

REPORT

HUMEL ARCHITECTS

GEOTECHNICAL INVESTIGATION AND STABILITY
ASSESSMENT

PROPOSED OLD DARBY AND JOAN

EDMONDSON DRIVE, NARRABEEN, NSW

17 July 2013 Ref: 23283SYrpt2

JK Geotechnics

GEOTECHNICAL & ENVIRONMENTAL ENGINEERS

PO Box 976, North Ryde BC NSW 1670 Tel: 02 9888 5000 Fax: 02 9888 5001 www.jkgeotechnics.com.au

Jeffery & Katauskas Pty Ltd, trading as JK Geotechnics ABN 17 003 550 801

Date: 17 July 2013 Report No: 23283SYrpt2

Revision No: 0

Report prepared by:

Woodie Theunissen

Associate

Report reviewed by:

Paul Stubbs

Principal Geotechnical Engineer

For and on behalf of JK GEOTECHNICS PO Box 976 NORTH RYDE BC NSW 1670

© Document Copyright of JK Geotechnics.

This Report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JK) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JK and its Client and is therefore subject to:

- a) JK's proposal in respect of the work covered by the Report;
- b) the limitations defined in the Client's brief to JK;
- the terms of contract between JK and the Client, including terms limiting the liability of JK.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JK which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JK does so entirely at their own risk and to the fullest extent permitted by law, JK accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

23283SYrpt2 Page ii

TABLE OF CONTENTS

1	INTR	ODUCTION	1
2	STAB	BILITY ASSESSMENT METHODOLOGY	1
3	RESU	JLTS OF INVESTIGATION	2
	3.1	Site Description	2
	3.2	Subsurface Conditions	2
4	STAB	BILITY ASSESSMENT	3
	4.1	Hazards	3
	4.2	Risk Analysis	3
	4.3	Risk Assessment	4
5	СОМІ	MENTS AND RECOMMENDATIONS	4
	5.1	Excavation	4
	5.2	Retention	6
	5.3	Footings	7
	5.4	Slabs on Grade	7
	5.5	Further Work	7
6	GENE	ERAL COMMENTS	8

TABLE A: SUMMARY OF RISK ASSESSMENT TO PROPERTY

TABLE B: SUMMARY OF RISK ASSESSMENT TO LIFE

BOREHOLE LOGS 17 AND 18 INCLUSIVE

FIGURE 1: BOREHOLE LOCATION PLAN

FIGURE 2: SECTION A-A

DESIGN VIBRATION EMISSION GOALS

APPENDIX A: LANDSLIDE RISK MANAGEMENT TERMINOLOGY
APPENDIX B: SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

REPORT EXPLANATION NOTES

23283SYrpt2 Page iii

1 INTRODUCTION

This report has been prepared to support the S96 application to alter the previously approved development at Edmondson Drive, Narrabeen as described in our previous report (Ref: 23283SYrpt, dated: 15 September 2009). The report was commissioned by Mr David Walker of Humel Architects was completed in accordance with our proposal.

Based on the development plans prepared by Humel Architects (Drawings 2012.100, DA00 to DA08, Rev: A) we understand that it is proposed to construct three single storey townhouses with garages over a communal basement carpark. The basement carpark will be cut into the hillside and will result in maximum cuts to depths of about 2.5m.

The purpose of this report was to use the subsurface information obtained in our previous report to develop a geotechnical model of the site based on geological and topographic features observed during our site visit. Based on this information we have completed a stability assessment of the site and provided comments and recommendations on excavation, retention, footings and slabs on grade for the proposed development.

2 STABILITY ASSESSMENT METHODOLOGY

This stability assessment is based upon a detailed inspection of the topographic, surface drainage and geological conditions of the site and its immediate environs completed. These observations were then integrated with the results of the subsurface conditions obtained during our previous investigation referenced above and a subsurface model developed for the site (Figure 2). These features were compared to those of other similar lots in neighbouring locations to provide a comparative basis for assessing the risk of instability affecting the proposed development. The attached Appendix A defines the terminology adopted for the risk assessment together with a flowchart illustrating the Risk Management Process based on the guidelines given in AGS 2007c (Reference 1).

A summary of our observations is presented in Section 3 below. Our specific recommendations regarding the proposed development are discussed in Section 5 following our geotechnical assessment.

The attached Figure 1 presents a geotechnical sketch plan showing the principal geotechnical features present at the site. Figure 1 is based on the survey plan presented by Humel Architects

(Drawing Number: 2012.100 DA02, Rev A). Additional features on Figure 1 have been measured by hand held inclinometer and tape measure techniques and hence are only approximate. Should any of the features be critical to the proposed development, we recommend they be located more accurately using instrument survey techniques. Figure 2 presents a typical cross-section through the site based on the survey data augmented by our mapping observations.

3 RESULTS OF INVESTIGATION

3.1 Site Description

The site is located near the top of a plateau and gently slopes down to the north-west at about 5°. The site is predominantly grassed with a scattering of trees that typically range from about 4m to 6m in height. The site is bounded to the north and west by Edmondson Drive and Second Avenue respectively. To the south is a single storey brick building that appeared in good condition when viewed from the site while to the east is a grassed area with a scattering of trees that has similar topographic features to that of the site.

3.2 <u>Subsurface Conditions</u>

Reference to the 1:100,000 Geological Map of the Sydney Geological Region indicates that the site is underlain by Hawkesbury Sandstone. Based on the results of the subsurface investigation the subsurface conditions comprise generally a thin layer of predominantly sandy fill or soils overlying sandstone bedrock. The more pertinent subsurface details encountered within the area of proposed works are described below. For a more detailed description of the materials encountered at a particular test location reference should be made to the attached borehole logs.

Fill

A sandy fill was encountered in both borehole locations and extended to 0.2m (BH18) and 0.5m (BH17).

Natural Soils

In Borehole 18 predominantly very loose silty sands were encountered underlying the fill and extended to a depth of 0.7m. A thin layer of stiff silty clay was present below the silty sand and extended to 0.75m, at which depth it overlay sandstone bedrock.

Sandstone Bedrock

Sandstone bedrock was encountered at depths of 0.5m (BH17) and 0.75m (BH18). In the case of Borehole 17 the sandstone bedrock was of medium to high strength and was penetrated to a depth of 1.5m, at which depth refusal of the tungsten carbide (TC) bit occurred and the borehole was terminated. In Borehole 18 a very low to low strength sandstone bedrock was encountered at a depth of 0.75m and extended to 1.5m, at which depth the borehole was terminated.

Groundwater

All boreholes were dry during and on completion of drilling. No longer term groundwater monitoring was completed.

4 STABILITY ASSESSMENT

4.1 Hazards

We consider that the potential landslide hazards associated with the site to be the following:

A Instability of gently sloping topography.

This potential hazard is indicated in schematic form on the attached Figure 2.

4.2 Risk Analysis

The attached Table A summarises our qualitative assessment of each potential landslide hazard and of the consequences to the site in its current state should the above identified landslide hazard occur. Use has been made of data in MacGregor et al (2007) to assist with our assessment of the likelihood of a potential hazard occurring. Based on the above, the qualitative risks to property have been determined. The terminology adopted for this qualitative assessment is in accordance with Table A1 given in Appendix A. Table A indicates that the assessed risk to property is very low which is considered acceptable in accordance with the criteria given in Reference 1.

We have also used the indicative probabilities associated with the assessed likelihood of instability to calculate the risk to life. The temporal and vulnerability factors that have been adopted are given in the attached Table B together with the resulting risk calculation. Our assessed risk to life for the person most at risk is about 2 x 10⁻⁹. This is considered to be acceptable in relation to the criteria given in Reference 1.

4.3 Risk Assessment

In preparing our recommendations given below we have adopted the above interpretations of the Risk Management Policy requirements. We have also assumed that no activities on surrounding land which may affect the risk on the subject site would be carried out. We have further assumed that all Council's buried services are, and will be regularly maintained to remain, in good condition.

We consider that our risk analysis has shown that the site and existing and proposed development can achieve the 'Acceptable Risk Management' criteria as defined in Reference 1. Provided the comments and recommendations presented below are followed, the risk posed by slope instability to both property and life for the proposed development will remain within acceptable levels.

5 COMMENTS AND RECOMMENDATIONS

5.1 Excavation

Excavation for the proposed basement will result in excavation to maximum depths of about 2.5m. Excavation to these depths is expected to result in the removal of fill, sands and sandstone bedrock. The sandstone bedrock is likely to be of variable strength and will range up to medium to high strength or better. Excavation of the soils and sandstone bedrock of up to very low strength may be completed using conventional earthmoving equipment such as tracked excavators or similar (say 15 tonnes to 20 tonnes) with buckets with "tiger" teeth attached. Sandstone bedrock of low strength or better will require excavation using "hard rock" excavation techniques.

"Hard rock" excavation techniques may consist of percussive or non-percussive techniques. Percussive techniques comprise the use of rock hammers while non-percussive techniques comprise rotary grinders, rock saws, ripping, rock splitting etc. Where percussive excavation techniques are adopted there is the risk that transmitted vibrations may damage nearby movement sensitive structures such as the adjoining buildings. Consequently, we recommend that the following measures be taken:

Prior to the commencement of construction dilapidation reports could be completed on the
adjoining structures to the south of the site. As the adjoining structures are owned by RSL
LifeCare and it is understood that it is proposed to demolish them as part of development
plans of the retirement village it may not be necessary for dilapidation reports to be

completed. However, should RSL LifeCare consider that construction related damage to adjoining structures is unacceptable, dilapidation reports should be completed. The purpose of dilapidation reports is to provide a baseline condition survey of the structures. In this way the builder is protected from spurious claims relating to pre-existing damage and the owners of the adjoining structures have a baseline report on the condition of their structures prior to the commencement of construction should their structures suffer from construction related damage.

- During percussive excavation quantitative vibration monitoring must be completed. This
 monitoring may be either continuous or periodic, depending on the level of assurance
 required and will provide feedback to the excavation contractor on the suitability of the
 excavation equipment adopted. Vibration monitors should ideally be attached to the
 adjoining structures closest to the location of the percussive excavation. Where nonpercussive excavation techniques are adopted no vibration monitoring is required,
- Percussive excavation should be completed so that the excavation is progressively enlarged by breaking small wedges out of the face,
- Rock hammers should only be operated in short bursts to prevent amplification of vibrations.
- Where transmitted vibrations exceed prescribed limits excavation techniques must be altered to reduced transmitted vibrations to within acceptable limits. This may mean that the size of percussive equipment used may need to be reduced, a combination of percussive and non-percussive techniques used or only non-percussive techniques adopted. Combined percussive and non-percussive techniques may include the excavation of a cut off trench around the site to reduce vibrations from excavation activities; this can be done progressively with the rock saw, or line drilling, especially along excavation boundaries, to aid breaking and trimming. Whether these techniques are effective in controlling transmitted vibrations must be confirmed by quantitative vibration monitoring.

Alternatively, non-percussive excavation techniques may comprise the use of rock saws, ripping tynes, rotary grinders etc. Where non-percussive excavation techniques are adopted dilipation reports may be considered but are not essential and quantitative vibration monitoring is not required. It should be noted that where ripping tynes are used large excavators will be required to excavate the medium and high strength sandstone bedrock.

The prescribed vibration limits that should be adopted on this site where percussive excavation techniques are adopted are set out in the Design Vibration Emission Goals attached to the rear of this report.

5.2 Retention

Due to the relatively shallow depth to bedrock we anticipate that adequate space will allow for the formation of temporary batters. Temporary batters formed through soils may be formed at no steeper than 1Vertical(V):1.5(Horizontal(H)). Where permanent batters are adopted they should be formed at no steeper than 1V:2.5H but for maintenance purposes flatter slopes of 1V:3H or 4H may be more appropriate. Sandstone bedrock of low strength or greater should be able to be cut vertically and left unsupported provided it is free from adverse defects. In this regard we recommend that every 1.5m of unsupported vertical excavation through sandstone bedrock be inspected by a geotechnical engineer so that where adverse defects are present they may be identified and remedial measures initiated.

It is understood that the built structure will provide long term support. For the design of cantilevered retaining walls a triangular earth pressure distribution and a coefficient of active earth pressure (k_a) of 0.35 may be adopted where movement sensitive structures are not located within the zone of influence of the excavation (defined by a region extending back a horizontal distance of 2H from the top of the wall where H is the height of retained materials). Where the walls are propped or movement sensitive structures are located within the zone of influence of the excavation a coefficient of lateral earth pressure of 0.6 should be adopted. A unit weight of 20kN/m³ should be adopted. All surcharge loads such as stockpiles, footing loads, traffic loads etc should be added to the above pressures. Appropriate hydrostatic pressures should also be added to the above pressures.

Previous excavations completed across the retirement village have revealed somewhat variable bedrock conditions. In some cases although the boreholes indicate that the bedrock is of good strength, once excavated the exposed rock is quite weakly cemented and friable and requires long term support. In this regard, provision should be made in the structural design for full height support of the cuts. In this regard we recommend that for cantilevered walls a k_a of 0.25 while a coefficient of lateral earth pressure of 0.4 should be adopted for propped walls. Once the excavation is complete and the sandstone cuts have been inspected we can then advise whether the sandstone cuts will require long term structural support or not.

Whilst we do not expect groundwater to pose significant problems groundwater seepage is expected to occur at the interface between the soils and bedrock and through defects within the rock mass itself such as bedding partings, joints etc. We anticipate that all groundwater inflows will be able to be intercepted using dish drains located at the base of the cut faces and piped by gravity flow for disposal to the stormwater system.

5.3 Footings

Excavation for the proposed basement carpark is likely to expose sandstone bedrock over most of the of the excavation. Consequently, we recommend that all footing be uniformly founded on sandstone bedrock. Footings founded on sandstone bedrock of at least very low strength may be designed for an allowable bearing pressure (ABP) of 1,000kPa.

Prior to pouring concrete all footings should be free from all loose and softened materials. Where water ponds in the base of the footings they should first be pumped dry and then re-excavated to remove all loosened or softened materials. All footing excavations should be inspected by a geotechnical engineer prior to pouring to confirm that the design bearing pressures have been achieved.

5.4 Slabs on Grade

It is anticipated that bedrock will be exposed at bulk excavation level. Consequently, on-grade floor slabs poured directly over bedrock should be provided with underfloor drainage. The underfloor drainage should comprise a strong, durable, single sized washed aggregate, such as 'blue metal' gravel. The underfloor drainage should collect groundwater seepage and direct it to the stormwater system for disposal.

5.5 Further Work

We recommend that the following further works be completed prior to and during construction:

- Where required dilapidation reports on the adjoining movement sensitive structures prior to the commencement of excavation,
- Continuous or periodic vibration monitoring during percussive excavation,
- Where unsupported vertical cuts are formed through the sandstone bedrock inspections by a geotechnical engineer every 1.5m of vertical excavation so that any adverse defects present may be identified and remedial measures initiated,

 Inspection of all footing excavations by a geotechnical engineer prior to pouring to confirm that the design bearing pressures are achieved.

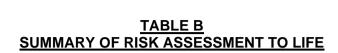
6 GENERAL COMMENTS

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and JK Geotechnics accept no responsibility whatsoever for the performance of the structure where recommendations are not implemented in full and properly tested, inspected and documented.

The subsurface conditions between the completed boreholes may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact this office.

This report provides advice on geotechnical aspects for the proposed civil and structural design. As part of the documentation stage of this project, Contract Documents and Specifications may be prepared based on our report. However, there may be design features we are not aware of or have not commented on for a variety of reasons. The designers should satisfy themselves that all the necessary advice has been obtained. If required, we could be commissioned to review the geotechnical aspects of contract documents to confirm the intent of our recommendations has been correctly implemented.

A waste classification will need to be assigned to any soil excavated from the site prior to offsite disposal. Subject to the appropriate testing, material can be classified as Virgin Excavated Natural Material (VENM), General Solid, Restricted Solid or Hazardous Waste. If the natural soil has been stockpiled, classification of this soil as Excavated Natural Material (ENM) can also be undertaken, if requested. However, the criteria for ENM are more stringent and the cost associated with attempting to meet these criteria may be significant. Analysis takes seven to 10 working days to complete, therefore, an adequate allowance should be included in the construction program unless testing is completed prior to construction. If contamination is encountered, then substantial further testing (and associated delays) should be expected. We strongly recommend that this issue is addressed prior to the commencement of excavation on site.


This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of JK Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

- Reference 1: Australian Geomechanics Society (2007c) 'Practice Note Guidelines for Landslide Risk Management', Australian Geomechanics, Vol 42, No 1, March 2007, pp63-114.
- Reference 2: MacGregor, P, Walker, B, Fell, R, and Leventhal, A (2007) 'Assessment of Landslide Likelihood in the Pittwater Local Government Area', Australian Geomechanics, Vol 42, No 1, March 2007, pp183-196.

TABLE A SUMMARY OF RISK ASSESSMENT TO PROPERTY

POTENTIAL LANDSLIDE HAZARD	A
Assessed Likelihood	Barely Credible
Assessed Consequences	Insignificant
Risk	Very Low
Comments	

POTENTIAL LANDSLIDE HAZARD	A
Assessed Likelihood	Barely Credible
Indicative Annual Probability	1 x 10 ⁻⁶
Duration of Use of Area Affected (Temporal Probability)	0.5 hour/day 0.0208
Probability of Not Evacuating Area Affected	1
Vulnerability to Life if Failure Occurs Whilst Person Present	0.1
Risk for Person Most at Risk	2 x 10 ⁻⁹

Jeffery and Katauskas Pty Ltd consulting geotechnical and environmental engineers

BOREHOLE LOG

Borehole No. 1/1

Client:

RSL LIFECARE LTD

Project:

PROPOSED REDEVELOPMENT

Location:

RSL ANZAC VILLAGE, NARRABEEN, NSW

Job No. 23283SY

Method: SPIRAL AUGER

R.L. Surface:

58.2m

IK250

Date. 19-0-09			JK250				AHD					
						Logg	ed/Checked by: M.P./ᠿ					
Record ES DB SAMPLES DB Field Tests		Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET	Į.				o - -			FILL: Silty sand, fine to medium grained, dark grey.	M			GRASS COVER
				N > 4 4/0mm REFUSAL			-	SANDSTONE: fine to coarse grained, light grey.	DW	M-H	-	- HIGH 'TC' BIT RESISTANCE -
	-	+						END OF BOREHOLE AT 1.5m				. 'TC' BIT REFUSAL
	in the sale has been a south of the sale o				2 —							
			_		7				1			

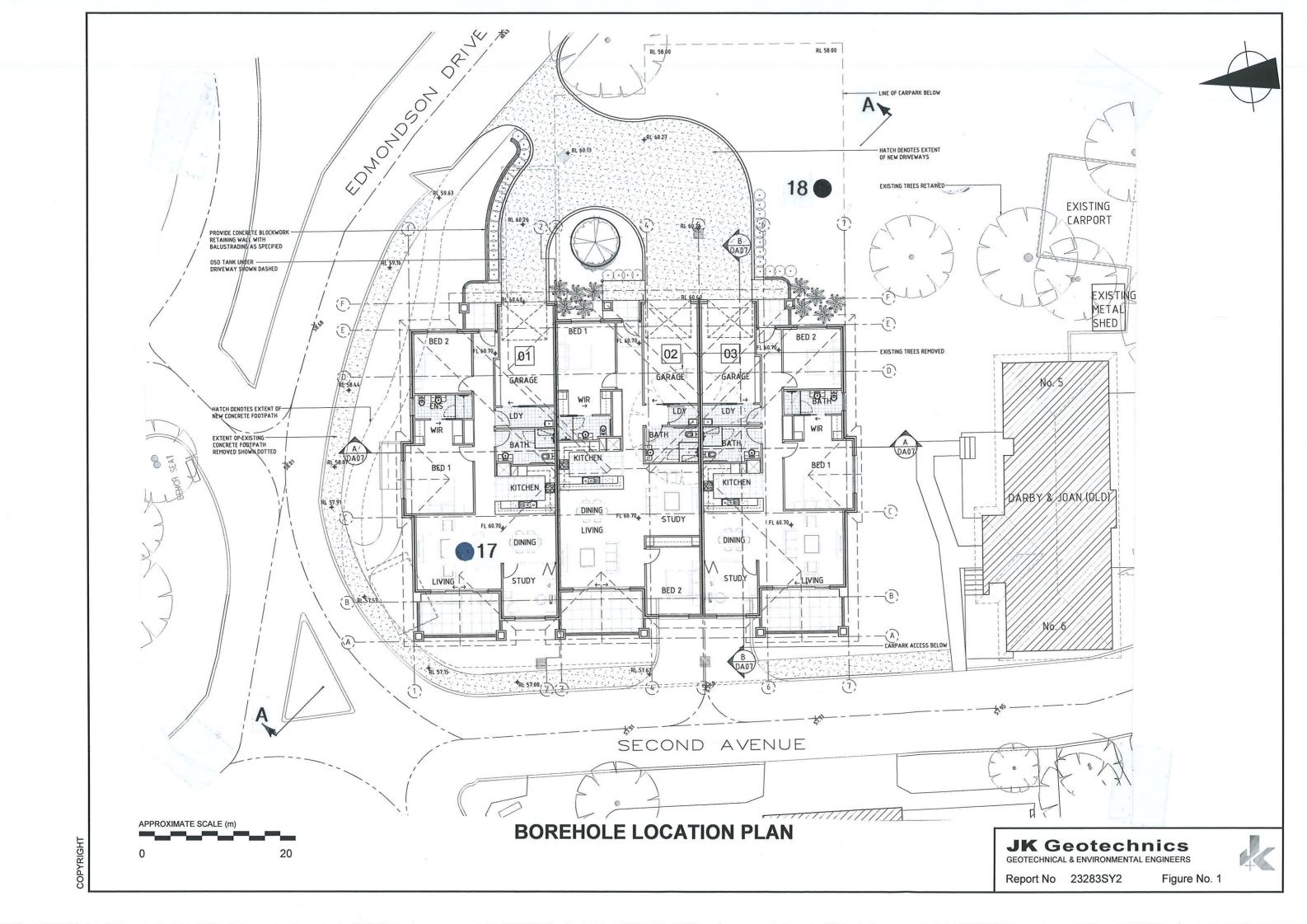
Jeffery and Katauskas Pty Ltd consulting geotechnical and environmental engineers

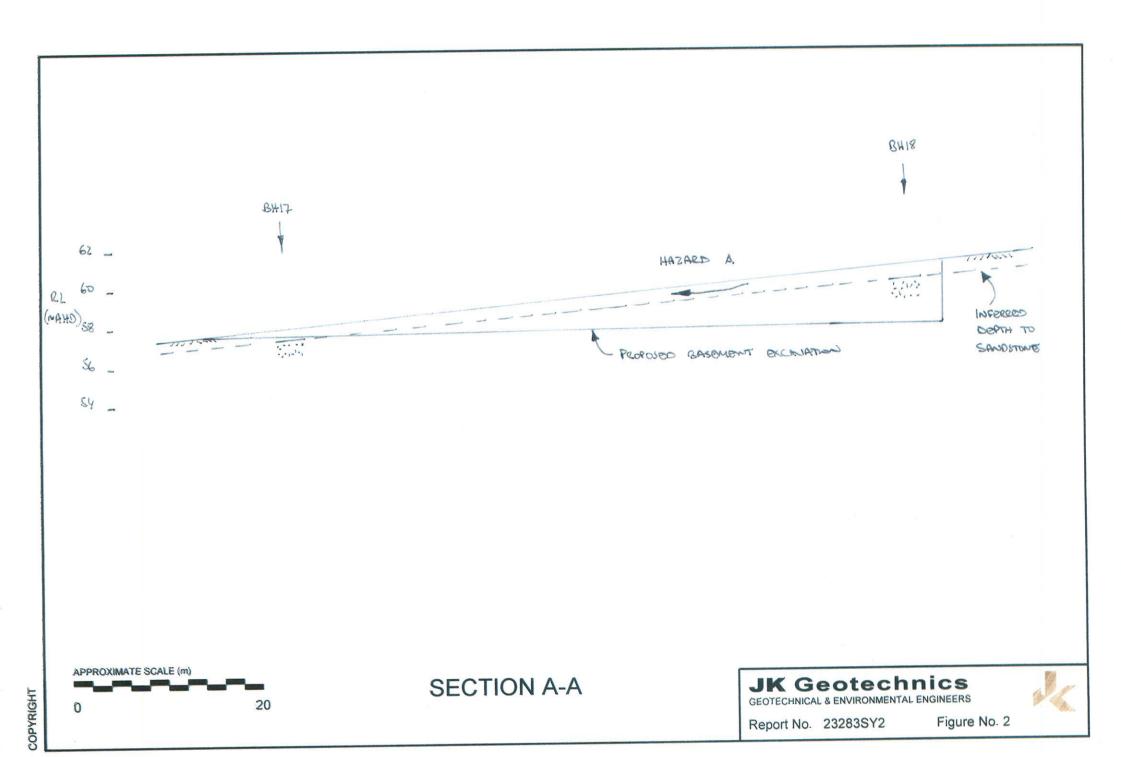
BOREHOLE LOG

Borehole No. 18

Client:

RSL LIFECARE LTD


Project:


PROPOSED REDEVELOPMENT

Location:

RSL ANZAC VILLAGE, NARRABEEN, NSW

Date : 19-8-09			Method: SPIRAL AUGER			R.L. Surface: 60.3m			
				MANAGORI A CITA					
		Logg	ed/Checked by: M.P./ 65			······			
Groundwater Record ES U50 D8 D8 Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Ref. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON	0 💥		FILL: Silty sand, fine to medium	М			GRASS COVER		
COMPLET ION		SM	grained, dark grey and brown, with a trace of root fibres. SILTY SAND: fine to coarse grained, grey.	Μ	VL	-			
	1 —	CL-CH "	SILTY CLAY: medium to high plasticity, light grey. SANDSTONE: fine to medium grained, light grey.	MC>PL DW	St VL-L	150 130 150	LOW 'TC' BIT RESISTANCE		
			END OF BOREHOLE AT 1.5m				-		
	2 - 3 - 4 - 5 - 6 - 6 - 7								

VIBRATION EMISSION DESIGN GOALS

German Standard DIN 4150 – Part 3: 1986 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally recognised to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) horizontal directions, in the plane of the uppermost floor), are summarised in Table 1 below.

It should be noted that peak vibration velocities higher than the minimum figures in Table 1 for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual condition of the structure.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural effects such as superficial cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

Table 1: DIN 4150 – Structural Damage – Safe Limits for Building Vibration

		Peak Vibration Velocity in mm/s					
Group	Type of Structure	A	Plane of Floor of Uppermost Storey				
		Less than 10Hz	10Hz to 50Hz	50Hz to 100Hz	All Frequencies		
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design.	20	20 to 40	40 to 50	40		
2	Dwellings and buildings of similar design and/or use.	5	5 to 15	1 5 to 20	15		
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (eg. buildings that are under a preservation order).	3	3 to 8	8 to 10	8		

Note: For frequencies above 100Hz, the higher values in the 50Hz to 100Hz column should be used.

APPENDIX A

LANDSLIDE RISK
MANAGEMENT
TERMINOLOGY

APPENDIX A LANDSLIDE RISK MANAGEMENT

Definition of Terms and Landslide Risk

Risk Terminology	Description
Acceptable Risk	A risk for which, for the purposes of life or work, we are prepared to accept as it is with no regard to its management. Society does not generally consider expenditure in further reducing such risks justifiable.
Annual Exceedance Probability (AEP)	The estimated probability that an event of specified magnitude will be exceeded in any year.
Consequence	The outcomes or potential outcomes arising from the occurrence of a landslide expressed qualitatively or quantitatively, in terms of loss, disadvantage or gain, damage, injury or loss of life.
Elements at Risk	The population, buildings and engineering works, economic activities, public services utilities, infrastructure and environmental features in the area potentially affected by landslides.
Frequency	A measure of likelihood expressed as the number of occurrences of an event in a given time. See also 'Likelihood' and 'Probability'.
Hazard	A condition with the potential for causing an undesirable consequence (the landslide). The description of landslide hazard should include the location, volume (or area), classification and velocity of the potential landslides and any resultant detached material, and the likelihood of their occurrence within a given period of time.
Individual Risk to Life	The risk of fatality or injury to any identifiable (named) individual who lives within the zone impacted by the landslide; or who follows a particular pattern of life that might subject him or her to the consequences of the landslide.
Landslide Activity	The stage of development of a landslide; pre failure when the slope is strained throughout but is essentially intact; failure characterised by the formation of a continuous surface of rupture; post failure which includes movement from just after failure to when it essentially stops; and reactivation when the slope slides along one or several pre-existing surfaces of rupture. Reactivation may be occasional (eg. seasonal) or continuous (in which case the slide is 'active').
Landslide Intensity	A set of spatially distributed parameters related to the destructive power of a landslide. The parameters may be described quantitatively or qualitatively and may include maximum movement velocity, total displacement, differential displacement, depth of the moving mass, peak discharge per unit width, or kinetic energy per unit area.
Landslide Risk	The AGS Australian GeoGuide LR7 (AGS, 2007e) should be referred to for an explanation of Landslide Risk.
Landslide Susceptibility	The classification, and volume (or area) of landslides which exist or potentially may occur in an area or may travel or retrogress onto it. Susceptibility may also include a description of the velocity and intensity of the existing or potential landsliding.
Likelihood	Used as a qualitative description of probability or frequency.
Probability	A measure of the degree of certainty. This measure has a value between zero (impossibility) and 1.0 (certainty). It is an estimate of the likelihood of the magnitude of the uncertain quantity, or the likelihood of the occurrence of the uncertain future event.
	These are two main interpretations:
	(i) Statistical – frequency or fraction – The outcome of a repetitive experiment of some kind like flipping coins. It includes also the idea of population variability. Such a number is called an 'objective' or relative frequentist probability because it exists in the real world and is in principle measurable by doing the experiment.

Risk Terminology	Description				
1					
Probability (continued)	(ii) Subjective probability (degree of belief) – Quantified measure of belief, judgment, or confidence in the likelihood of an outcome, obtained by considering all available information honestly, fairly, and with a minimum of bias. Subjective probability is affected by the state of understanding of a process, judgment regarding an evaluation, or the quality and quantity of information. It may change over time as the state of knowledge changes.				
Qualitative Risk Analysis	An analysis which uses word form, descriptive or numeric rating scales to describe the magnitude of potential consequences and the likelihood that those consequences will occur.				
Quantitative Risk Analysis	An analysis based on numerical values of the probability, vulnerability and consequences and resulting in a numerical value of the risk.				
Risk	A measure of the probability and severity of an adverse effect to health, property or the environment. Risk is often estimated by the product of probability x consequences. However, a more general interpretation of risk involves a comparison of the probability and consequences in a non-product form.				
Risk Analysis	The use of available information to estimate the risk to individual, population, property, or the environment, from hazards. Risk analyses generally contain the following steps: scope definition, hazard identification and risk estimation.				
Risk Assessment	The process of risk analysis and risk evaluation.				
Risk Control or Risk Treatment	The process of decision-making for managing risk and the implementation or enforcement of risk mitigation measures and the re-evaluation of its effectiveness from time to time, using the results of risk assessment as one input.				
Risk Estimation	The process used to produce a measure of the level of health, property or environmental risks being analysed. Risk estimation contains the following steps: frequency analysis, consequence analysis and their integration.				
Risk Evaluation	The stage at which values and judgments enter the decision process, explicitly or implicitly, by including consideration of the importance of the estimated risks and the associated social, environmental and economic consequences, in order to identify a range of alternatives for managing the risks.				
Risk Management	The complete process of risk assessment and risk control (or risk treatment).				
Societal Risk	The risk of multiple fatalities or injuries in society as a whole: one where society would have to carry the burden of a landslide causing a number of deaths, injuries, financial, environmental and other losses.				
Susceptibility	See 'Landslide Susceptibility'.				
Temporal Spatial Probability	The probability that the element at risk is in the area affected by the landsliding, at the time of the landslide.				
Tolerable Risk	A risk within a range that society can live with so as to secure certain net benefits. It is a range of risk regarded as non-negligible and needing to be kept under review and reduced further if possible.				
Vulnerability	The degree of loss to a given element or set of elements within the area affected by the landslide hazard. It is expressed on a scale of 0 (no loss) to 1 (total loss). For property, the loss will be the value of the damage relative to the value of the property; for persons, it will be the probability that a particular life (the element at risk) will be lost, given the person(s) is affected by the landslide.				

NOTE: Reference should be made to Figure A1 which shows the inter-relationship of many of these terms and the relevant portion of Landslide Risk Management.

Reference should also be made to the paper referenced below for Landslide Terminology and more detailed discussion of the above terminology.

This appendix is an extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in Australian Geomechanics, Vol 42, No 1, March 2007, which discusses the matter more fully.

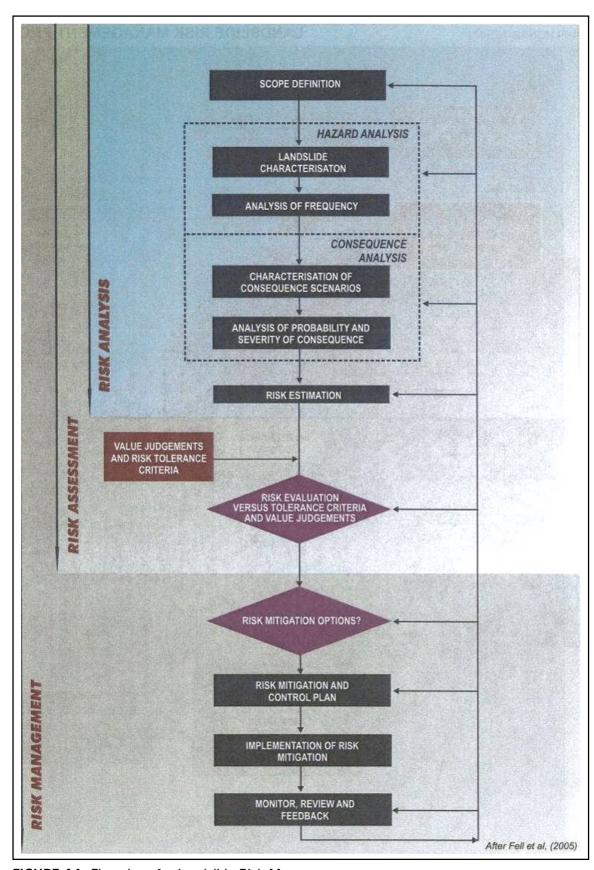


FIGURE A1: Flowchart for Landslide Risk Management.

This figure is an extract from GUIDELINE FOR LANDSLIDE SUSCEPTIBILITY, HAZARD AND RISK ZONING FOR LAND USE PLANNING, as presented in Australian Geomechanics Vol 42, No 1, March 2007, which discusses the matter more fully.

TABLE A1: LANDSLIDE RISK ASSESSMENT QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate Annual Probability Indicative Notional		Implied Indicative Landslide Recurrence Interval		Description	Descriptor	Level
Value	Boundary					
10 ⁻¹	5x10 ⁻²	100 years		The event is expected to occur over the design life.	ALMOST CERTAIN	Α
10 ⁻²	5x10 ⁻³			The event will probably occur under adverse conditions over the design life.	LIKELY	В
10 ⁻³	5x10 ⁻⁴	1000 years	200 years 2000 years	The event could occur under adverse conditions over the design life.	POSSIBLE	С
10 ⁻⁴	5x10 ⁻⁵	10,000 years	20,000 years	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10 ⁻⁵	5x10 ⁻⁶	100,000 years	200,000 years	The event is conceivable but only under exceptional circumstances over the design life.	RARE	E
10 ⁻⁶	5,710	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	F

Note: (1) The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa.

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate	Cost of Damage			Level	
Indicative Value	Notional Boundary	Description	Descriptor		
200%	100%	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	1	
60%	40%	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.	MAJOR	2	
20%	10%	Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3	
5%	1%	Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4	
0.5%	. 70	Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5	

Notes: (2) The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures.

- (3) The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property.
- (4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa.

Extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in Australian Geomechanics, Vol 42, No 1, March 2007, which discusses the matter more fully.

Page 2

TABLE A1: LANDSLIDE RISK ASSESSMENT QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (continued)

QUALITATIVE RISK ANALYSIS MATRIX - LEVEL OF RISK TO PROPERTY

LIKELIHOO)D	CONSEQU	JENCES TO PROPE	RTY (With Indicative	Approximate Cost of	Damage)
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10 ⁻¹	VH	VH	VH	Н	M or L (5)
B - LIKELY	10 ⁻²	VH	VH	Н	M	L
C - POSSIBLE	10 ⁻³	VH	Н	М	M	VL
D - UNLIKELY	10-4	Н	M	L	L	VL
E - RARE	10 ⁻⁵	M	L	L	VL	VL
F - BARELY CREDIBLE	10 ⁻⁶	L	VL	VL	VL	VL

Notes: (5) Cell A5 may be subdivided such that a consequence of less than 0.1% is Low Risk.

(6) When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current time.

RISK LEVEL IMPLICATIONS

	Risk Level	Example Implications (7)		
VH	VERY HIGH RISK	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.		
Н	HIGH RISK	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.		
M	MODERATE RISK	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable.		
L	LOW RISK	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.		
VL	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures.		

Note: (7) The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.

Extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in Australian Geomechanics, Vol 42, No 1, March 2007, which discusses the matter more fully.

AUSTRALIAN GEOGUIDE LR2 (LANDSLIDES)

What is a Landslide?

Any movement of a mass of rock, debris, or earth, down a slope, constitutes a "landslide". Landslides take many forms, some of which are illustrated. More information can be obtained from Geoscience Australia, or by visiting its Australian landslide Database at www.ga.gov.au/urban/factsheets/landslide.jsp. Aspects of the impact of landslides on buildings are dealt with in the book "Guideline Document Landslide Hazards" published by the Australian Building Codes Board and referenced in the Building Code of Australia. This document can be purchased over the internet at the Australian Building Codes Board's website www.abcb.gov.au.

Landslides vary in size. They can be small and localised or very large, sometimes extending for kilometres and involving millions of tonnes of soil or rock. It is important to realise that even a 1 cubic metre boulder of soil, or rock, weighs at least 2 tonnes. If it falls, or slides, it is large enough to kill a person, crush a car, or cause serious structural damage to a house. The material in a landslide may travel downhill well beyond the point where the failure first occurred, leaving destruction in its wake. It may also leave an unstable slope in the ground behind it, which has the potential to fall again, causing the landslide to extend (regress) uphill, or expand sideways. For all these reasons, both "potential" and "actual" landslides must be taken very seriously. The present a real threat to life and property and require proper management.

Identification of landslide risk is a complex task and must be undertaken by a geotechnical practitioner (GeoGuide LR1) with specialist experience in slope stability assessment and slope stabilisation.

What Causes a Landslide?

Landslides occur as a result of local geological and groundwater conditions, but can be exacerbated by inappropriate development (GeoGuide LR8), exceptional weather, earthquakes and other factors. Some slopes and cliffs never seem to change, but are actually on the verge of failing. Others, often moderate slopes (Table 1), move continuously, but so slowly that it is not apparent to a casual observer. In both cases, small changes in conditions can trigger a landslide with series consequences. Wetting up of the ground (which may involve a rise in groundwater table) is the single most important cause of landslides (GeoGuide LR5). This is why they often occur during, or soon after, heavy rain. Inappropriate development often results in small scale landslides which are very expensive in human terms because of the proximity of housing and people.

Does a Landslide Affect You?

Any slope, cliff, cutting, or fill embankment may be a hazard which has the potential to impact on people, property, roads and services. Some tell-tale signs that might indicate that a landslide is occurring are listed below:

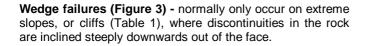
- Open cracks, or steps, along contours
- Groundwater seepage, or springs
- Bulging in the lower part of the slope
- · Hummocky ground

- trees leaning down slope, or with exposed roots
- debris/fallen rocks at the foot of a cliff
- tilted power poles, or fences
- cracked or distorted structures

These indications of instability may be seen on almost any slope and are not necessarily confined to the steeper ones (Table 1). Advice should be sought from a geotechnical practitioner if any of them are observed. Landslides do not respect property boundaries. As mentioned above they can "run-out" from above, "regress" from below, or expand sideways, so a landslide hazard affecting your property may actually exist on someone else's land.

Local councils are usually aware of slope instability problems within their jurisdiction and often have specific development and maintenance requirements. Your local council is the first place to make enquiries if you are responsible for any sort of development or own or occupy property on or near sloping land or a cliff.

TABLE 1 – Slope Descriptions


	Slope	Maximum	
Appearance	Angle	Gradient	Slope Characteristics
Gentle	0° - 10°	1 on 6	Easy walking.
Moderate	10° - 18°	1 on 3	Walkable. Can drive and manoeuvre a car on driveway.
Steep	18° - 27°	1 on 2	Walkable with effort. Possible to drive straight up or down roughened concrete driveway, but cannot practically manoeuvre a car.
Very Steep	27° - 45°	1 on 1	Can only climb slope by clutching at vegetation, rocks, etc.
Extreme	45° - 64°	1 on 0.5	Need rope access to climb slope.
Cliff	64° - 84°	1 on 0.1	Appears vertical. Can abseil down.
Vertical or Overhang	84° - 90±°	Infinite	Appears to overhang. Abseiler likely to lose contact with the face.

Some typical landslides which could affect residential housing are illustrated below:

Rotational or circular slip failures (Figure 1) - can occur on moderate to very steep soil and weathered rock slopes (Table 1). The sliding surface of the moving mass tends to be deep seated. Tension cracks may open at the top of the slope and bulging may occur at the toe. The ground may move in discrete "steps" separated by long periods without movement. More rapid movement may occur after heavy rain.

Translational slip failures (Figure 2) - tend to occur on moderate to very steep slopes (Table 1) where soil, or weak rock, overlies stronger strata. The sliding mass is often relatively shallow. It can move, or deform slowly (creep) over long periods of time. Extensive linear cracks and hummocks sometimes form along the contours. The sliding mass may accelerate after heavy rain.

Rock falls (Figure 3) - tend to occur from cliffs and overhangs (Table 1).

Cliffs may remain, apparently unchanged, for hundreds of years. Collections of boulders at the foot of a cliff may indicate that rock falls are ongoing. Wedge failures and rock falls do not "creep". Familiarity with a particular local situation can instil a false sense of security since failure, when it occurs, is usually sudden and catastrophic.

Debris flows and mud slides (Figure 4) - may occur in the foothills of ranges, where erosion has formed valleys which slope down to the plains below. The valley bottoms are often lined with loose eroded material (debris) which can "flow" if it becomes saturated during and after heavy rain. Debris flows are likely to occur with little warning; they travel a long way and often involve large volumes of soil. The consequences can be devastating.

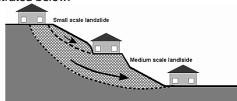


Figure 1

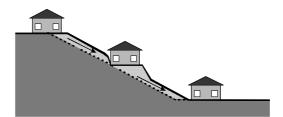


Figure 2

Rock fall

Wedge failure

Figure 3

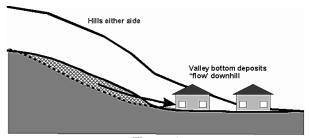


Figure 4

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR3 Soil Slopes
- GeoGuide LR4 Rock Slopes
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls

- GeoGuide LR7 Landslide Risk
- GeoGuide LR8 Hillside Construction
- GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK)

Concept of Risk

Risk is a familiar term, but what does it really mean? It can be defined as "a measure of the probability and severity of an adverse effect to health, property, or the environment." This definition may seem a bit complicated. In relation to landslides, geotechnical practitioners (see GeoGuide LR1) are required to assess risk in terms of the likelihood that a particular landslide will occur and the possible consequences. This is called landslide risk assessment. The consequences of a landslide are many and varied, but our concerns normally focus on loss of, or damage to, property and loss of life.

Landslide Risk Assessment

Some local councils in Australia are aware of the potential for landslides within their jurisdiction and have responded by designating specific "landslide hazard zones". Development in these areas is normally covered by special regulations. If you are contemplating building, or buying an existing house, particularly in a hilly area, or near cliffs, then go first for information to your local council. If you have any concern that you could be dealing with a landslide hazard that your local council is not aware of you should seek advice from a geotechnical practitioner.

<u>Landslide risk assessment must be undertaken by a geotechnical practitioner.</u> It may involve visual inspection, geological mapping, geotechnical

investigation and monitoring to identify:

- potential landslides (there may be more than one that could impact on your site);
- the likelihood that they will occur;
- the damage that could result;
- the cost of disruption and repairs; and
- the extent to which lives could be lost.

Risk assessment is a predictive exercise, but since the ground and the processes involved are complex, prediction inevitably lacks precision. If you commission a landslide risk assessment for a particular site you should expect to receive a report prepared in accordance with current professional guidelines and in a form that is acceptable to your local council, or planning authority.

Risk to Property

Table 1 indicates the terms used to describe risk to property. Each risk level depends on an assessment of how likely a landslide is to occur and its consequences in dollar terms. Likelihood is the chance of it happening in any one year, as indicated in Table 2. Consequences are related to the cost of the repairs and perhaps temporary loss of use. These two factors are combined by the geotechnical practitioner to determine the Qualitative Risk.

TABLE 1 – RISK TO PROPERTY

TABLE 1 - RIOK TO TROI ERTT								
Qualitative Risk		Significance - Geotechnical engineering requirements						
Very high	VH	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low. May be too expensive and not practical. Work likely to cost more than the value of the property.						
High	Н	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable level. Work would cost a substantial sum in relation to the value of the property.						
Moderate	М	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as possible.						
Low	L	Usually acceptable to regulators. Where treatment has been needed to reduce the risk to this level, ongoing maintenance is required.						
Very Low	VL	Acceptable. Manage by normal slope maintenance procedures.						

TABLE 2 – LIKELIHOOD

Likelihood	Annual Probability
Almost Certain	1:10
Likely	1:100
Possible	1:1,000
Unlikely	1:10,000
Rare	1:100,000
Barely credible	1:1.000.000

The terms "unacceptable", "tolerable" etc. in Table 1 indicate how most people react to an assessed risk level. However, some people will always be more prepared, or better able, to tolerate a higher risk level than others. Some local councils and planning authorities stipulate a maximum tolerable risk level. This may be lower than you feel is reasonable for your block but it is, nonetheless, a pre-requisite for development. Reasons for this include the fact that a landslide on your block may pose a risk to neighbours and passers-by and that , should you sell, subsequent owners of the block may be more risk averse than you.

Risk to Life

Most of us have some difficulty grappling with the concept of risk and deciding whether, or not, we are prepared to accept it. However, without doing any sort of analysis, or commissioning a report from an "expert", we all take risks every day. One of them is the risk of being killed in an accident. This is worth thinking about, because it tells us a lot about ourselves and can help to put an assessed risk into a meaningful context. By identifying activities that we either are, or are not, prepared to engage in, we can get some indication of the maximum level of risk that we are prepared to take. This knowledge can help us to decide whether we really are able to accept a particular risk, or to tolerate a particular likelihood of loss, or damage, to our property (Table 2).

In Table 3, data from NSW for the years 1998 to 2002, and other sources, is presented. A risk of 1 in 100,000 means that, in any one year, 1 person is killed for every 100,000 people undertaking that particular activity. The NSW data assumes that the whole population undertakes the activity. That is, we are all at risk of being killed in a fire, or of choking on our food, but it is reasonable to assume that only people who go deep sea fishing run a risk of being killed while doing it.

It can be seen that the risks of dying as a result of falling, using a motor vehicle, or engaging in water-related activities (including bathing) are all greater than 1:100,000 and yet few people actively avoid situations where these risks are present. Some people are averse to flying and yet it represents a lower risk than choking to death on food. The data also indicate that, even when the risk of dying as a consequence of a particular event is very small, it could still happen to any one of us today. If this were not so, there would be no risk at all and clearly that is not the case.

In NSW, the planning authorities consider that 1:1,000,000 is the maximum tolerable risk for domestic housing built near an obvious hazard, such as a chemical factory. Although not specifically considered in the NSW guidelines there is little difference between the hazard presented by a neighbouring factory and a landslide: both have the capacity to destroy life and property and both are always present.

TABLE 3 - RISK TO LIFE

Risk (deaths per participant per year)	Activity/Event Leading to Death (NSW data unless noted)			
1:1,000	Deep sea fishing (UK)			
1:1,000 to 1:10,000	Motor cycling, horse riding , ultra-light flying (Canada)			
1:23,000	Motor vehicle use			
1:30,000	Fall			
1:70,000	Drowning			
1:180,000	Fire/burn			
1:660,000	Choking on food			
1:1,000,000	Scheduled airlines (Canada)			
1:2,300,000	Train travel			
1:32,000,000	Lightning strike			

More information relevant to your particular situation may be found in other AUSTRALIAN GEOGUIDES:

- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides
- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls
- GeoGuide LR8 Hillside Construction
- GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

APPENDIX B

SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

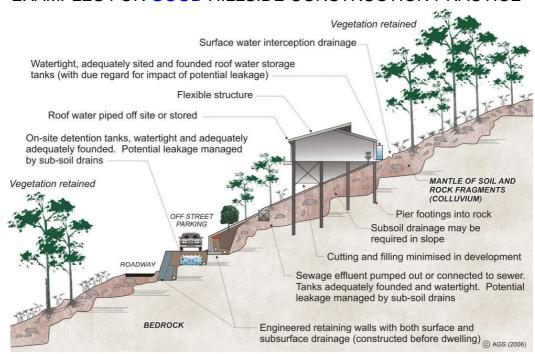
APPENDIX B - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

GOOD ENGINEERING PRACTICE

POOR ENGINEERING PRACTICE

ADVICE		
GEOTECHNICAL ASSESSMENT	Obtain advice from a qualified, experienced geotechnical consultant at early stage of planning and before site works.	Prepare detailed plan and start site works before geotechnical advice.
PLANNING		
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.
DESIGN AND CONSTRUC	TION	
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels. Use decks for recreational areas where appropriate.	Floor plans which require extensive cutting and filling. Movement intolerant structures
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS & DRIVEWAYS	Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	Excavate and fill for site access before geotechnical advice.
EARTHWORKS CUTS FILLS	Retain natural contours wherever possible. Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control. Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall.	Indiscriminant bulk earthworks. Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements. Loose or poorly compacted fill, which if it fails, may flow a considerable distance (including onto properties below). Block natural drainage lines.
	Provide surface drainage and appropriate subsurface drainage.	Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil, boulders, building rubble etc. in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on bedrock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.
FOOTINGS	Found within bedrock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE SURFACE	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide generous falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond bench areas.
SUBSURFACE	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge of roof run-off into absorption trenches.
SEPTIC & SULLAGE	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use of absorption trenches without consideration of landslide risk.
EROSION CONTROL & LANDSCAPING	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.
DRAWINGS AND SITE VIS	SITS DURING CONSTRUCTION	
DRAWINGS	Building Application drawings should be viewed by a geotechnical consultant.	
SITE VISITS	Site visits by consultant may be appropriate during construction.	
INSPECTION AND MAINT	ENANCE BY OWNER	
OWNER'S	Clean drainage systems; repair broken joints in drains and leaks in	
RESPONSIBILITY	supply pipes. Where structural distress is evident seek advice.	

This table is an extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in *Australian Geomechanics*, Vol 42, No 1, March 2007 which discusses the matter more fully.


AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES FOR GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that due to level ground. Retaining walls must be designed taking these forces into account.

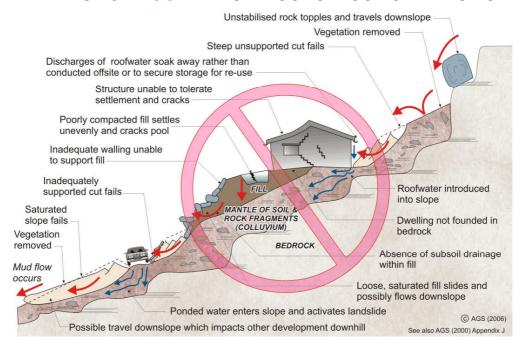
Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfill the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.

Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.


Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

Extract from Geoguide LR8 - Hillside Construction Practice

EXAMPLES FOR POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soaks into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herringbone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides
- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage

- GeoGuide LR6 Retaining Walls
- GeoGuide LR7 Landslide Risk
- GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

Extract from Geoguide LR8 - Hillside Construction Practice.

REPORT EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the geotechnical report in regard to classification methods, field procedures and certain matters relating to the Comments and Recommendations section. Not all notes are necessarily relevant to all reports.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Geotechnical engineering involves gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable
	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

SAMPLING

Sampling is carried out during drilling or from other excavations to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on plasticity, grain size, colour, moisture content, minor constituents and, depending upon the degree of disturbance, some information on strength and structure. Bulk samples are similar but of greater volume required for some test procedures.

Undisturbed samples are taken by pushing a thin-walled sample tube, usually 50mm diameter (known as a U50), into the soil and withdrawing it with a sample of the soil contained in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling used are given on the attached logs.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All except test pits, hand auger drilling and portable dynamic cone penetrometers require the use of a mechanical drilling rig which is commonly mounted on a truck chassis.

Jeffery & Katauskas Pty Ltd, trading as JK Geotechnics ABN 17 003 550 801

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for an excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The location of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4. 6. 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N>30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid $60\,^\circ$ tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "N $_{\rm c}$ " on the borehole logs, together with the number of blows per 150mm penetration.

Static Cone Penetrometer Testing and Interpretation: Cone penetrometer testing (sometimes referred to as a Dutch Cone) described in this report has been carried out using an Electronic Friction Cone Penetrometer (EFCP). The test is described in Australian Standard 1289, Test F5.1.

In the tests, a 35mm diameter rod with a conical tip is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the frictional resistance on a separate 134mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are electrically connected by wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20mm per second) the information is output as incremental digital records every 10mm. The results given in this report have been plotted from the digital data.

The information provided on the charts comprise:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone – expressed in MPa.
- Sleeve friction the frictional force on the sleeve divided by the surface area expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed as a percentage.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and occasionally very soft clays, rising to 4% to 10% in stiff clays and peats. Soil descriptions based on cone resistance and friction ratios are only inferred and must not be considered as exact.

Correlations between EFCP and SPT values can be developed for both sands and clays but may be site specific.

Interpretation of EFCP values can be made to empirically derive modulus or compressibility values to allow calculation of foundation settlements.

Stratification can be inferred from the cone and friction traces and from experience and information from nearby boreholes etc. Where shown, this information is presented for general guidance, but must be regarded as interpretive. The test method provides a continuous profile of engineering properties but, where precise information on soil classification is required, direct drilling and sampling may be preferable.

Portable Dynamic Cone Penetrometers: Portable Dynamic Cone Penetrometer (DCP) tests are carried out by driving a rod into the ground with a sliding hammer and counting the blows for successive 100mm increments of penetration.

Two relatively similar tests are used:

- Cone penetrometer (commonly known as the Scala Penetrometer) – a 16mm rod with a 20mm diameter cone end is driven with a 9kg hammer dropping 510mm (AS1289, Test F3.2). The test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various Road Authorities.
- Perth sand penetrometer a 16mm diameter flat ended rod is driven with a 9kg hammer, dropping 600mm (AS1289, Test F3.3). This test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.

LOGS

The borehole or test pit logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line" variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg bricks, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse engineering characteristics or behaviour. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing is normally carried out in accordance with Australian Standard 1289 'Methods of Testing Soil for Engineering Purposes'. Details of the test procedure used are given on the individual report forms.

ENGINEERING REPORTS

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building) the information and interpretation may not be relevant if the design proposal is changed (eg to a twenty storey building). If this happens, the company will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions the potential for this will be partially dependent on borehole spacing and sampling frequency as well as investigation technique
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of persons or contractors responding to commercial pressures.

If these occur, the company will be pleased to assist with investigation or advice to resolve any problems occurring.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed that at some later stage, well after the event.

REPRODUCTION OF INFORMATION FOR CONTRACTUAL PURPOSES

Attention is drawn to the document 'Guidelines for the Provision of Geotechnical Information in Tender Documents', published by the Institution of Engineers, Australia. Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Copyright in all documents (such as drawings, borehole or test pit logs, reports and specifications) provided by the Company shall remain the property of Jeffery and Katauskas Pty Ltd. Subject to the payment of all fees due, the Client alone shall have a licence to use the documents provided for the sole purpose of completing the project to which they relate. License to use the documents may be revoked without notice if the Client is in breach of any objection to make a payment to us.

REVIEW OF DESIGN

Where major civil or structural developments are proposed or where only a limited investigation has been completed or where the geotechnical conditions/ constraints are quite complex, it is prudent to have a joint design review which involves a senior geotechnical engineer.

SITE INSPECTION

The company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related.

Requirements could range from:

- a site visit to confirm that conditions exposed are no worse than those interpreted, to
- a visit to assist the contractor or other site personnel in identifying various soil/rock types such as appropriate footing or pier founding depths, or
- iii) full time engineering presence on site.

GRAPHIC LOG SYMBOLS FOR SOILS AND ROCKS

	100 11 100 11	5			a
SOIL		ROCK		DEFEC	TS AND INCLUSIONS
	FILL	0 6	CONGLOMERATE	77772	CLAY SEAM
	TOPSOIL		SANDSTONE		SHEARED OR CRUSHED SEAM
	CLAY (CL, CH)		SHALE	0000	BRECCIATED OR SHATTERED SEAM/ZONE
	SILT (ML, MH)		SILTSTONE, MUDSTONE, CLAYSTONE	* *	IRONSTONE GRAVEL
	SAND (SP, SW)		LIMESTONE	K, K	ORGANIC MATERIAL
200 a	GRAVEL (GP, GW)		PHYLLITE, SCHIST	OTHE	R MATERIALS
	SANDY CLAY (CL, CH)		TUFF	700	CONCRETE
	SILTY CLAY (CL, CH)	不是	GRANITE, GABBRO		BITUMINOUS CONCRETE, COAL
	CLAYEY SAND (SC)	+ + + + + + + + + + + + + + + + + + + +	DOLERITE, DIORITE		COLLUVIUM
	SILTY SAND (SM)		BASALT, ANDESITE		
9/9	GRAVELLY CLAY (CL, CH)		QUARTZITE		
3 8 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CLAYEY GRAVEL (GC)				
	SANDY SILT (ML)				
KWWW	PEAT AND ORGANIC SOILS				
			90		

			100	
8	The same of the sa	1		

	Field Identification Procedures (Excluding particles larger than 75 µm and basing fractions on estimated weights)		Group Symbols a	Typical Names	Information Required for Describing Soils	Describing Soils Criteria								
	Gravels More than half of coarse fraction is larger than 4 mm sieve size	Clean gravels (little or no fines)			nd substantial	G₩	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate ap- proximate percentages of sand and gravel; maximum size;		sand from grain size ction smaller than 75 ction smaller than 75 SP is S	$C_{\rm U} = \frac{D_{60}}{D_{10}}$ Greater that $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Bet	ween I and 3		
	avets nalf of larger ieve si	Clean			range of sizes sizes missing	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	angularity, surface condition, and hardness of the coarse grains; local or geologic name		nd from grain on smaller tha assified as foll c requiring use	Not meeting all gradation	requirements for GW		
s rial is sizeb	Grae than bection is	s with s ciable it of	Nonplastic fines (for iden cedures see ML below)		Nonplastic fines (for identicedures see ML below)		tification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	uc	d sand raction rre class W, SP M, SC asses rec	"A" line, or PI less	Above "A" line with PI between 4 and 7 are
ined soil of mater im sieve	Mor	Gravels with fines (appreciable amount of fines)	Plastic fines (f	for identifications)	on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	field identification	fines (fines (fines of Soils of GP, SI, GC, SI, derline of the sun and symbol of the s	Atterberg limits above "A" line, with PI greater than 7	borderline cases requiring use of dual symbols		
Coarse-grained soils e than half of material is er than 75 µm sieve sizeb e visible to naked eye)	Sands More than half of coarse fraction is smaller than 4 mm sieve size	Clean sands (little or no fines)				amounts of all intermediate particle SW sands little		Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	der field ide	percentages of gravel and sand from grain size on percentage of fines (fraction smaller than 75 size) coarse grained soils are classified as follows: an 5% GW, GP, SW, SP an 12% Borderline cases requiring use of 12% dual symbols	$C_{\rm U} = \frac{D_{60}}{D_{10}}$ Greater that $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Betw	n 6 ween 1 and 3	
Co More t larger	nds half of smaller sieve si	Clea		y one size or a intermediate		SP	Poorly graded sands, gravelly sands, little or no fines	hard, angular gravel par- ticles 12 mm maximum size; rounded and subangularsand grains coarse to fine, about	Atterberg lim	on percer size) con persize) co	Not meeting all gradation	requirements for SW		
smallest p	Sa re than I ction is 4 mm s	Sands with fines (appreciable amount of fines)	Nonplastic fit cedures,	nes (for ident see ML below)		SM	Silty sands, poorly graded sand- silt mixtures	low dry strength; well com-		Atterberg limits below "A" line or PI less than 5	Above "A" line with PI between 4 and 7 are borderline cases			
the	Mo	Sand fi (appro amo	Plastic fines (for identification prosee CL below)		or identification procedures, Clayey sands, poorly graded		anuviai sanu, (5747)	-		Atterberg limits below "A" line with PI greater than 7	requiring use of dual symbols			
is about	Identification l	Procedures of	on Fraction Sm	aller than 380	μm Sieve Size			·	identifying the					
aller e size is a	ø		Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)					60 Comparin	g soils at equal liquid limit			
Fine-grained soils More than half of material is smaller than 75 µm sieve size (The 75 µm sieve size	Silts and clays liquid limit	o man 30	None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	curve in	40 Toughnes with incre	s and dry strength increase asing plasticity index	Line		
grained s f of mate δ μm siev (The 7	Site	8	Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	grain size	Plasticity 30	a	OH OF		
hal nn 7			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	Use	10 CL	OL OL	-MH		
ore than	Silts and clays liquid limit greater than		Slight to medium	Slow to none	Slight to medium	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		0 10	20 30 40 50 60 7	0 80 90 100		
ž	Mo luid ater 50		High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:			Liquid limit			
	Silts		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of		for labora	Plasticity chart tory classification of fin	e grained soils		
н	Highly Organic Soils Readily identified by colour, odour, spongy feel and frequently by fibrous texture		Pt	Peat and other highly organic soils	fine sand; numerous vertical root holes; firm and dry in place; loess; (ML)									

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). 2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

LOG COLUMN	SYMBOL	DEFINITION
Groundwater Record		Standing water level. Time delay following completion of drilling may be shown.
	-c-	Extent of borehole collapse shortly after drilling.
	—	Groundwater seepage into borehole or excavation noted during drilling or excavation.
Samples	ES U50 DB DS ASB ASS SAL	Soil sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos screening. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'R' as noted below.
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60 degree solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.
	VNS = 25	Vane shear reading in kPa of Undrained Shear Strength.
	PID = 100	Photoionisation detector reading in ppm (Soil sample headspace test).
Moisture Condition (Cohesive Soils)	MC>PL MC≈PL MC <pl< td=""><td>Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.</td></pl<>	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.
(Cohesionless Soils)	D M W	DRY – Runs freely through fingers. MOIST – Does not run freely but no free water visible on soil surface. WET – Free water visible on soil surface.
Strength (Consistency) Cohesive Soils	VS S F St VSt H	VERY SOFT — Unconfined compressive strength less than 25kPa SOFT — Unconfined compressive strength 25-50kPa FIRM — Unconfined compressive strength 50-100kPa STIFF — Unconfined compressive strength 100-200kPa VERY STIFF — Unconfined compressive strength 200-400kPa HARD — Unconfined compressive strength greater than 400kPa Bracketed symbol indicates estimated consistency based on tactile examination or other tests.
Density Index/ Relative Density (Cohesionless Soils)	VL L MD D VD	Density Index (Ip) Range (%)SPT 'N' Value Range (Blows/300mm)Very Loose<15
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kPa on representative undisturbed material unless noted otherwise.
Remarks	'V' bit 'TC' bit	Hardened steel 'V' shaped bit. Tungsten carbide wing bit. Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.

JKG Log Symbols Rev1 June12 Page 1 of 2

LOG SYMBOLS continued

ROCK MATERIAL WEATHERING CLASSIFICATION

TERM	SYMBOL	DEFINITION
Residual Soil	RS	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
Extremely weathered rock	XW	Rock is weathered to such an extent that it has "soil" properties, ie it either disintegrates or can be remoulded, in water.
Distinctly weathered rock	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Slightly weathered rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh rock	FR	Rock shows no sign of decomposition or staining.

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the direction normal to the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining, Science and Geomechanics. Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	Is (50) MPa	FIELD GUIDE
Extremely Low:	EL		Easily remoulded by hand to a material with soil properties.
		0.03	
Very Low:	VL		May be crumbled in the hand. Sandstone is "sugary" and friable.
		0.1	
Low:	L		A piece of core 150mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
		0.3	
Medium Strength:	М		A piece of core 150mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
		1	A mises of seas 450mm lengty 50mm dis seas seemet he hasken by head see he alimbly
High:	Н		A piece of core 150mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
		3	
Very High:	VH		A piece of core 150mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
		10	
Extremely High:	EH		A piece of core 150mm long x 50mm dia. is very difficult to break with hand-held hammer. Rings when struck with a hammer.

ABBREVIATIONS USED IN DEFECT DESCRIPTION

ABBREVIATION	DESCRIPTION	NOTES
Be	Bedding Plane Parting	Defect orientations measured relative to the normal to the long core axis
CS	Clay Seam	(ie relative to horizontal for vertical holes)
J	Joint	
Р	Planar	
Un	Undulating	
S	Smooth	
R	Rough	
IS	Ironstained	
XWS	Extremely Weathered Seam	
Cr	Crushed Seam	
60t	Thickness of defect in millimetres	

JKG Log Symbols Rev1 June12 Page 2 of 2