect significant groundwater seepage into bored piles. If groundwater seepage does occur then shoring piles should be pumped free of seepage and poured as soon as possible to reduce softening of the base and collapse of the pile sides. At least the initial stages of shoring pile drilling should be inspected by a geotechnical engineer to ascertain that the recommended socket material has been reached and to check initial design assumptions. Inspection of piles will require the geotechnical engineer to be on site during the drilling process so that they can inspect both the material being drilled and check the material consistency with nearby borehole logs.

The major consideration in the selection of earth pressures and parameters for the design of the retention system is the need to limit deformations occurring outside the excavation. Where shoring wall movements are acceptable, cantilevered shoring walls may be feasible, otherwise where shoring wall movements are to be reduced (such as next to adjoining structures, boundary retaining walls and movement sensitive services), anchored or propped shoring walls will need to be constructed.

The characteristic earth pressure coefficients and subsoil parameters provided below may be adopted for the design of the shoring systems.

• For cantilever walls where some movement can be tolerated, we recommend a triangular lateral earth pressure distribution using an 'active' earth pressure coefficient (Ka) of 0.35 for the full retained height.

- For cantilever walls which will be propped by floor slabs or where movements are to be reduced, we recommend a triangular lateral earth pressure distribution using an 'at rest' earth pressure coefficient (K_0) of 0.6 for the full retained height.
- A bulk unit weight of 20kN/m³ may be used for the soil and weathered rock.
- All surcharge loads affecting the walls (e.g. nearby footings, construction loads and traffic etc) are additional to the earth pressure recommendations above and should be included in the design.
- Where walls are to be progressively anchored or propped, then anchored or propped shoring systems
 may be provisionally designed based on a trapezoidal earth pressure distribution of magnitude 8H kPa
 (where H is the retained height in metres). These lateral pressures should be held constant for the
 central 50% of the pressure distribution.
- The above coefficients and lateral pressures assume horizontal backfill surfaces and where inclined backfill is proposed the coefficients/pressures would need to be increased or the inclined backfill taken as a surcharge load.
- Full hydrostatic pressures must be allowed for unless measures are undertaken to provide complete and permanent drainage behind the wall.

Anchors should have their bond formed within rock of at least very low strength, with the bond formed beyond a line drawn up at 45° from the base of the excavation. Preliminary design of anchors may be based on an allowable bond stress of 150kPa for rock of at least very low strength. All anchors should be proof loaded to at least 1.3 times the design working load before locking off at about 80% of the working load. Lift-off tests should be carried out on at least 10% of the anchors 24 to 48 hours following locking off to confirm that the anchors are holding their load. Anchors are generally carried out on a design and construct basis so that failure of the anchors to hold their test load does not become a contractual issue. Permission must be obtained from adjoining property owners before installing anchors below their property.

Even with good design and construction, some vertical and lateral ground movements beyond the limits of the excavation may occur. The magnitude of movements is directly related to the stiffness of the shoring system and construction techniques used. Therefore, during shoring wall design, the wall designer must make an assessment of the likely shoring wall movements and associated adjoining ground movements, so that an assessment of the risk to adjoining buildings and services can be made.

4.5 Hydrogeological Considerations

Groundwater was not encountered in any of the boreholes during auger drilling to depths up to 4.7m. It is noted however, that groundwater levels may not have stabilised due to the relatively short monitoring period in which the auger holes were left open. As such, additional groundwater monitoring should be undertaken to determine If groundwater will be encountered within the proposed basement excavation.

From a geotechnical perspective, we consider that even if groundwater is found to be encountered above bulk excavation level, we expect that the materials (being silty clays and weathered rock) will have a relatively low permeability and therefore groundwater inflows are likely to be relatively minor. As such we consider

that a drained basement will be feasible. During excavation any seepage encountered should be controllable using sump and pump drainage techniques to appropriate discharge locations. Groundwater may require treatment prior to discharging and further advice should be sought from JK Environments.

We note that Water NSW has produced a recent document, "Minimum Requirements for Building Site Groundwater Investigations and Reporting", dated January 2021 which outlines the minimum scope of investigation required where a basement is proposed and may intersect the groundwater table. As part of this Water NSW will require at least three months of groundwater monitoring within three wells forming a triangular pattern across the site. Additional permeability testing, water quality testing and acid sulphate assessment will also be required.

The default position for Water NSW, is that where groundwater is encountered, the basement structure needs to be a water-tight (tanked) structure. To assess the feasibility for a drained basement, Water NSW will require the additional continuous groundwater monitoring, permeability testing of the bedrock, groundwater quality testing, and seepage computer analyses. All these results will need to be presented geotechnical and hydrogeological report.

4.6 Footings

We expect variable conditions to be exposed at the bulk excavation level. Subgrade conditions after bulk excavation may consist of very low or high strength sandstone, extremely weathered siltstone and possibly very stiff to hard residual clays, depending on the excavation depth. To provide uniform support for the new structure, we recommend that all new footings be founded within the weathered sandstone bedrock. Pad or strip footings may be used if bedrock is exposed at bulk excavation level or bored piers may be drilled to found within the underlying sandstone bedrock where bedrock is greater than about 1.5m below bulk excavation level.

Footings founded within the sandstone bedrock of at least very low strength may be designed based on an allowable bearing pressure (ABP) of 1000kPa for sandstone. At this stage, only one cored borehole has been drilled and therefore limited information is known about the sandstone quality with depth at other locations within the site. If higher bearing pressures are required, additional cored boreholes would need to be drilled. If higher bearing pressures are required, the structural engineer should nominate what bearing pressures are required so that the additional boreholes can target such rock.

Piles should be drilled to achieve a nominal socket of at least 0.3m into sandstone bedrock of at least very low strength. An allowable shaft adhesion of 10% of the above allowable bearing pressures may be used for the design of piles in compression, or 5% for uplift, provided socket cleanliness and roughness is maintained.

All pad/strip footing excavations and pile drilling should be inspected by a geotechnical engineer to ascertain that the recommended foundation has been reached and to check initial assumptions about foundation conditions and possible variations that may occur between borehole locations. Inspection of piles will require the geotechnical engineer to be on site during the drilling process so that they can inspect both the material being drilled and check the pile's consistency with nearby borehole logs.

Any loose of softened material should be removed from the base of pad/strip footings or bored piles, and all pad/strip footings and bored piles should be poured as soon as possible after excavation or drilling, cleaning and inspection.

4.7 Basement Slabs

The subgrade at bulk excavation level may comprise variable materials comprising very low to high strength sandstone, extremely weathered siltstone, and possibly very stiff to hard residual clays. Basement slab-ongrade construction is therefore feasible, however, adequate subgrade preparation must be carried out. Basement slabs-on-grade should be constructed independent of the building footings and walls (i.e. designed as a 'floating' slabs) to permit relative movement. Particular attention should be made to the detailing between the 'floating' slab and the superstructure so that the differential movements (due to the shrink-swell nature of the clay soils) can be accommodated.

Slab joints should be designed to resist shear forces but not bending moments by providing dowelled or keyed joints. Slabs founded on a combination of soil and bedrock subgrade should be provided with joints at, or close to, the change in subgrade conditions. If this is not possible, then additional reinforcement should be provided to the slabs to cater for the differential movement.

We assume a drained basement will be adopted. The underfloor drainage should comprise a strong, durable, single sized washed aggregate such as 'blue metal' gravel. The underfloor drainage should connect with the perimeter drains and lead groundwater seepage to a sump and fail safe pump for pumped disposal. Drainage should be provided below all portions of the basement slab.

Where sandstone bedrock of at least very low strength is exposed at bulk excavation level, no specific subgrade preparation is required. Provided a strong, durable gravel as described above and of at least 100mm thickness is used as the drainage layer, then this will also be suitable for support of the basement slab and will provide a separation layer from the underlying sandstone bedrock.

Where residual clays or extremely weathered siltstone bedrock is exposed, the subgrade should be initially proof rolled with a roller of not less than 5 tonne size to detect any soft or heaving areas. The final pass of proof rolling should be carried out under the direction of an experienced geotechnical engineer for the detection of unstable or soft areas. Subgrade heaving during proof rolling may occur in areas where the clays have become over-wet or 'saturated'. Small areas can typically be improved by locally removing the heaving/soft material to a stable base and replacing with engineered fill. Engineered fill should comprise crushed rock compacted in maximum 200mm thick loose layers using a roller of at least 5 tonne size, to a density ratio not less than 98% of Standard Maximum Dry Density (SMDD). Basement slabs-on-grade with a residual clay or extremely weathered siltstone subgrade should be supported on at least a 100mm thick subbase of good quality fine crushed rock such as DGB20 (RMS QA Specification 3051 unbound granular material). The sub-base should be compacted to a minimum density ratio of 100% of SMDD. Adequate moisture conditioning to within 2% of SOMC should be provided during placement. The sub-base material

will provide more uniform slab support and would reduce 'pumping' of subgrade 'fines' at joints due to vehicular movements.

Alternatively, where the subgrade exposes residual silty clays or extremely weathered siltstone, the basement floor slab may be designed as a fully suspended slab supported by piles on the underlying sandstone bedrock, which would prove to have better performance over the design life. Void formers will need to be provided below suspended slabs to allow any underlying silty clays to swell. A void former of at least 100mmthickness is recommended.

4.8 Further Geotechnical Input

The following is a summary of the further geotechnical input which is required and which has been detailed in the preceding sections of this report:

- Additional cored boreholes, including UCS testing, if required;
- Additional Groundwater monitoring to satisfy Water NSW;
- Qualitative vibration monitoring during demolition and tracking of plant;
- Proof-testing of anchors;
- Geotechnical inspection of the drilling of shoring piles;
- Geotechnical inspection of footings.

5 GENERAL COMMENTS

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. As an example, special treatment of soft spots may be required as a result of their discovery during proof-rolling, etc. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and JK Geotechnics accept no responsibility whatsoever for the performance of the structure where recommendations are not implemented in full and properly tested, inspected and documented.

The long term successful performance of floor slabs and pavements is dependent on the satisfactory completion of the earthworks. In order to achieve this, the quality assurance program should not be limited to routine compaction density testing only. Other critical factors associated with the earthworks may include subgrade preparation, selection of fill materials, control of moisture content and drainage, etc. The satisfactory control and assessment of these items may require judgment from an experienced engineer. Such judgment often cannot be made by a technician who may not have formal engineering qualifications and experience. In order to identify potential problems, we recommend that a pre-construction meeting be held so that all parties involved understand the earthworks requirements and potential difficulties. This meeting should clearly define the lines of communication and responsibility.

Occasionally, the subsurface conditions between the completed boreholes may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact this office.

This report provides advice on geotechnical aspects for the proposed civil and structural design. As part of the documentation stage of this project, Contract Documents and Specifications may be prepared based on our report. However, there may be design features we are not aware of or have not commented on for a variety of reasons. The designers should satisfy themselves that all the necessary advice has been obtained. If required, we could be commissioned to review the geotechnical aspects of contract documents to confirm the intent of our recommendations has been correctly implemented.

A waste classification is required for any soil and/or bedrock excavated from the site prior to offsite disposal. Subject to the appropriate testing, material can be classified as Virgin Excavated Natural Material (VENM), Excavated Natural Material (ENM), General Solid, Restricted Solid or Hazardous Waste. Analysis can take up to seven to ten working days to complete, therefore, an adequate allowance should be included in the construction program unless testing is completed prior to construction. If contamination is encountered, then substantial further testing (and associated delays) could be expected. We strongly recommend that this requirement is addressed prior to the commencement of excavation on site.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of JK Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670

Telephone: 02 9888 5000 **Facsimile:** 02 9888 5001

TABLE A MOISTURE CONTENT, ATTERBERG LIMITS AND LINEAR SHRINKAGE TEST REPORT

Client:JK GeotechnicsReport No.:35451L - AProject:Proposed Commercial DevelopmentReport Date:26/10/2022

Location: 61 Darley Street, Mona Vale, NSW Page 1 of 1

AS 1289	TEST METHOD	2.1.1	3.1.2	3.2.1	3.3.1	3.4.1
BOREHOLE	DEPTH	MOISTURE	LIQUID	PLASTIC	PLASTICITY	LINEAR
NUMBER	m	CONTENT	LIMIT	LIMIT	INDEX	SHRINKAGE
		%	%	%	%	%
1	0.60 - 1.05	18.4	55	23	32	10.0
1	2.40 - 3.00	5.5	-	-	-	-
1	4.60 - 4.70	5.5	-	-	-	-
2	3.00 - 3.30	15.1	-	-	-	-
3	0.60 - 0.95	12.0	47	19	28	9.5
3	1.70 - 1.90	10.0	_	_	-	-

Notes:

- The test sample for liquid and plastic limit was air-dried & dry-sieved
- The linear shrinkage mould was 125mm
- · Refer to appropriate notes for soil descriptions
- Date of receipt of sample: 13/10/2022.
- Sampled and supplied by client. Samples tested as received.

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

26/10/2022

TABLE B POINT LOAD STRENGTH INDEX TEST REPORT

Client: Williams River Steel Ref No: 35451L

Project: Proposed Commercial Development Report: A

Location: 61 Darley Street, MONA VALE, NSW Report Date: 14/10/22

Page 1 of 1

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED	TEST
NUMBER			COMPRESSIVE STRENGTH	DIRECTION
	(m)	(MPa)	(MPa)	
1	4.75 - 4.78	3.8	76	Α
	5.34 - 5.38	2.1	42	Α
	5.88 - 5.92	0.4	8	Α
	6.31 - 6.34	0.2	4	Α
	6.81 - 6.85	0.3	6	Α
	7.11 - 7.15	0.4	8	Α
	7.81 - 7.84	0.2	4	Α
	8.13 - 8.16	0.3	6	Α
	8.91 - 8.95	0.2	4	Α
	9.16 - 9.19	1.6	32	Α
	9.45 - 9.48	0.5	10	Α
	9.80 - 9.84	0.4	8	Α

NOTES

- 1. In the above table, testing was completed in test direction A for the axial direction, D for the diametral direction, B for the block test and L for the lump test.
- 2. The above strength tests were completed at the 'as received' moisture content.
- 3. Test Method: RMS T223.
- 4. For reporting purposes, the ls(50) has been rounded to the nearest 0.1MPa, or to one significant figure if less than 0.1MPa.
- 5. The estimated Unconfined Compressive Strength was calculated from the Point Load Strength Index based on the correlation provided in AS1726:2017 'Geotechnical Site Investigations' and rounded off to the nearest whole number: U.C.S. = 20 Is(50).

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 307950

Client Details	
Client	JK Geotechnics
Attention	Ben Sheppard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	35451L, Mona Vale, NSW
Number of Samples	3 Soil
Date samples received	13/10/2022
Date completed instructions received	13/10/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	20/10/2022			
Date of Issue	20/10/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 307950 Revision No: R00

Misc Inorg - Soil				
Our Reference		307950-1	307950-2	307950-3
Your Reference	UNITS	BH1	BH2	BH2
Depth		0.6-1.05	1.5-1.8	0.2-0.4
Date Sampled		12/10/2022	12/10/2022	12/10/2022
Type of sample		Soil	Soil	Soil
Date prepared	-	13/10/2022	13/10/2022	13/10/2022
Date analysed	-	19/10/2022	19/10/2022	19/10/2022
pH 1:5 soil:water	pH Units	4.6	4.6	7.4
Chloride, Cl 1:5 soil:water	mg/kg	10	<10	10
Sulphate, SO4 1:5 soil:water	mg/kg	76	39	55
Resistivity in soil*	ohm m	160	330	51

Envirolab Reference: 307950 Revision No: R00

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Envirolab Reference: 307950 Page | 3 of 6

Revision No: R00

QUALITY CONTROL: Misc Inorg - Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/10/2022	[NT]		[NT]	[NT]	13/10/2022	
Date analysed	-			19/10/2022	[NT]		[NT]	[NT]	19/10/2022	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	98	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	104	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	107	
Resistivity in soil*	ohm m	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]

Envirolab Reference: 307950 Revision No: R00 Page | **4 of 6**

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Envirolab Reference: 307950

Revision No: R00

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 307950 Page | 6 of 6

Revision No: R00

JKGeotechnics

BOREHOLE LOG

Borehole No.

1

1 / 2

Client: WILLIAMS RIVER STEEL

Project: PROPOSED COMMERCIAL DEVELOPMENT **Location:** 61 DARLEY STREET, MONA VALE, NSW

Job No.: 35451L Method: SPIRAL AUGER R.L. Surface: N/A

Date: 12/10/22 **Datum:** AHD

Pla	nt Ty	/pe: JK	309				Logged/Checked By: B.S.				
Groundwater Record ES Ø	AMPLE DB DB	DS SS		Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION OF AUGERING						-	ASPHALTIC CONCRETE: 150mm.t FILL: Silty CLAY, medium to high plasticity, red brown, brown and dark brown, trace of fine grained igneous gravel.	w>PL			NO OBSERVED REINFORCEMENT
) 30		N = 1 3,5,5		1-		- CH	CONCRETE: 150mm.t Sitty CLAY: high plasticity, grey mottled red brown, trace of fine grained weakly cemented ironstone gravel.	w <pl< td=""><td>Hd</td><td>>600 >600 >600</td><td>- NO OBSERVED - REINFORCEMENT / - RESIDUAL -</td></pl<>	Hd	>600 >600 >600	- NO OBSERVED - REINFORCEMENT / - RESIDUAL -
		N = 2 10,12,		2-		-	Extremely Weathered siltstone: silty CLAY, medium plasticity, grey and red brown.	XW	Hd	>600 >600 >600	- HAWKESBURY - SANDSTONE - SOIL 'TC' BIT - RESISTANCE
				-		-	SANDSTONE: fine to medium grained, grey.	MW	VL		- VERY LOW TO LOW - RESISTANCE
				3- - - - 4-			as above, but with occasional extremely weathered bands.				VERY LOW RESISTANCE
				_							_
							SANDSTONE: fine to medium grained, grey. REFER TO CORED BOREHOLE LOG		H		HIGH RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 6.2m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.2m TO 2.2m. CASING 2.2m TO 0.1m. 2mm SAND FILTER PACK 6.2m TO 2.0m. BENTONITE SEAL 2.0m TO 0.1m. COMPLETED WITH A CONCRETED GATIC COVER.
COPYF	RIGH	T .		_							- -

JKGeotechnics

CORED BOREHOLE LOG

Borehole No.

1

2 / 2

Client: WILLIAMS RIVER STEEL

Project: PROPOSED COMMERCIAL DEVELOPMENT **Location:** 61 DARLEY STREET, MONA VALE, NSW

Job No.: 35451L Core Size: NMLC R.L. Surface: N/A

Date: 12/10/22 Inclination: VERTICAL Datum: AHD

Plant Type: JK309 Bearing: N/A Logged/Checked By: B.S./

P	lan	t Typ	e: JK	309 Bearing	g: N/A				Logged/Checked By: B.S./	
Water Loss\Level	rel Lift	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation
Wa	Bar	Dep	Gra		We	Stre	M -0.3 M -1 M -1 WH,10 EH	200	Specific General	For
		-		START CORING AT 4.70m SANDSTONE: fine grained, grey, red brown and orange brown, distinctly bedded at 0-15°.	MW	Н	•3.8		(4.82m) CS, 0°, 6 mm.t — (4.92m) Bc, 0°, P, R, Clay Ct (4.94m) Be, 0°, P, R, Clay Ct	
		5		SANDSTONE: fine grained, grey and		L - M	2.1		— (5.16m) CS, 0°, 12 mm.t — (5.23m) CS, 0°, 6 mm.t — (5.46m) CS, 0°, 24 mm.t — (5.57m) CS, 0°, 18 mm.t — (5.71m) J, 90°, P, Ji	
		6-		orange brown, distinctly bedded at 0-10°, with occasional iron indurated bands.			#0.40 		(6.84m) Cr, 0°, 13 mm.t (6.05m) J, 20°, P, R, Clay FILLED, 40 mm.t (6.00-6.60m) Ji& Jh, 0 - 90°, P/Un, Fe	
100% RETURN		- - 7 - - -					90.30 ₁			Newport Formation
100 RETU		- - - 8 —					0.20 -0.30		(7.65m) Be, 0°, P, R, Fe (7.73m) Be, 0°, P, R, Fe Sn (7.87m) Be, 0°, P, R, Clay FILLED, 4 mm.t (8.00m) XWS, 0°, 24 mm.t	Newpor
		- - - - -					90.20		(8.20m) Be, 0°, P, R, Fe Sn (8.25m) Be, 0°, P, R, Fe Sn (8.45m) Be, 15°, P, Fe Sn (8.51m) J, 30°, P, R, Fe Sn (8.65m) Cr, 0°, 8 mm.t (8.77-8.87m) ROCK IS FRACTURED, SEVERAL Be, 0 - 10°, P, R, Fe Sn, & J, 0.70°, P, Un, R, Fe, Sn	
		9					•1.6 •1.6 - •0.50		— (9.12m) Be, 0°, P, R, Fe Sn — (9.26m) Cr, 0°, 9 mm.t	
		- 10 -		END OF BOREHOLE AT 10.00 m			0.40 		(9.81m) Bex 2, 20°, Un, R, Fe Sn (9.95m) Cr, 0°, 8 mm.t	
		- - - - -							- - - - -	
		ICHT						8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- - - 	

END OF HOLE AT 10.0m

Job No: 35451L Borehole No: 1 Depth: 4.70 - 10.00m

JKGeotechnics

BOREHOLE LOG

Borehole No.

2

1 / 1

Client: WILLIAMS RIVER STEEL

PROPOSED COMMERCIAL DEVELOPMENT Project: Location: 61 DARLEY STREET, MONA VALE, NSW

Job No.: 35451L Method: SPIRAL AUGER R.L. Surface: N/A

D	Date: 12/10/22 Datum: AHD										
P	lant T	Гуре	: JK309				Logged/Checked By: B.S.				
Groundwater Record	Record ES USO DB ODB Complete Cog Graphic Log		Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks			
LIE AN BOCK A ZO INDOS I PIE AN BOUN ZOINGOZO COMPLETION		3	N = 7 3,3,4 N > 17 ,13,4/0mm REFUSAL N > 21	1—		- CH	ASPHALTIC CONCRETE: 30mm.t FILL: Silty sandy gravel, fine to coarse grained, dark grey, igneous gravel, fine to medium grained sand. FILL: Silty clay, medium plasticity, dark grey, trace of fine to coarse grained igneous and ironstone gravel, fine grained sand and ash. Silty CLAY: high plasticity, orange brown and brown, trace of fine grained ironstone gravel. as above, but grey mottled red brown. Silty CLAY: medium plasticity, grey, trace of iron indurated bands and extremely weathered siltstone bands, trace of root fibres. Extremely weathered siltstone: silty CLAY, medium plasticity, grey and red brown, with iron indurated bands and extremely weathered sandstone bands.	M w>PL w>PL	St - VSt VSt VSt - Hd	190 180 210 240 300 310 420 350 350 350	NO OBSERVED REINFORCEMENT RESIDUAL HAWKESBURY SANDSTONE VERY LOW 'TC' BIT RESISTANCE WITH LOW BANDS
A NOWAL BISCUE LOG AN ALCHENDALE INVASIEN SHATIL MONNYALE GPT SCHRAMINGTHEFT DIG 1222 HAT TUCH 1001 DAINNI LIGHT TO THE TOWN TOWN TO THE TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	PYRIGH		17,21/ 150mm REFUSAL ∫	4 —			SANDSTONE: fine grained, red brown. END OF BOREHOLE AT 3.60 m	MW	Н	>600 >600 >600	HIGH RESISTANCE TC' BIT REFUSAL GROUNDWATER MONITORING WELL INSTALLED TO 3.6m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 3.6m TO 2.1m. CASING 2.1m TO 0.1m. 2mm SAND FILTER PACK 2.6m TO 2.2m. BENTONITE SEAL 2.2m TO 0m. COMPLETED WITH A CONCRETED GATIC COVER.

JKGeotechnics

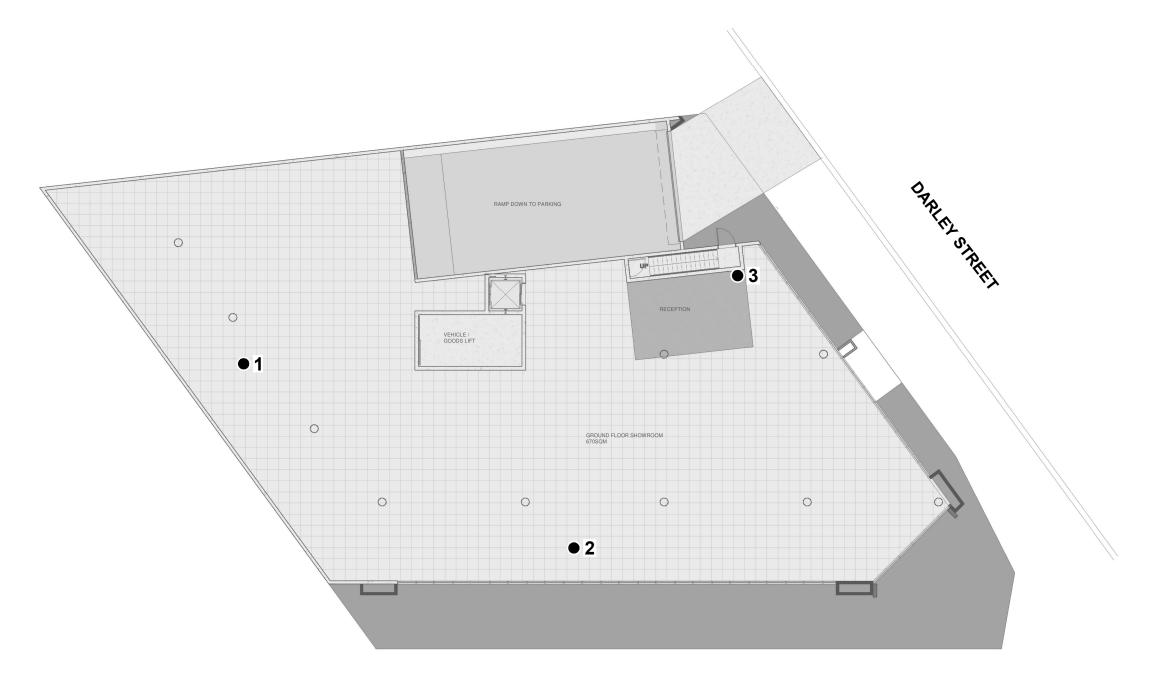
BOREHOLE LOG

Borehole No.

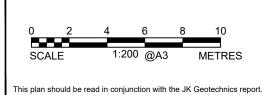
1 / 1

Client: WILLIAMS RIVER STEEL

Project: PROPOSED COMMERCIAL DEVELOPMENT **Location:** 61 DARLEY STREET, MONA VALE, NSW


Job No.: 35451L Method: SPIRAL AUGER R.L. Surface: N/A

Date: 12/10/22 **Datum:** AHD


	ate:	12	10/22				Datum: AHD				
Р	lant	Ту	be: JK309				Logged/Checked By: B.S.				
Groundwater	SAM ES CPO	IPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION COMPLETION				-		-	\ASPHALTIC CONCRETE: 10mm.t FILL: Silty clay, low to medium plasticity, dark grey, fine to medium grained igneous gravel, fine grained sand and ash.	w~PL			NO OBSERVED REINFORCEMENT
			N = 8 8,3,5	1-		CH	Silty CLAY: high plasticity, red brown and orange brown, trace of fine to coarse grained ironstone gravel, with iron indurated bands.	w~PL	VSt - Hd	400 410 400	RESIDUAL
	N > 4 8,4/50mm		Extremely Weathered siltstone: silty CLAY, medium plasticity, grey, with iron indurated bands, trace of fine grained sand.	XW	Hd	>600 >600 >600	- HAWKESBURY - SANDSTONE				
			REFUSAL	-		-	SANDSTONE: fine to medium grained, red	MW	Н		SOIL 'TC' BIT RESISTANCE
				2 —			END OF BOREHOLE AT 1.90 m				HIGH RESISTANCE 'TC' BIT REFUSAL GROUNDWATER MONITORING WELL INSTALLED TO 1.9m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.9m TO 1.4m. CASING 1.4m TO 0.1m. 2mm SAND FILTER PACK 1.9m TO 1.4m. BENTONITE SEAL 1.4m TO 0.1m. COMPLETED WITH A CONCRETED GATIC COVER.

BARRENJOEY ROAD

	Title:	BOREHOLE LOCATION	PLAN	
	Location:	61 DARLEY STREET,		
		MONA VALE, NSW		
	Report No:	35451LT	Figure No:	2
t.		JK Geotechnic	CS	

VIBRATION EMISSION DESIGN GOALS

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally recognised to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) horizontal directions, in the plane of the uppermost floor), are summarised in Table 1 below.

It should be noted that peak vibration velocities higher than the minimum figures in Table 1 for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual condition of the structure.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural effects such as superficial cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

Table 1: DIN 4150 – Structural Damage – Safe Limits for Building Vibration

		Peak Vibration Velocity in mm/s						
Group	Type of Structure	,	Plane of Floor of Uppermost Storey					
		Less than 10Hz	10Hz to 50Hz	50Hz to 100Hz	All Frequencies			
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design.	20	20 to 40	40 to 50	40			
2	Dwellings and buildings of similar design and/or use.	5	5 to 15	15 to 20	15			
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (eg. buildings that are under a preservation order).	3	3 to 8	8 to 10	8			

Note: For frequencies above 100Hz, the higher values in the 50Hz to 100Hz column should be used.

REPORT EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the geotechnical report in regard to classification methods, field procedures and certain matters relating to the Comments and Recommendations section. Not all notes are necessarily relevant to all reports.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Geotechnical engineering involves gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤ 25	≤ 12
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) is referred to as 'laminite'.

SAMPLING

Sampling is carried out during drilling or from other excavations to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on plasticity, grain size, colour, moisture content, minor constituents and, depending upon the degree of disturbance, some information on strength and structure. Bulk samples are similar but of greater volume required for some test procedures.

Undisturbed samples are taken by pushing a thin-walled sample tube, usually 50mm diameter (known as a U50), into the soil and withdrawing it with a sample of the soil contained in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shrinkswell behaviour, strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling used are given on the attached logs.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

Cone Penetrometer Testing (CPT) and Interpretation: The cone penetrometer is sometimes referred to as a Dutch Cone. The test is described in Australian Standard 1289.6.5.1—1999 (R2013) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests — Determination of the Static Cone Penetration Resistance of a Soil — Field Test using a Mechanical and Electrical Cone or Friction-Cone Penetrometer'.

In the tests, a 35mm or 44mm diameter rod with a conical tip is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with a hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the frictional resistance on a separate 134mm or 165mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are electrically connected by wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck. The CPT does not provide soil sample recovery.

As penetration occurs (at a rate of approximately 20mm per second), the information is output as incremental digital records every 10mm. The results given in this report have been plotted from the digital data.

The information provided on the charts comprise:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone – expressed in MPa. There are two scales presented for the cone resistance. The lower scale has a range of 0 to 5MPa and the main scale has a range of 0 to 50MPa. For cone resistance values less than 5MPa, the plot will appear on both scales.
- Sleeve friction the frictional force on the sleeve divided by the surface area – expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed as a percentage.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and occasionally very soft clays, rising to 4% to 10% in stiff clays and peats. Soil descriptions based on cone resistance and friction ratios are only inferred and must not be considered as exact.

Correlations between CPT and SPT values can be developed for both sands and clays but may be site specific.

Interpretation of CPT values can be made to empirically derive modulus or compressibility values to allow calculation of foundation settlements.

Stratification can be inferred from the cone and friction traces and from experience and information from nearby boreholes etc. Where shown, this information is presented for general guidance, but must be regarded as interpretive. The test method provides a continuous profile of engineering properties but, where precise information on soil classification is required, direct drilling and sampling may be preferable.

There are limitations when using the CPT in that it may not penetrate obstructions within any fill, thick layers of hard clay and very dense sand, gravel and weathered bedrock. Normally a 'dummy' cone is pushed through fill to protect the equipment. No information is recorded by the 'dummy' probe.

Flat Dilatometer Test: The flat dilatometer (DMT), also known as the Marchetti Dilometer comprises a stainless steel blade having a flat, circular steel membrane mounted flush on one side.

The blade is connected to a control unit at ground surface by a pneumatic-electrical tube running through the insertion rods. A gas tank, connected to the control unit by a pneumatic cable, supplies the gas pressure required to expand the membrane. The control unit is equipped with a pressure regulator, pressure gauges, an audiovisual signal and vent valves.

The blade is advanced into the ground using our CPT rig or one of our drilling rigs, and can be driven into the ground using an SPT hammer. As soon as the blade is in place, the membrane is inflated, and the pressure required to lift the membrane (approximately 0.1mm) is recorded. The pressure then required to lift the centre of the membrane by an additional 1mm is recorded. The membrane is then deflated before pushing to the next depth increment, usually 200mm down. The pressure readings are corrected for membrane stiffness.

The DMT is used to measure material index (I_D), horizontal stress index (K_D), and dilatometer modulus (E_D). Using established correlations, the DMT results can also be used to assess the 'at rest' earth pressure coefficient (K_D), over-consolidation ratio (OCR), undrained shear strength (C_U), friction angle (ϕ), coefficient of consolidation (C_h), coefficient of permeability (K_h), unit weight (γ), and vertical drained constrained modulus (M).

The seismic dilatometer (SDMT) is the combination of the DMT with an add-on seismic module for the measurement of shear wave velocity (V_s). Using established correlations, the SDMT results can also be used to assess the small strain modulus (G_o).

Portable Dynamic Cone Penetrometers: Portable Dynamic Cone Penetrometer (DCP) tests are carried out by driving a 16mm diameter rod with a 20mm diameter cone end with a 9kg hammer dropping 510mm. The test is described in Australian Standard 1289.6.3.2–1997 (R2013) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – 9kg Dynamic Cone Penetrometer Test'.

The results are used to assess the relative compaction of fill, the relative density of granular soils, and the strength of cohesive soils. Using established correlations, the DCP test results can also be used to assess California Bearing Ratio (CBR).

Refusal of the DCP can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Vane Shear Test: The vane shear test is used to measure the undrained shear strength (C_u) of typically very soft to firm fine grained cohesive soils. The vane shear is normally performed in the bottom of a borehole, but can be completed from surface level, the bottom and sides of test pits, and on recovered undisturbed tube samples (when using a hand vane).

The vane comprises four rectangular blades arranged in the form of a cross on the end of a thin rod, which is coupled to the bottom of a drill rod string when used in a borehole. The size of the vane is dependent on the strength of the fine grained cohesive soils; that is, larger vanes are normally used for very low strength soils. For borehole testing, the size of the vane can be limited by the size of the casing that is used.

For testing inside a borehole, a device is used at the top of the casing, which suspends the vane and rods so that they do not sink under self-weight into the 'soft' soils beyond the depth at which the test is to be carried out. A calibrated torque head is used to rotate the rods and vane and to measure the resistance of the vane to rotation.

With the vane in position, torque is applied to cause rotation of the vane at a constant rate. A rate of 6° per minute is the common rotation rate. Rotation is continued until the soil is sheared and the maximum torque has been recorded. This value is then used to calculate the undrained shear strength. The vane is then rotated rapidly a number of times and the operation repeated until a constant torque reading is obtained. This torque value is used to calculate the remoulded shear strength. Where appropriate, friction on the vane rods is measured and taken into account in the shear strength calculation.

LOGS

The borehole or test pit logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse engineering characteristics or behaviour. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing is normally carried out in accordance with Australian Standard 1289 'Methods of Testing Soils for Engineering Purposes' or appropriate NSW Government Roads & Maritime Services (RMS) test methods. Details of the test procedure used are given on the individual report forms.

ENGINEERING REPORTS

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building) the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

Reasonable care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions the potential for this will be partially dependent on borehole spacing and sampling frequency as well as investigation technique.
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of persons or contractors responding to commercial pressures.
- Details of the development that the Company could not reasonably be expected to anticipate.

If these occur, the Company will be pleased to assist with investigation or advice to resolve any problems occurring.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

REPRODUCTION OF INFORMATION FOR CONTRACTUAL PURPOSES

Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would

be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Copyright in all documents (such as drawings, borehole or test pit logs, reports and specifications) provided by the Company shall remain the property of Jeffery and Katauskas Pty Ltd. Subject to the payment of all fees due, the Client alone shall have a licence to use the documents provided for the sole purpose of completing the project to which they relate. Licence to use the documents may be revoked without notice if the Client is in breach of any obligation to make a payment to us.

REVIEW OF DESIGN

Where major civil or structural developments are proposed <u>or</u> where only a limited investigation has been completed <u>or</u> where the geotechnical conditions/constraints are quite complex, it is prudent to have a joint design review which involves an experienced geotechnical engineer/engineering geologist.

SITE INSPECTION

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related.

Requirements could range from:

- a site visit to confirm that conditions exposed are no worse than those interpreted, to
- a visit to assist the contractor or other site personnel in identifying various soil/rock types and appropriate footing or pile founding depths, or
- iii) full time engineering presence on site.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 55 55 55 5 55 55 55 55 55 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

ASPHALTIC CONCRETE

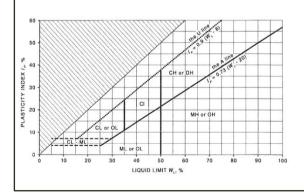
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ijor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ion is	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
Coarse grained soil (more than 65% of soil excluding oversize fraction is greater than 0.075mm)	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% fines	Fails to comply with above
uding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
of soil exclu 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
e than 65% o	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu > 6 1 < Cc < 3
oil (more	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
graineds	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

					Laboratory Classification		
Majo	or Divisions	Group Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
guipr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
soils (more than ze fraction is less	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
ine grained s		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{20} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown.					
		Extent of borehole/test pit collapse shortly after drilling/excavation.					
		Groundwater seepage into borehole or test pit noted during drilling or excavation.					
Samples	ES U50 DB DS ASB ASS	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.					
Field Tests	N = 17 4, 7, 10		Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Ind figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' to apparent hammer refusal within the corresponding 150mm depth increment.					
VNS = 25 PID = 100		Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).					
Moisture Condition (Fine Grained Soils)	w > PL w ≈ PL w < PL w ≈ LL w > LL	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.					
(Coarse Grained Soils)	D M W	DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface.					
Strength (Consistency) Cohesive Soils	VS S F St VSt Hd Fr ()	VERY SOFT — unconfined compressive strength ≤ 25kPa. SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa. FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. HARD — unconfined compressive strength > 400kPa. FRIABLE — strength not attainable, soil crumbles. Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.					
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE	≤15	0-4			
	L MD	LOOSE MEDIUM DENSE	> 15 and ≤ 35 > 35 and ≤ 65	4 – 10 10 – 30			
	D	DENSE	> 35 and ≤ 85	30 – 50			
	VD	VERY DENSE	> 65 and ≤ 85 > 85	30 – 50 > 50			
	()	Bracketed symbol indicates estimated density based on ease of drilling or other assessment.					
Hand Penetrometer Readings	300 250	Measures reading in	•	sive strength. Numbers indicate individual			

Log Column	Symbol	Definition	
Remarks	'V' bit	Hardened steel 'V' shaped bit.	
	'TC' bit	Twin pronged tungsten carbide bit.	
	T ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.	
	Soil Origin	The geological or	rigin of the soil can generally be described as:
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock.
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock.
		ALLUVIAL	– soil deposited by creeks and rivers.
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents.
		MARINE	- soil deposited in a marine environment.
		AEOLIAN	 soil carried and deposited by wind.
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits.
		LITTORAL	– beach deposited soil.

Classification of Material Weathering

Term		Abbreviation		Definition
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered	,	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength	
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	ЕН	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Abbreviations Used in Defect Description

Cored Borehole Log Column		Symbol Abbreviation	Description
Point Load Strength Index		• 0.6	Axial point load strength index test result (MPa)
		x 0.6	Diametral point load strength index test result (MPa)
Defect Details	– Туре	Be	Parting – bedding or cleavage
		CS	Clay seam
		Cr	Crushed/sheared seam or zone
		J	Joint
		Jh	Healed joint
		Ji	Incipient joint
		XWS	Extremely weathered seam
	Orientation	Degrees	Defect orientation is measured relative to normal to the core axis (ie. relative to the horizontal for a vertical borehole)
	– Shape	Р	Planar
		С	Curved
		Un	Undulating
		St	Stepped
		lr	Irregular
	– Roughness	Vr	Very rough
		R	Rough
		S	Smooth
		Ро	Polished
		SI	Slickensided
	– Infill Material	Ca	Calcite
		Cb	Carbonaceous
		Clay	Clay
		Fe	Iron
		Qz	Quartz
		Ру	Pyrite
	Coatings	Cn	Clean
		Sn	Stained – no visible coating, surface is discoloured
		Vn	Veneer – visible, too thin to measure, may be patchy
		Ct	Coating ≤ 1mm thick
		Filled	Coating > 1mm thick
	– Thickness	mm.t	Defect thickness measured in millimetres