GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER FORM NO. 1 – To be submitted with Development Application

	Development Application for	Peter Kelly		
		(Applicant)		
	Address of site	85 Grandview Drive, Newport, NSW	<u> </u>	
	tion made by geotechnical engineer nical report	or engineering geologist or coastal en	ngineer (where applicable) as part of a	
I,	<u>Woodie Theunissen</u> on behalf o	f JK Geotechnics Pty Ltd		
Risk Mai	nagement Policy for Pittwater - 2009 a organisation/company has a current pro		st or coastal engineer as defined by the Gesation/company to issue this document an million.	
Please r	nark appropriate box			
	•	Report referenced below in accordance v 2007) and the Geotechnical Risk Manage	with the Australia Geomechanics Society's ment Policy for Pittwater - 2009	Landslide
V	, ,	·	ced below has been prepared in accordance (AGS 2007) and the Geotechnical Risk Ma	
	6.0 of the Geotechnical Risk Manage	ement Policy for Pittwater - 2009. <i>We</i> /I clance with the Geotechnical Risk Manage	ried out a risk assessment in accordance wonfirm that the results of the risk assessmement Policy for Pittwater - 2009 and furth	ent for the
	Application only involves Minor Deve	elopment/Alterations that do not require a	l and are/am of the opinion that the De a Detailed Geotechnical Risk Assessment Policy for Pittwater - 2009 requirements	and hence
	Provided the coastal process and coa	stal forces analysis for inclusion in the Ge	eotechnical Report	
Geotech	nical Report Details:			7
	Report Title: Geotechnical Assessm	nent for Proposed Alterations and Addition	ns	
	Report Date: 27 May 2025		Report Ref No: 37607YMrpt	
	Author: Matthew Pearce			
	Author's Company/Organisation: Jh	K Geotechnics Pty Ltd		
Docume	entation which relate to or are relied Survey plan (Ref 10316.2 Rev 2 da	upon in report preparation: ted 29 April 2024) by LS Surveyors Pty L	td]
	Architectural drawings (Nos DA00 t	o DA014, dated 14 March 2025) prepared	d by Action Plans	

Lam We are aware that the above Geotechnical Report, prepared for the abovementioned site is to be submitted in support of a Development Application for this site and will be relied on by Pittwater Council as the basis for ensuring confirming that the Geotechnical Risk Management aspects of the proposed development have been adequately addressed to achieve an "Acceptable Risk Management" level for the life of the structure, taken as at least 100 years unless otherwise stated and justified in the Report and that reasonable and practical measures have been identified to remove foreseeable risk, as discussed in the Report.

CPEng

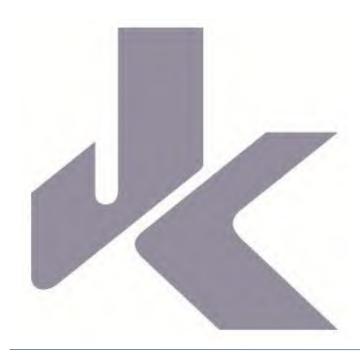
Signature Name Chartered Professional Status Membership No. Company:

889807 JK Geotechnics Pty Ltd

Woodie Theunissen

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER FORM NO. 1(a) - Checklist of Requirements For Geotechnical Risk Management Report for Development Application

Development Application for	Peter Kelly (Name of Applicant)
Address of site85 Grandview Drive, Newp	oort, NSW


	Address of site85 Grandview Drive, Newport, NSW
	wing checklist covers the minimum requirements to be addressed in a Geotechnical Risk Management Geotechnical Report klist is to accompany the Geotechnical Report and its certification (Form No. 1).
Geotech	nical Report Details:
	Report Title: Geotechnical Assessment for Proposed Alterations and Additions
	Report Date: 27 May 2025 Report Ref No: 37607YMrpt
	Author: Matthew Pearce
	Author's Company/Organisation: JK Geotechnics Pty Ltd
Please m	ark appropriate box
\checkmark	Comprehensive site mapping conducted 9 May 2025
	Mapping details presented on contoured site plan with geomorphic mapping to a minimum scale of 1:200 500 (as appropriate) Subsurface investigation required
	No Justification:only required for the Construction Certificate stage, as outlined in our report
	Yes Date conducted:(preliminary investigation was previously carried out by DCP test, by others, and the results have been used to inform our assumptions relating to subsurface profile in our report.
✓	Geotechnical model developed and reported as an inferred subsurface type-section Geotechnical hazards identified
	✓ Above the site
	✓ On the site
	☑Below the site
	✓ Beside the site
\checkmark	Geotechnical hazards described and reported
\checkmark	Risk assessment conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
	Consequence analysis
	✓ Frequency analysis
	Risk calculation
	Risk assessment for property conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
√	Risk assessment for loss of life conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
V	Assessed risks have been compared to "Acceptable Risk Management" criteria as defined in the Geotechnical Risk Managemen Policy for Pittwater - 2009
\checkmark	Opinion has been provided that the design can achieve the "Acceptable Risk Management" criteria provided that the specified conditions are achieved recommendations presented in the Report are adopted.
\checkmark	Design Life Adopted:
	☑ 100 years
	☐ Other
_	specify
\checkmark	Geotechnical Conditions to be applied to all four phases as described in the Geotechnical Risk Management Policy for Pittwater - 2009 have been specified
\checkmark	Additional action to remove risk where reasonable and practical have been identified and included in the report.
	Risk assessment within Bushfire Asset Protection Zone.
	are aware that Pittwater Council will rely on the Geotechnical Report, to which this checklist applies, as the basis for ensuring

Lam We are aware that Pittwater Council will rely on the Geotechnical Report, to which this checklist applies, as the basis for ensuring confirming that the geotechnical risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level for the life of the structure, taken as at least 100 years unless otherwise stated, and justified in the Report and that reasonable and practical measures have been identified to remove foreseeable risk as discussed in the Report.

Signature Name Chartered Professional Status

Chartered Professional Status Membership No. Company: Woodie Theunissen CPEng

889807 JK Geotechnics Pty Ltd

REPORT TO **PETER KELLY**

ON

GEOTECHNICAL ASSESSMENT
(In Accordance with Pittwater Council Risk Management Policy)

FOR

PROPOSED ALTERATIONS AND ADDITIONS

AT

85 GRANDVIEW DRIVE, (AKA 46A YORK TERRACE) (LOT 43 DP16029), NEWPORT, NSW

Date: 27 May 2025 Ref: 37607YMrpt

JKGeotechnics www.jkgeotechnics.com.au

T: +61 2 9888 5000 JK Geotechnics Pty Ltd ABN 17 003 550 801

Report prepared by:

Matthew Pearce

Senior Associate | Geotechnical Engineer

Report reviewed by:

Woodie Theunissen

Principal | Geotechnical Engineer

For and on behalf of JK GEOTECHNICS PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
37607YMrpt	Final Report	27 May 2025

© Document copyright of JK Geotechnics

This report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JKG) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKG and its Client and is therefore subject to:

- a) JKG's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKG;
- c) The terms of contract between JKG and the Client, including terms limiting the liability of JKG.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKG which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKG does so entirely at their own risk and to the fullest extent permitted by law, JKG accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

At the Company's discretion, JKG may send a paper copy of this report for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence. The USER shall ascertain the accuracy and the suitability of this information for the purpose intended; reasonable effort is made at the time of assembling this information to ensure its integrity. The recipient is not authorised to modify the content of the information supplied without the prior written consent of JKG.

Table of Contents

1	INTR	ODUCTION	4
2	ASSE	SSMENT METHODOLOGY	4
	2.1	Walkover Survey	4
	2.2	Previous Subsurface Investigation	5
3	SUM	MARY OF OBSERVATIONS	5
4	GEOL	OGY AND SUBSURFACE CONDITIONS	11
5	PROF	POSED DEVELOPMENT	11
6	GEO1	TECHNICAL ASSESSMENT	12
	6.1	Potential Landslide Hazards	12
	6.2	Risk Analysis	13
	6.3	Risk Assessment	13
7	СОМ	MENTS AND RECOMMENDATIONS	14
	7.1	Conditions Recommended to Establish the Design Parameters	14
	7.2	Conditions Recommended to the Detailed Design to be Undertaken for the Cons	struction
	Certif	icate	16
	7.3	Conditions Recommended During the Construction Period	16
	7.4	Conditions Recommended for Ongoing Management of the Site/Structure(s)	17
8	GENE	ERAL COMMENTS	17

ATTACHMENTS

- **Table A: Summary of Risk Assessment to Property**
- Table B: summary of Risk Assessment to Life
- Figure 1: Site Location Plan
- Figure 2: Geotechnical Sketch Plan showing Proposed Deck Outline
- Figure 3: Geotechnical Sketch Plan showing Geotechnical Hazards
- Figure 4: Sketch Section A-A' Showing Geotechnical Hazards
- **Figure 5: Sketch Section B-B Showing Geotechnical Hazards**
- **Figure 6: Geotechnical Mapping Symbols**
- Appendix A: Landslide Risk Management Terminology
- **Appendix B: Some Guidelines for Hillside Construction**

1 INTRODUCTION

This report presents the results of our geotechnical assessment of the site at 85 Grandview Terrace, (Lot 43 DP16029), Newport (also known as 46A York Terrace, Bilgola Plateau), NSW. The location of the site is shown in Figure 1. The assessment was commissioned by Peter Kelly in accordance with our proposal (Ref: P71746YM, dated 5 May 2025). The site was inspected by our Senior Associate Geotechnical Engineer, Mr Matthew Pearce on 9 May 2025 to assess the existing stability of the site and the landslide risk proposed by the proposed development.

From the supplied documentation, including a geotechnical assessment report by GroundzeroGeo, dated 15 July 2024, we understand a landslide occurred in April 2024 and caused damage to a deck to the rear of the house and the retaining wall(s) located below and supporting the deck. Cracking in the interior brick walls of the house was also reported and we understand the residents have vacated the house as a result, though we do not know if the cracks and undermining of the house predates the 2024 landslide.

The proposed and remedial works comprise the reconstruction and extension of the lower deck and construction of a new retaining wall to replace the one that failed and had previously formed a terrace upon which the lower deck was supported. A more detailed description of the proposed development is presented in Section 5 below.

This report has been prepared in accordance with the requirements of the Geotechnical Risk Management Policy for Pittwater (2009) as discussed in Section 6 below. It is understood that the report will be submitted to Council as part of the DA documentation. Our report is preceded by the completed Council Forms 1 and 1a.

2 ASSESSMENT METHODOLOGY

2.1 Walkover Survey

This stability assessment is based upon a detailed inspection of the topographic, surface drainage and geological conditions of the site and its immediate environs. These features were compared to those of other similar lots in neighbouring locations to provide a comparative basis for assessing the risk of instability affecting the proposed development. The attached Appendix A defines the terminology adopted for the risk assessment together with a flowchart illustrating the Risk Management Process based on the guidelines given in AGS 2007c (Reference 1).

A summary of our observations is presented in Section 3 below. Our specific recommendations regarding the proposed development are discussed in Section 7 following our geotechnical assessment.

The attached Figures 2 and 3 present a geotechnical sketch plan showing the principal geotechnical features present at the site. While both show the principal geotechnical features Figure 2 also shows the location of the proposed deck and new retaining wall. Both figures are based on the survey plan prepared by LS Surveyors Pty Ltd (Ref 10316.2 Rev 2 dated 29 April 2024). Additional features have been measured by hand

held inclinometer and tape measure techniques and hence are only approximate. Should any of the features be critical to the proposed development, we recommend they be located more accurately using instrument survey techniques. Figures 4 and 5 present typical cross-sections through the site based on the survey data augmented by our mapping observations.

2.2 Previous Subsurface Investigation

As far as we are aware, investigation to date is limited to a single Dynamic Cone Penetration (DCP) test, which is reported in the geotechnical report prepared by Groundzero Geotechnics (Ref. GG070-24_GA dated 15 July 2024) and was supplied to us. The test had been carried out to refusal at a depth of 2.92m below the surface, although the surface reduced level at which the test was completed is unknown. The location of the test was indicated in a photo showing what we believe to believe is the south-western side of the failed deck. No plan was provided. We have plotted what we believe is the approximate location of the test on Figure 2.

No sample is obtained from DCP testing so the cause of refusal cannot be confirmed. DCP test refusal can occur on rock but can also occur on obstructions in fill or hard layers in soil. Further investigation would be required to prove the nature of the subsurface profile including the depth to rock. Recommendations for additional investigation are discussed in Section 7.1 below.

3 SUMMARY OF OBSERVATIONS

We recommend that the summary of observations which follows be read in conjunction with the attached Figures 2 to 5.

The site steps and slopes steeply down to the south-east and is located in the upper reaches of the steep slope located just below the flatter plateau that is present to the west of the site. The site is a battle axe block with access via a long, shared driveway that provides access to York Terrace and runs beside No 46 York Terrace. The driveway slopes down from the street to a parking bay at the rear of 46 York Terrace, and a garage in the south-western corner of the site. There is no vehicular access from Grandview Drive.

The site has an irregular shape, with a length of about 50m east to west and a width of about 28m at the top (north-western end) that narrows to about 10m at the bottom (south-eastern end) of the property. Surface levels range from about RL124m at the parking bay and garage, to RL106.5m in the south-eastern corner.

The central and lower portions of the site comprise steep and moderate slopes that have been terraced with numerous sandstone block retaining walls that have a maximum height of about 1.6m. This area is described in more detail further below.

At the upper end of the site, is a one to two storey house which has been cut into the hillside with sandstone flagging retaining walls on its north-western and north-eastern sides. The walls are laid back at about 80°, have a maximum height of about 2.5m and appear in reasonably good condition. The exception is where the wall supports the north-eastern site boundary and shows signs of distress in the form of minor stepped cracking (two cracks of 2mm to 3mm width). The house is almost fully clad with some subfloor brick walls

present on the north-eastern side. The house appeared to be in good condition with no cracking observed externally.

Towards the south-western corner of the site is a garage with a studio below. There is a void between the rear of the studio and a sandstone retaining wall that is about 1.4m high. The wall appeared to be in good condition. On the low side of the garage/studio are terraced walls, stairs and a pond supported by a low height sandstone retaining wall.

On the south-eastern/downslope side of the house is an upper deck, which is at ground floor level (GFL) with a partial lower ground floor (LGF) level located below. This LGF included a deck, however at the time of our inspection its southern corner has slumped down about 0.7m, as shown on **Photo 1** below.

Photo 1- looking westwards showing slumped deck

A decked pathway leading to the south-west also appeared to have slumped and failed, and was inaccessible and lying on the ground at the time of our inspection. This can be seen in **Photos 2 and 3**.

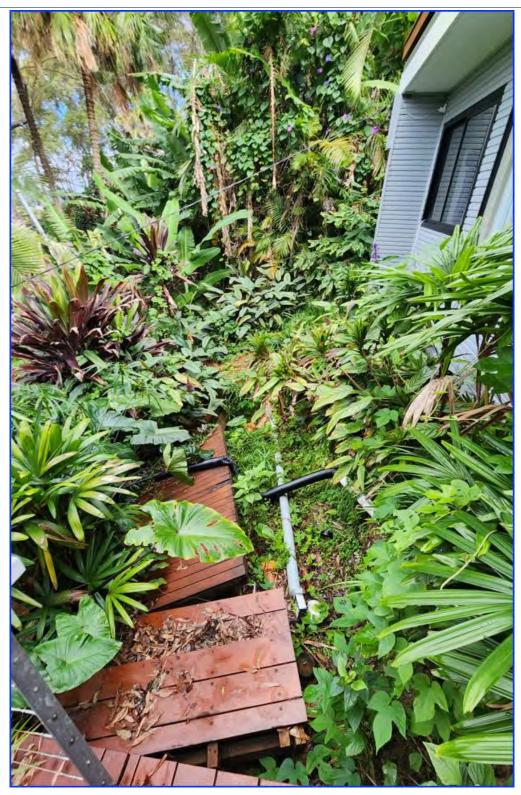



Photo 2- looking westwards showing slumped deck

Photo 3- looking down eastwards showing damaged deck and slumped path

Immediately down slope of the deck is a mortared rough-hewn sandstone retaining wall that has cracked tilted and appears to have translated or moved sideways and slid some distance downslope. The upper portion of the wall has moved outward 0.45m while the lower courses appear to have moved outwards about 0.2m as shown in **Photo 4 and 5**.

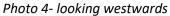


Photo 5- looking north-westwards

There were at least two ruptured white PVC pipes below the damaged deck and signs of a possible backscarp, which may suggest a rotational type failure. This is shown in **Photos 6 and 7** below. It is also possible that rather than being a backscarp, it may have formed following erosion from the broken stormwater pipe(s).

Photo 6 looking north-westwards

Photo 7- looking northwards

Photo 8-looking south-west under the lower deck showing a possible backscarp.

The backscarp, or steep localised unvegetated slope, is about 1m from the rear wall of the house. The footings for the deck appeared to be on rough poured shallow concrete pads founded within the backfill material that has been placed behind the wall that has failed. There has been some soil loss from behind the wall. The alignment of the wall diverges from the deck to the west, though it was not obvious what its prior position was.

No access was gained to the interior subfloor areas of the house, or to the west of the deck which was obstructed by dense vegetation.

To the north-east of the northern corner of the LGF level is a narrow passage that is supported by a mortared sandstone retaining wall that is up to 2.4m high. The wall had been repointed but shows signs of distress in the form of three 5mm wide stepping cracks.

At the rear of the site, below the failed sandstone retaining wall and LGF level deck is a steep and densely vegetated slope that slopes down at about 25° to 35° for a distance of about 5m. At the toe of this slope is a failed dry stacked sandstone retaining wall, some sandstone steps and broken white PVC stormwater pipes. We estimate that the failed sandstone wall would have been about 1m high, as estimated from the extent of sandstone cobbles that are now resting on the timber path/decking present below. On the south-eastern side of the decking is a dry stacked retaining wall that is about 1.6m high which was appeared in good condition. However, a few meters to the south-west is another dry stacked sandstone block wall that has collapsed, pushing over a timber paling fence on the boundary. Seepage was also observed flowing over the ground surface, at this location, as shown on Figure 2.

On the north-eastern side of the garden are numerous terraced sandstone block walls, some embedded sandstone boulders and a couple of possible small outcrops of sandstone bedrock. These all showed no signs of instability. The surface gradient reduces becomes flatter towards the lower end of the site, first to a slope of about 25° before further flattening to about 15°.

A few metres beyond the rear boundary of the site is a 5m high concrete crib retaining wall which supports the low end of the garden. At the toe of the wall is a footpath and Grandview Drive. The wall, path and roadway appeared in good condition.

To the east of the site is 87 Grandview Drive, which comprises a two to three storey cement rendered house with a terrace garden and a driveway abutting the boundary. There is a large crack in one of the planter bed walls where a large gum is growing at the toe. Otherwise, the walls and structure appeared to be in reasonable condition.

To the south of the site is 83 Grandview Drive. The nearside of this property has a gully with slopes of 20° to 30° and numerous palm trees on the slopes. The trough of the gully is reasonably well indicated by the location of the 450mm diameter stormwater pipe shown on the extract below. A derelict garage is located in the gully about 10m up from Grandview Drive and about 5m from the site boundary.

Extract 1- from supplied mgp Asset Location Report (2025-0393 dated 1/5/2025)

At the high end of the site, behind (south-west of) the garage is a stormwater pit with a broken lid. The pipe appeared serviceable with water observed to be flowing during a day of light to moderate rain.

To the west of the garage is a pathway to a one to two storey house at 83 Grandview Terrace. Beyond this path surface gradients are gentle.

4 GEOLOGY AND SUBSURFACE CONDITIONS

The 1:100,000 geological map of Sydney indicates that the site is underlain by Hawkesbury Sandstone which comprises medium to coarse grained quartz sandstone and very minor shale and laminite lenses. The Hawkesbury Sandstone caps the hillsides in this area with the Newport Formation siltstone and sandstone forming the lower slopes below.

The results of the DCP test by GroundzeroGeo suggest the following. We note that as there is no description of the soils present and these have been inferred from what can be observed at the surface:

- poorly compacted fill or loosened material to at least 1.3m depth (hammer drops of 0 to 1 per 100mm penetration) and possibly to 2.2m (hammer drops of 1 to 4 per 100mm).
- From a depth of 2.3m to 2.9m the results indicate fill with a greater degree of compaction or natural soils of increasing strength (hammer drops of 4 to 10 per 100mm).
- Refusal at 2.92m indicates the top of bedrock or some other hard natural layer, although it could
 also indicate an obstruction in the fill, although considering the presence of what appears to be
 sandstone outcrops we consider that this is less likely. Further investigation would be required to
 confirm the presence and depth of bedrock. The further investigation required is detailed in
 Section 7.1.

5 PROPOSED DEVELOPMENT

From the provided architectural drawings prepared by Action Plans (Nos DA00 to DA014, dated 14 March 2025), we understand that the proposed development will comprise the following:

- Construction of a new deck that extends across the full width of the house and has a finished level of RL118.410m.
- A new retaining wall constructed from shotcrete below the south-western edge of the deck. This
 wall will be founded on "micro piles to engineers' details". It is anticipated that this new wall will
 need to be anchored, and
- No excavation or filling is planned, except possibly some backfilling associated with the proposed new retaining wall.

The footprint of the proposed deck is indicated on Figure 2.

6 GEOTECHNICAL ASSESSMENT

The site slopes moderately to steeply down to the south and south-east. The area downslope of the house, ie the lower deck and wall that supported it, show obvious signs of movement, including:

- i. Slumping of the southern corner of the deck and severe cracking and deformation of the deck and timber path to the south-west.
- ii. Failure of about two thirds the length of the sandstone retaining wall can be observed with distress in the form of tilting and outward movement downslope. The north-eastern end of the wall is cracked but has not moved downslope. The remainder of the wall may have slipped downslope but its original alignment /position is unknown.
- iii. Ruptured stormwater and sewer pipes are visible below the lower deck. A possible backscarp appears to be located directly below these pipes.
- iv. Downslope (southwards) are two sandstone walls used to terrace the slope that have also collapsed. A section of paling fence has fallen over and further stormwater pipes have been ruptured. This area was densely vegetated and could not be assessed in more detail.
- v. Seepage was occurring at the boundary fence approximately midway down the southern boundary.

The house and garage have been cut into the hillside and show no external signs of movement, although there have been reports of internal cracking in the house. Two retaining walls located beyond paths located to the north-east of the GF level and of the LGF level show full height stepped cracking that indicate deformation and distress in the walls. With the exception of those items detailed above, there are no other signs of movement on this property.

No access was gained to the interior subfloor areas, or to the west of the deck which was obstructed by dense vegetation.

Consequently, it is our opinion that the distress observed comprises a series of localised wall failures, and either settlement and/or loss of the support to the footings, either as a result of:

- Footings being supported in poor quality material and/or
- Support being lost to footings as a result of the failure of nearby retaining walls.

It appears likely that the failures have occurred due to the inadequate design of the retaining walls and house footings and the saturation of poorly compacted fill present on the steep slope. Although we consider it less likely, it is also possible that the rear of the house is affected by creep movement. While further investigation and monitoring is required, this does not affect our risk assessment, as the proposed works include remedial stabilisation measures.

6.1 Potential Landslide Hazards

We consider that the potential landslide hazards associated with the site to be the following:

A. Failure of non-engineered sandstone retaining walls (of less than 2.5m height).

- B. Localised failure of slopes, including terraced areas with closely spaced low height walls.
- C. Failure of embedded boulder and outcrops on moderate slopes.
- D. Failure of timber log walls to 1.2m height.
- E. Large scale slope failure.
- F. Failure of crib wall and proposed engineered retaining structures.

These potential hazards are indicated in schematic form on the attached Figure 3 to 5.

6.2 Risk Analysis

The attached Table A summarises our qualitative assessment of each potential landslide hazard and of the consequences to property should the landslide hazard occur. Use has been made of data in MacGregor *et al* (2007) to assist with our assessment of the likelihood of a potential hazard occurring. Based on the above, the qualitative risks to property have been determined. The terminology adopted for this qualitative assessment is in accordance with Table A1 given in Appendix A. Table A indicates that the assessed risk to property varies between Moderate to Very Low, which would be considered 'tolerable' in accordance with the criteria given in Reference 1 and the Pittwater Council Risk Management Policy for existing hazards. However, the Moderate risks can be reduced to Low by implementation of mitigation measures, which would be considered 'Acceptable'.

We have also used the indicative probabilities associated with the assessed likelihood of instability to calculate the risk to life. The temporal and vulnerability factors that have been adopted are given in the attached Table B together with the resulting risk calculation. Our assessed risk to life for the person most at risk is about 10⁻⁶. This would be considered to be 'acceptable' in relation to the criteria given in Reference 1 and the Pittwater Council Risk Management Policy.

6.3 Risk Assessment

The Pittwater Risk Management Policy requires suitable measures 'to remove risk'. It is recognised that, due to the many complex factors that can affect a site, the subjective nature of a risk analysis, and the imprecise nature of the science of geotechnical engineering, the risk of instability for a site and/or development cannot be completely removed. It is, however, essential that risk be reduced to at least that which could be reasonably anticipated by the community in everyday life and that landowners are made aware of reasonable and practical measures available to reduce risk as far as possible. Hence, where the policy requires that 'reasonable and practical measures have been identified to remove risk', it means that there has been an active process of reducing risk, but it does not require the geotechnical engineer to warrant that risk has been completely removed, only reduced, as removing risk is not currently scientifically achievable.

Similarly, the Pittwater Risk Management Policy requires that the design project life be taken as 100 years unless otherwise justified by the applicant. This requirement provides the context within which the geotechnical risk assessment should be made. The required 100 years baseline broadly reflects the expectations of the community for the anticipated life of a residential structure and hence the timeframe to be considered when undertaking the geotechnical risk assessment and making recommendations as to the

appropriateness of a development, and its design and remedial measures that should be taken to control risk. It is recognised that in a 100 year period external factors that cannot reasonably be foreseen may affect the geotechnical risks associated with a site. Hence, the Policy does not seek the geotechnical engineer to warrant the development for a 100 year period, rather to provide a professional opinion that foreseeable geotechnical risks to which the development may be subjected in that timeframe have been reasonably considered.

Our assessment of the probability of failure of existing structural elements such as retaining walls (where applicable) is based upon a visual appraisal of their type and condition at the time of our inspection. Where existing structural elements such as retaining walls will not be replaced as part of the proposed development, where appropriate we identify the time period at which reassessment of their longevity seems warranted.

In preparing our recommendations given below we have adopted the above interpretations of the Risk Management Policy requirements. We have also assumed that no activities on surrounding land which may affect the risk on the subject site would be carried out. We have further assumed that all Council's buried services are, and will be regularly maintained to remain, in good condition.

We consider that our risk analysis has shown that the site and existing and proposed development can achieve the 'Acceptable Risk Management' criteria in the Pittwater Risk Management Policy provided that the recommendations given in Section 7 below are adopted. These recommendations form an integral part of the Landslide Risk Management Process.

7 COMMENTS AND RECOMMENDATIONS

We consider that the proposed development may proceed provided the following specific design, construction and maintenance recommendations are adopted to maintain and reduce the present risk of instability of the site and to control future risks. These recommendations address geotechnical issues only and other conditions may be required to address other aspects.

7.1 Conditions Recommended to Establish the Design Parameters

- 7.1.1 All stormwater and sewer pipes from the house, garage and surrounds are to be pressure tested and where found to be leaking fixed. Stormwater pipes must be connected to Council's stormwater system and must be designed with some flexibility to accommodate some creep movement. Plans showing the pipe details must be provided to the geotechnical engineer for review.
- 7.1.2 Both ponds should be monitored for leaks and should any leaks be detected they must be fully drained or repaired.
- 7.1.3 A structural engineer is to assess the stability of the house and nominate any portions of the structure that are of concern and may require further investigation, monitoring, underpinning and/or other works. The structural engineer's report must be reviewed by the geotechnical engineer for consideration in the scope of further geotechnical investigation.

- 7.1.4 Tell tale plates/monitors must be fixed over the stepping cracks on internal and external walls, and monitored at regular intervals or following period of rainfall exceeding 25mm/day or 50mm over a 72 hour period.
- 7.1.5 The existing retaining wall along below the failed deck has failed and is leaning over, cracked and has translated laterally and moved down the slope. It requires either replacement or stabilisation. We note the DA plans indicate a new shotcreted wall. Such a wall must be anchored to bedrock. We note the alignment of the new wall is upslope of the existing sandstone wall and consequently this wall will need to be removed once the new wall has been installed.
- 7.1.6 The retaining wall will require lateral restraint from rock anchors.
- 7.1.7 Geotechnical investigation comprising at least two cored boreholes must be completed to confirm the depth to and quality of the rock. This information must then be used to confirm that the proposed design is suitable. We recommend test pits be excavated adjacent to walls suspected to be poorly founded.
- 7.1.8 All new footings must be founded in bedrock. Assuming rock to be about 3m deep and noting the access constraints, micropiles would be suited for this site. The footings should provisionally be designed for an allowable bearing pressure of 600kPa and a shaft adhesion of 60kPa in compression for micro piles. These parameters can be revised following review of the additional investigation.
- 7.1.9 No excavation is proposed. Should any excavation be required we must be contacted for advice.
- 7.1.10 No anchors are to extend below adjoining properties without the permission of the owners being granted before installation.
- 7.1.11 The proposed new anchored retaining wall can be provisionally designed using the following parameters:
 - For anchored walls, adopt a rectangular lateral earth pressure distribution based with a uniform pressure of 8HkPa, where H is the height retained.
 - A bulk unit weight of 20kN/m³ should be adopted for the retained soil profile.
 - Any surcharge affecting the walls (eg. building loads, live loading, and sloping backfill, etc) should be allowed in the design.
 - The retaining walls should be provided with complete and permanent drainage of the ground behind the walls. The subsoil drains should incorporate a non-woven geotextile fabric (eg. Bidim A34), to act as a filter against subsoil erosion. The drain must be connected to the stormwater disposal system.
 - The design must be checked and/or refined for global stability using specialist finite element analysis software such as Geostudio SlopeW following the completion of additional investigation.

7.1.12 Anchors must be as follows:

- Drilled on a downward angle of about 30° from the horizontal or as directed by the geotechnical engineer,
- Embedded at least 3m into bedrock of at least low strength. Where this is the case they may be designed for a bond stress of 100kPa. The design bond stress can be reviewed following the additional geotechnical investigation.
- Be designed for the design life of 100 years (ie be stainless steel, Glass-Fibre Reinforced Plastic GRP or include permanent corrosion protection). Given they will be hand drilled, we recommend GRP fully treaded bolts be used such as the 25mm diameter BlueGeo GRP60 or similar.

- All anchor holes are to be free from smear and cleaned by flushing water from the base of the hole until the return runs clear. All anchors will require casing to bedrock.
- Anchor holes are to be fully grouted from the base upwards until the grout return is of the same texture as the grout pumped in. Any loss should be topped up and reported to the geotechnical engineer. Any sustained loss may require redrilling and re grouting.
- Plates and nuts used must meet the design load requirements.

The guidelines for Hillside Construction given in Appendix B should also be adopted.

7.2 Conditions Recommended to the Detailed Design to be Undertaken for the Construction Certificate

- 7.2.1 Further geotechnical investigation is required to prove the depth and quality of rock for detailed design and to confirm the materials on which sections of the house showing signs of distress are founded on.
- 7.2.2 All structural design drawings must be reviewed by the geotechnical engineer who should endorse that the recommendations contained in this report have been adopted in principle.
- 7.2.3 All hydraulic design drawings must be reviewed by the geotechnical engineer who should endorse that the recommendations contained in this report have been adopted in principle.
- 7.2.4 All landscape design drawings must be reviewed by the geotechnical engineer who should endorse that the recommendations contained in this report have been adopted in principle
- 7.2.5 A retention/construction methodology must be prepared prior to commencing. The methodology must include but not be limited to proposed sequencing, geotechnical inspection intervals or hold points, movement monitor locations, monitor types, contingency plans in case of exceedances.
- 7.2.6 The retention/construction methodology must be reviewed and approved by the geotechnical engineer.

7.3 Conditions Recommended During the Construction Period

- 7.3.1 All stages of anchoring and footing drilling and construction must be witnessed by the geotechnical engineer.
- 7.3.2 All rock anchors must be proof-tested to 1.3 times the working load. In addition, the anchors must be subjected to lift-off testing no sooner than 24 hours after locking off at the working load. The proof-testing and lift-off tests must be witnessed by the geotechnical engineer. The anchor contractor must provide the geotechnical engineer with all field records including anchor installation and testing records.
- 7.3.3 The geotechnical engineer must inspect all footing excavations prior to placing reinforcement or pouring concrete.
- 7.3.4 The approved excavation/retention methodology must be followed.
- 7.3.5 Proposed material to be used for backfilling behind retaining walls must be approved by the geotechnical engineer prior to placement.

- 7.3.6 If they are to be retained, the existing stormwater system, sewer and water mains must be checked for leaks by using static head and pressure tests under the direction of the hydraulic engineer or architect, and repaired if found to be leaking.
- 7.3.7 The geotechnical engineer must inspect all subsurface drains prior to backfilling.
- 7.3.8 An 'as-built' drawing of all buried services at the site must be prepared (including all pipe diameters, pipe depths, pipe types, inlet pits, inspection pits, etc).
- 7.3.9 The geotechnical engineer must confirm that the proposed alterations and additions have been completed in accordance with the geotechnical reports.

We note that all above Conditions must be complied with. Where this has not been done, it may not be possible for Form 3, which is required for the Occupation Certificate to be signed.

7.4 Conditions Recommended for Ongoing Management of the Site/Structure(s)

The following recommendations have been included so that the current and future owners of the subject property are aware of their responsibilities:

- 7.4.1 All existing and proposed surface (including roof) and subsurface drains must be subject to ongoing and regular maintenance by the property owners. In addition, such maintenance must also be carried out by a plumber at no more than five yearly intervals, including provision of a written report confirming scope of work completed (with reference to the 'as-built' drawing) and identifying any required remedial measures.
- 7.4.2 The existing retaining walls must be inspected by a structural engineer at no more than five yearly intervals, including the provision of a written report confirming scope of work completed and identifying any required remedial measures.
- 7.4.3 No cut or fill in excess of 0.5m (eg. for landscaping, buried pipes, retaining walls, etc), is to be carried out on site without prior consent from Pittwater Council.
- 7.4.4 Where the structural engineer has indicated a design life of less than 100 years then the structure and/or structural elements must be inspected by a structural engineer at the end of their design life; including a written report confirming scope of work completed and identifying the required remedial measures to extend the design life over the remaining 100 year period.

8 GENERAL COMMENTS

It is possible that the subsurface soil, rock or groundwater conditions encountered during construction may be found to be different (or may be interpreted to be different) from those inferred from our surface observations in preparing this report. Also, we have not had the opportunity to observe surface run-off patterns during heavy rainfall and cannot comment directly on this aspect. If conditions appear to be at variance or cause concern for any reason, then we recommend that you immediately contact this office.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in

this report is the property of JK Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

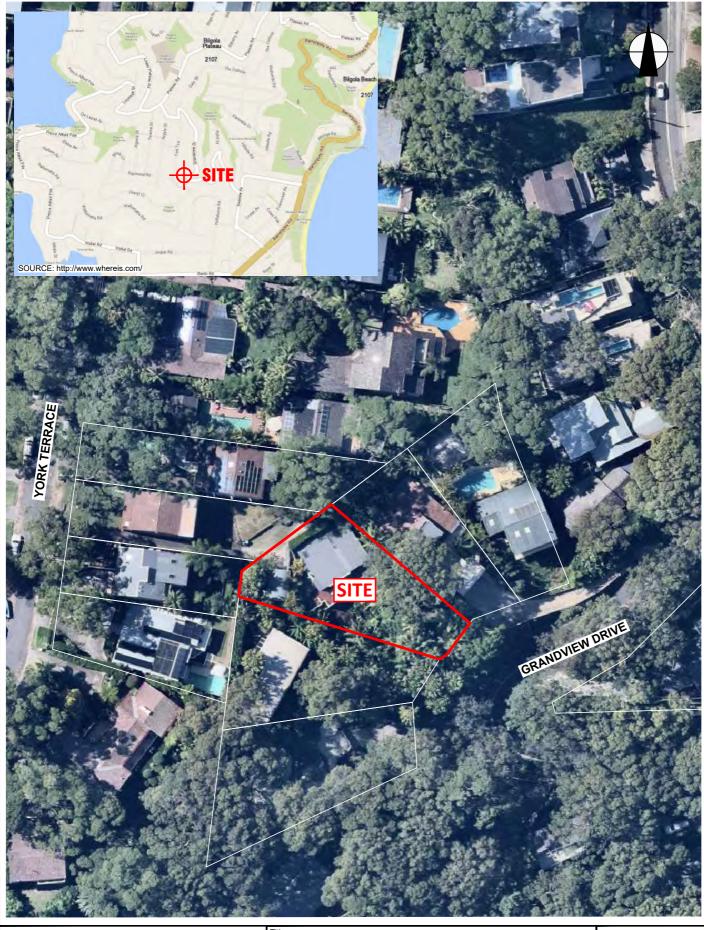
Reference 1: Australian Geomechanics Society (2007c) 'Practice Note Guidelines for Landslide Risk Management', Australian Geomechanics, Vol 42, No 1, March 2007, pp63-114.

Reference 2: MacGregor, P, Walker, B, Fell, R, and Leventhal, A (2007) 'Assessment of Landslide Likelihood in the Pittwater Local Government Area', Australian Geomechanics, Vol 42, No 1, March 2007, pp183-196.

TABLE A: SUMMARY OF RISK ASSESSMENT TO PROPERTY

POTENTIAL LANDSLIDE HAZARD	А	В	С	D	E	F
	Failure of non-engineered sandstone retaining walls (≤2.5m): 1- Low height retaining walls in rear garden beyond influence of structures (≤1.6m) 2- Retaining walls that may impact buildings should they fail≤2.5m) 3- Retaining wall in state of failure supporting lower deck (1.5m)	Localised failure of slopes, including terraced areas with closely spaced low height walls	Failure of embedded boulder(s) and outcrops on moderate slopes	Failure of timber log walls up to 1.2m height	Large scale slope failure	Failure of Crib Wall and Proposed Engineered Retaining Structures
Assessed Likelihood	Almost certain to possible Possible Almost certain	Possible	Rare	Likely	Rare	Rare
Assessed Consequence	Insignificant Minor Minor	Minor	Insignificant	Insignificant	Major	Medium
Risk	1. Very Low to Low 2. Moderate 3. High	Moderate	Very Low	Low	Low	Very Low
Comments	2. Walls showing signs of distress should be monitored with 'tell tales' and stabilised if further movement occurs. Once stabilised the likelihood of failure reduces as does the risk, which becomes Low. 3. The failed wall below the deck will be replaced by an engineer designed wall as part of the remedial works, thus the risk is remediated. (Refer to Hazard F).	Reduce risk by preventing surcharges being placed and fixing/maintaining drainage. This will reduce the likelihood to unlikely and the risk to Low. The existing failure is to be stabilised by an anchored shotcrete wall, in accordance with the structural design.	To fail the boulders will need to be undermined a sufficient depth to allow them to topple or slide. All boulders appeared well embedded with no signs of undermining. The risk of undermining may be mitigated by the control of overland stormwater flows.	Failure may undermine the edge of the parking bay but early signs of deterioration are likely to be observed allowing rectification prior to suffering greater damage.	The anticipated shallow depth to rock and variable steepness of slope means that the likelihood of a large scale slope failure is Rare.	Assumes walls are properly engineered and well-constructed.

Notes: Assumed individual property value \$2.4M (source onthehouse.com.au 15 May 2025). All risks are for existing conditions except where stated otherwise.


TABLE B: SUMMARY OF RISK ASSESSMENT TO LIFE

Potential Landslide Hazard	A	В	С	D	E	F
Assessed Likelihood /	1&3. Almost certain 2. Possible	Possible	Rare	Likely	Rare	Rare
Indicative Annual Probability	1&3. 10 ⁻¹ 2. 10 ⁻²	10 ⁻³	10 ⁻⁵	10-2	10 ⁻⁵	10 ⁻⁵
Persons most at risk	Resident/gardener traversing paths	Gardener	Gardener in lower garden	Driver parking car	Resident in house	Resident on deck
Duration of Use of area Affected (Temporal Probability)	8 hrs/ week, 4.8 x 10 ⁻²	8 hrs/ week, 4.8 x 10 ⁻²	1 hr/ week, 6 x 10 ⁻³	5mins/day, 3.5 x 10 ⁻³	12hrs/day, 0.5	1hr/day, 1/24
Probability of not Evacuating Area Affected	1&2. Likely to see early signs of failure and avoid area, 0.1 3. Cordoned off, 0.001	May see early signs of failure, 0.5	Likely to see early signs of scour, 0.1	May notice early signs of failure and avoid, 0.1	May notice early signs of failure and avoid, 0.5	May notice early signs of failure and avoid, 0.5
Spatial Probability	 2m width failure in 110m, 1.8 x 10⁻² 5m width failure in 30m, 0.17 3m width in 7m, 0.43 	Say 5m width failure in 25m site width, 0.2	0.01	0.3	0.5	1
Vulnerability to Life if Failure Occurs Whilst Person Present	 Unlikely to be crushed and killed, 0.1 Possibly buried and killed, 0.5 Unlikely to be crushed and killed, 0.1 	Possibly buried and killed, 0.5	Unlikely to be crushed and killed, 0.1	Unlikely to be crushed and killed, 0.1	Failure unlikely to be sudden and house unlikely to collapse. Unlikely to be crushed and killed, 0.1	Unlikely to be crushed and killed, 0.1
Risk for Person most at Risk	1. 8.7 x 10 ⁻⁷ 2. 4.0 x 10 ⁻⁷ 3. 2.0 x 10 ⁻⁷	2.7 x 10 ⁻⁶	6.0 x 10 ⁻¹²	1 x 10 ⁻⁷	6.3 x 10 ⁻⁷	2.1 x 10 ⁻⁸
Total Risk for Person most at Risk			2.5 x 10)-6		

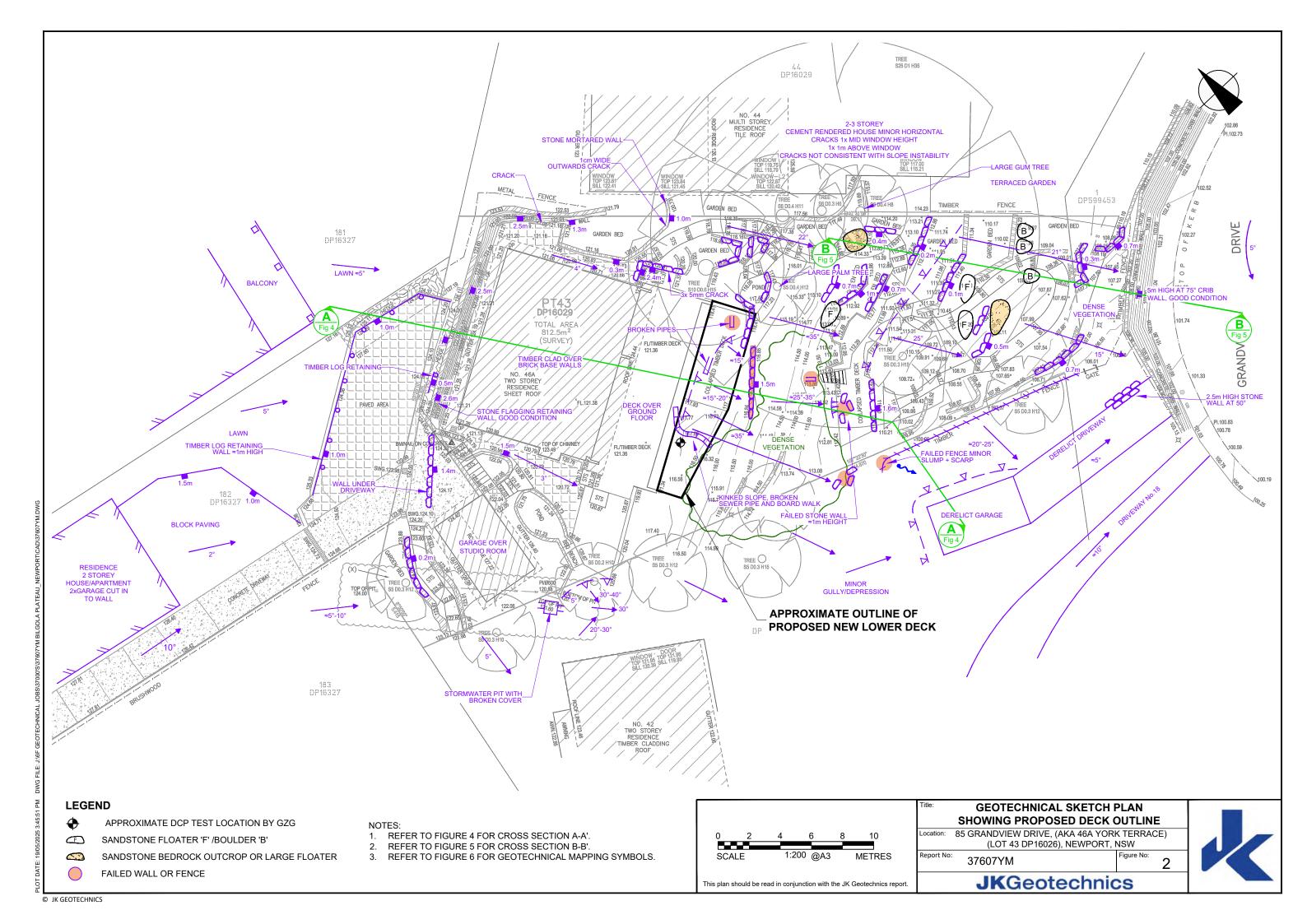
Notes: -Refer to report, including definition of terms and stability risk assessment methodology in Appendix A based on 'Practice Note Guidelines for Landslide Risk Management', Australian Geomechanics, Vol 42, No 1, March 2007.

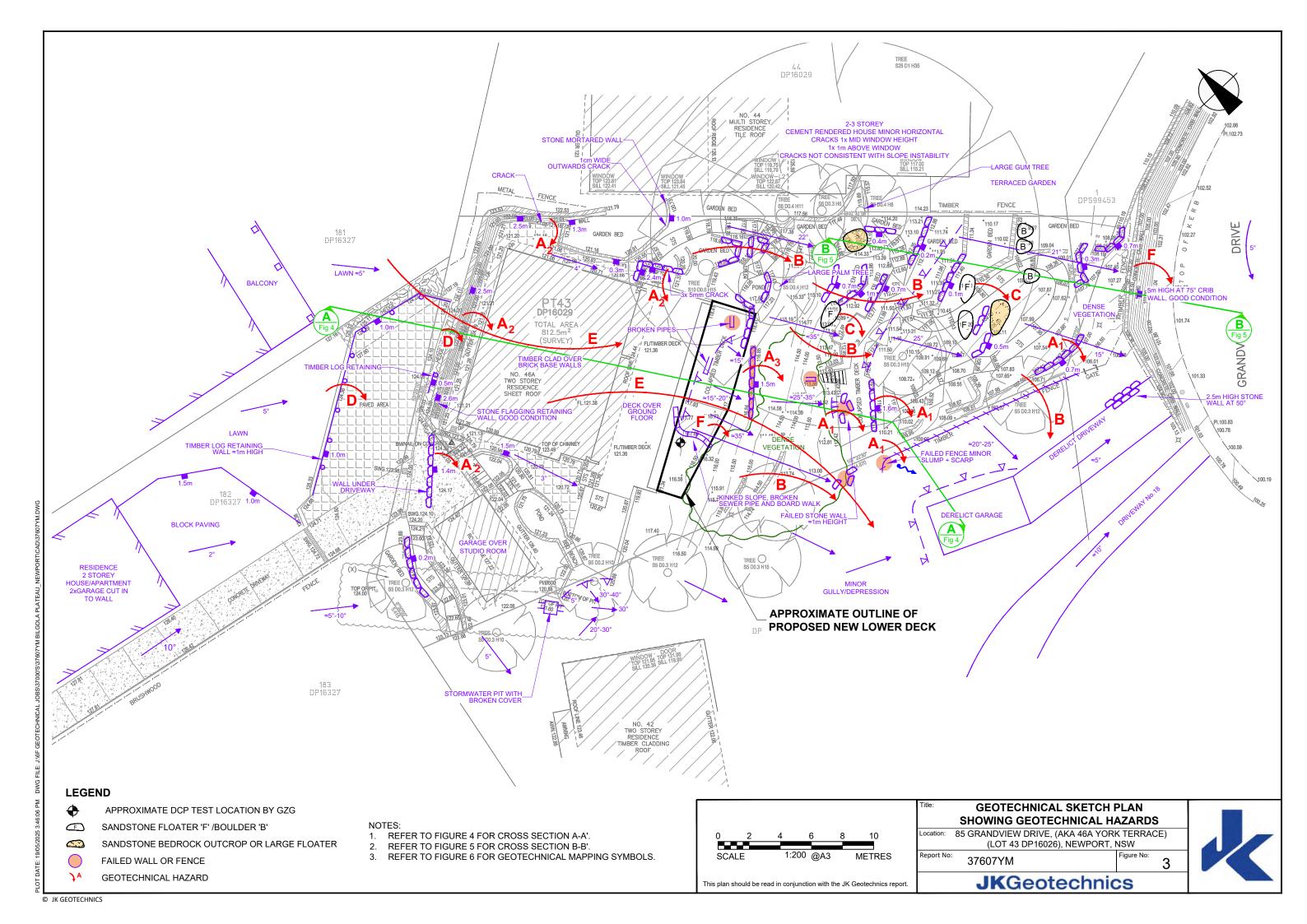
⁻Usage assumes the house becomes occupied by residents once rectification as per proposed DA plans is complete.

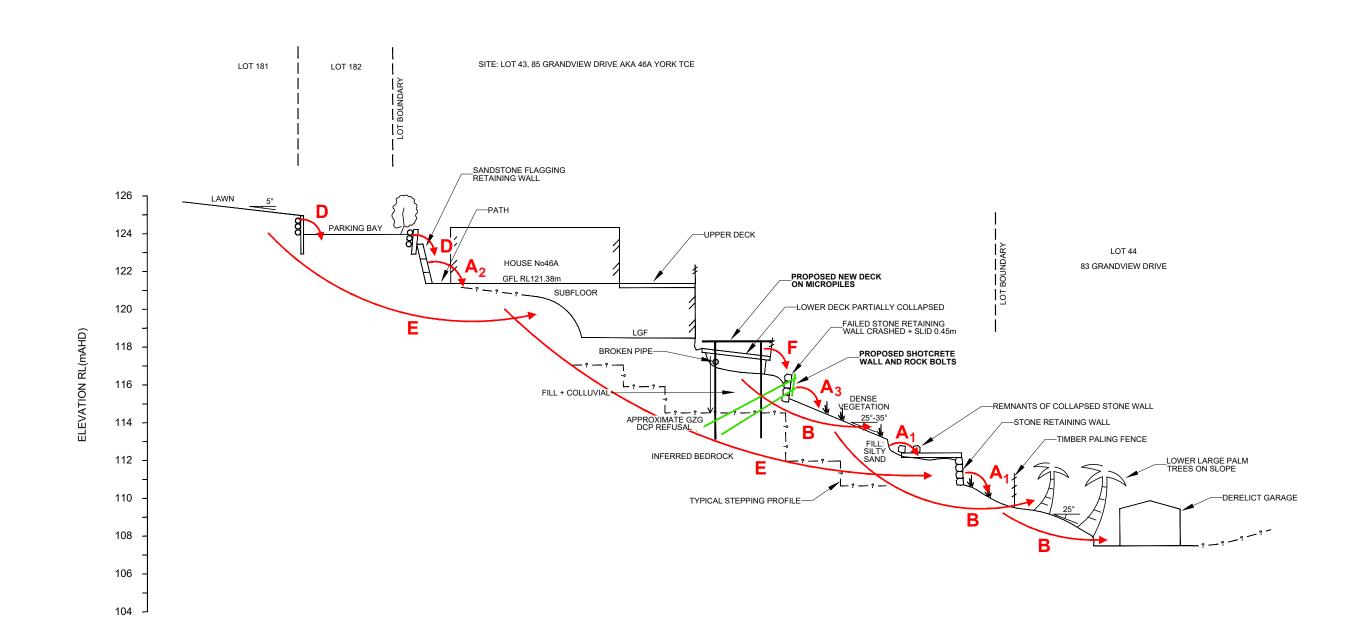
AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

SITE LOCATION PLAN

Location: 85 GRANDVIEW DRIVE, (AKA 46A YORK TERRACE) (LOT 43 DP16026), NEWPORT, NSW


Report No:

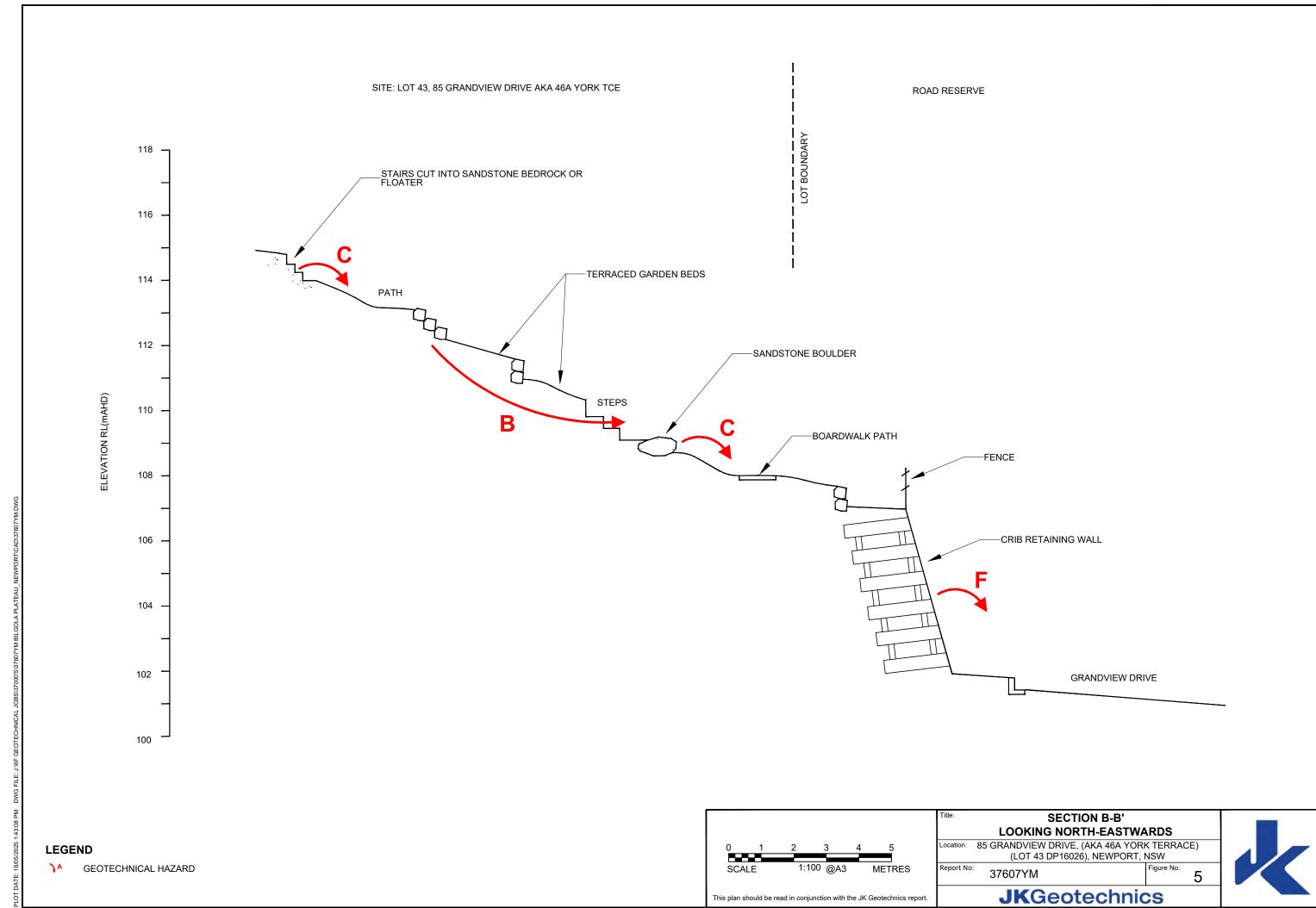

37607YM


JKGeotechnics

This plan should be read in conjunction with the JK Geotechnics report.

0 2 4 6 8 10

SCALE 1:200 @A3 METRES


This plan should be read in conjunction with the JK Geotechnics report.

Title: SECTION A-A'
LOOKING NORTH-EASTWARDS

Location: 85 GRANDVIEW DRIVE, (AKA 46A YORK TERRACE)
(LOT 43 DP16026), NEWPORT, NSW

JKGeotechnics

eport No: 37607YM

Cliff or escarpment or sharp break 40° or more (estimated height in metres)

Hummocky or irregular ground

15 Uniform Slope Concave Slope → Convex Slope

→ rounded

Slope direction and angle (Degrees)

ridge crest

▼▼▼ Bottom

Cut or fill slope, arrows pointing down slope

OTHER FEATURES

Boulder

Seepage/spring

Swallow hole for runoff

Natural water course

Open drain, unlined

→ · · L → Open drain, lined

--- Property boundary

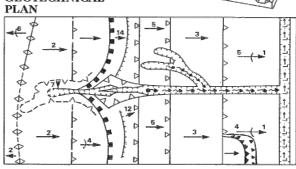
OOO Dry Stone Wall

J Major joint in rock face (opening in millimetres)

- T - T - Tension crack 10 (opening in millimetres)

Masonry or concrete wall

Ponding water



Boggy or swampy area

EXAMPLE OF USE OF TOPOGRAPHIC SYMBOLS:

BLOCK DIAGRAM GEOTECHNICAL

(After Gardiner, V & Dackombe, R. V. (1983), Geomorphological Field Manual; George Allen & Unwin).

GEOTECHNICAL MAPPING SYMBOLS

JKGeotechnics

Location: 85 GRANDVIEW DRIVE, (AKA 46A YORK TERRACE) (LOT 43 DP16026), NEWPORT, NSW

Report No: 37607YM Figure No:

6

This plan should be read in conjunction with the JK Geotechnics report.

APPENDIX A

LANDSLIDE RISK

MANAGEMENT

TERMINOLOGY

LANDSLIDE RISK MANAGEMENT

Definition of Terms and Landslide Risk

Risk Terminology	Description
Acceptable Risk	A risk for which, for the purposes of life or work, we are prepared to accept as it is with no regard to its management. Society does not generally consider expenditure in further reducing such risks justifiable.
Annual Exceedance Probability (AEP)	The estimated probability that an event of specified magnitude will be exceeded in any year.
Consequence	The outcomes or potential outcomes arising from the occurrence of a landslide expressed qualitatively or quantitatively, in terms of loss, disadvantage or gain, damage, injury or loss of life.
Elements at Risk	The population, buildings and engineering works, economic activities, public services utilities, infrastructure and environmental features in the area potentially affected by landslides.
Frequency	A measure of likelihood expressed as the number of occurrences of an event in a given time. See also 'Likelihood' and 'Probability'.
Hazard	A condition with the potential for causing an undesirable consequence (the landslide). The description of landslide hazard should include the location, volume (or area), classification and velocity of the potential landslides and any resultant detached material, and the likelihood of their occurrence within a given period of time.
Individual Risk to Life	The risk of fatality or injury to any identifiable (named) individual who lives within the zone impacted by the landslide; or who follows a particular pattern of life that might subject him or her to the consequences of the landslide.
Landslide Activity	The stage of development of a landslide; pre failure when the slope is strained throughout but is essentially intact; failure characterised by the formation of a continuous surface of rupture; post failure which includes movement from just after failure to when it essentially stops; and reactivation when the slope slides along one or several pre-existing surfaces of rupture. Reactivation may be occasional (eg. seasonal) or continuous (in which case the slide is 'active').
Landslide Intensity	A set of spatially distributed parameters related to the destructive power of a landslide. The parameters may be described quantitatively or qualitatively and may include maximum movement velocity, total displacement, differential displacement, depth of the moving mass, peak discharge per unit width, or kinetic energy per unit area.
Landslide Risk	The AGS Australian GeoGuide LR7 (AGS, 2007e) should be referred to for an explanation of Landslide Risk.
Landslide Susceptibility	The classification, and volume (or area) of landslides which exist or potentially may occur in an area or may travel or retrogress onto it. Susceptibility may also include a description of the velocity and intensity of the existing or potential landsliding.
Likelihood	Used as a qualitative description of probability or frequency.
Probability	A measure of the degree of certainty. This measure has a value between zero (impossibility) and 1.0 (certainty). It is an estimate of the likelihood of the magnitude of the uncertain quantity, or the likelihood of the occurrence of the uncertain future event.
	These are two main interpretations:
	(i) Statistical – frequency or fraction – The outcome of a repetitive experiment of some kind like flipping coins. It includes also the idea of population variability. Such a number is called an 'objective' or relative frequentist probability because it exists in the real world and is in principle measurable by doing the experiment.

Risk Terminology	Description
Probability (continued)	(ii) Subjective probability (degree of belief) – Quantified measure of belief, judgment, or confidence in the likelihood of an outcome, obtained by considering all available information honestly, fairly, and with a minimum of bias. Subjective probability is affected by the state of understanding of a process, judgment regarding an evaluation, or the quality and quantity of information. It may change over time as the state of knowledge changes.
Qualitative Risk Analysis	An analysis which uses word form, descriptive or numeric rating scales to describe the magnitude of potential consequences and the likelihood that those consequences will occur.
Quantitative Risk Analysis	An analysis based on numerical values of the probability, vulnerability and consequences and resulting in a numerical value of the risk.
Risk	A measure of the probability and severity of an adverse effect to health, property or the environment. Risk is often estimated by the product of probability x consequences. However, a more general interpretation of risk involves a comparison of the probability and consequences in a non-product form.
Risk Analysis	The use of available information to estimate the risk to individual, population, property, or the environment, from hazards. Risk analyses generally contain the following steps: scope definition, hazard identification and risk estimation.
Risk Assessment	The process of risk analysis and risk evaluation.
Risk Control or Risk Treatment	The process of decision-making for managing risk and the implementation or enforcement of risk mitigation measures and the re-evaluation of its effectiveness from time to time, using the results of risk assessment as one input.
Risk Estimation	The process used to produce a measure of the level of health, property or environmental risks being analysed. Risk estimation contains the following steps: frequency analysis, consequence analysis and their integration.
Risk Evaluation	The stage at which values and judgments enter the decision process, explicitly or implicitly, by including consideration of the importance of the estimated risks and the associated social, environmental and economic consequences, in order to identify a range of alternatives for managing the risks.
Risk Management	The complete process of risk assessment and risk control (or risk treatment).
Societal Risk	The risk of multiple fatalities or injuries in society as a whole: one where society would have to carry the burden of a landslide causing a number of deaths, injuries, financial, environmental and other losses.
Susceptibility	See 'Landslide Susceptibility'.
Temporal Spatial Probability	The probability that the element at risk is in the area affected by the landsliding, at the time of the landslide.
Tolerable Risk	A risk within a range that society can live with so as to secure certain net benefits. It is a range of risk regarded as non-negligible and needing to be kept under review and reduced further if possible.
Vulnerability	The degree of loss to a given element or set of elements within the area affected by the landslide hazard. It is expressed on a scale of 0 (no loss) to 1 (total loss). For property, the loss will be the value of the damage relative to the value of the property; for persons, it will be the probability that a particular life (the element at risk) will be lost, given the person(s) is affected by the landslide.

NOTE: Reference should be made to Figure A1 which shows the inter-relationship of many of these terms and the relevant portion of Landslide Risk Management.

Reference should also be made to the paper referenced below for Landslide Terminology and more detailed discussion of the above terminology.

This appendix is an extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in Australian Geomechanics, Vol 42, No 1, March 2007, which discusses the matter more fully.

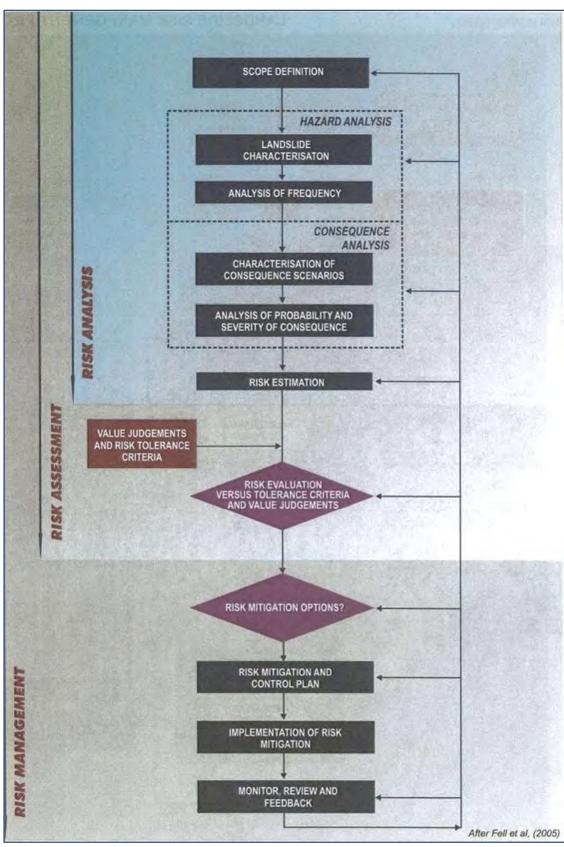


FIGURE A1: Flowchart for Landslide Risk Management.

This figure is an extract from GUIDELINE FOR LANDSLIDE SUSCEPTIBILITY, HAZARD AND RISK ZONING FOR LAND USE PLANNING, as presented in Australian Geomechanics Vol 42, No 1, March 2007, which discusses the matter more fully.

TABLE A1: LANDSLIDE RISK ASSESSMENT QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate A	Annual Probability					
Indicative Notional Value Boundary		Implied Indicative Landslide Recurrence Interval		Description	Descriptor	Level
10 ⁻¹	5 40 ³	10 years	20	The event is expected to occur over the design life.	ALMOST CERTAIN	Α
10-2	5×10 ⁻²	100 years	20 years 200 years	The event will probably occur under adverse conditions over the design life.	LIKELY	В
10-3	5×10 ⁻³ 5×10 ⁻⁴	1000 years	200 years 2000 years	The event could occur under adverse conditions over the design life.	POSSIBLE	С
10 ⁻⁴	5×10 ⁻⁵	10,000 years	,	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10 ⁻⁵		100,000 years	20,000 years	The event is conceivable but only under exceptional circumstances over the design life.	RARE	E
10-6	5×10 ⁻²	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	F

Note: (1) The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa.

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate o	ost of Damage			
Indicative	Notional	Description	Descriptor	Level
Value	Boundary			
200%	100%	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	1
60%	40%	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.	MAJOR	2
20%	10%	Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3
5%		Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4
0.5%	1%	Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5

Notes: (2) The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures.

(4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa.

Extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in Australian Geomechanics, Vol 42, No 1, March 2007, which discusses the matter more fully.

⁽³⁾ The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property.

TABLE A1: LANDSLIDE RISK ASSESSMENT QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (continued)

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

LIKELIHOOI	CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)					
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10-1	VH	VH	VH	Н	M or L (5)
B - LIKELY	10 ⁻²	VH	VH	Н	M	L
C - POSSIBLE	10 ⁻³	VH	Н	M	M	VL
D - UNLIKELY	10-4	Н	M	L	L	VL
E - RARE	10 ⁻⁵	M	L	L	VL	VL
F - BARELY CREDIBLE	10 ⁻⁶	L	VL	VL	VL	VL

Notes: (5) Cell A5 may be subdivided such that a consequence of less than 0.1% is Low Risk.

(6) When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current time.

RISK LEVEL IMPLICATIONS

Risk Level		Example Implications (7)	
VH	VERY HIGH RISK	VERY HIGH RISK Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of property.	
Н	HIGH RISK	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.	
М	MODERATE RISK May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, plan implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implementation as soon as practicable.		
L	L LOW RISK Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing main required.		
VL	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures.	

Note: (7) The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.

Extract from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in Australian Geomechanics, Vol 42, No 1, March 2007, which discusses the matter more fully.

AUSTRALIAN GEOGUIDE LR2 (LANDSLIDES)

What is a Landslide?

Any movement of a mass of rock, debris, or earth, down a slope, constitutes a "landslide". Landslides take many forms, some of which are illustrated. More information can be obtained from Geoscience Australia, or by visiting its Australian landslide Database at www.ga.gov.au/urban/factsheets/landslide.jsp. Aspects of the impact of landslides on buildings are dealt with in the book "Guideline Document Landslide Hazards" published by the Australian Building Codes Board and referenced in the Building Code of Australia. This document can be purchased over the internet at the Australian Building Codes Board's website www.abcb.gov.au.

Landslides vary in size. They can be small and localised or very large, sometimes extending for kilometres and involving millions of tonnes of soil or rock. It is important to realise that even a 1 cubic metre boulder of soil, or rock, weighs at least 2 tonnes. If it falls, or slides, it is large enough to kill a person, crush a car, or cause serious structural damage to a house. The material in a landslide may travel downhill well beyond the point where the failure first occurred, leaving destruction in its wake. It may also leave an unstable slope in the ground behind it, which has the potential to fall again, causing the landslide to extend (regress) uphill, or expand sideways. For all these reasons, both "potential" and "actual" landslides must be taken very seriously. The present a real threat to life and property and require proper management.

Identification of landslide risk is a complex task and must be undertaken by a geotechnical practitioner (GeoGuide LR1) with specialist experience in slope stability assessment and slope stabilisation.

What Causes a Landslide?

Landslides occur as a result of local geological and groundwater conditions, but can be exacerbated by inappropriate development (GeoGuide LR8), exceptional weather, earthquakes and other factors. Some slopes and cliffs never seem to change, but are actually on the verge of failing. Others, often moderate slopes (Table 1), move continuously, but so slowly that it is not apparent to a casual observer. In both cases, small changes in conditions can trigger a landslide with series consequences. Wetting up of the ground (which may involve a rise in groundwater table) is the single most important cause of landslides (GeoGuide LR5). This is why they often occur during, or soon after, heavy rain. Inappropriate development often results in small scale landslides which are very expensive in human terms because of the proximity of housing and people.

Does a Landslide Affect You?

Any slope, cliff, cutting, or fill embankment may be a hazard which has the potential to impact on people, property, roads and services. Some tell-tale signs that might indicate that a landslide is occurring are listed below:

- Open cracks, or steps, along contours
- Groundwater seepage, or springs
- Bulging in the lower part of the slope
- · Hummocky ground

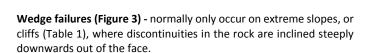
- trees leaning down slope, or with exposed roots
- · debris/fallen rocks at the foot of a cliff
- tilted power poles, or fences
- · cracked or distorted structures

These indications of instability may be seen on almost any slope and are not necessarily confined to the steeper ones (Table 1). Advice should be sought from a geotechnical practitioner if any of them are observed. Landslides do not respect property boundaries. As mentioned above they can "run-out" from above, "regress" from below, or expand sideways, so a landslide hazard affecting your property may actually exist on someone else's land.

Local councils are usually aware of slope instability problems within their jurisdiction and often have specific development and maintenance requirements. Your local council is the first place to make enquiries if you are responsible for any sort of development or own or occupy property on or near sloping land or a cliff.

TABLE 1 – Slope Descriptions

	Slope	Maximum	
Appearance	Angle	Gradient	Slope Characteristics
Gentle	0° - 10°	1 on 6	Easy walking.
Moderate	10° - 18°	1 on 3	Walkable. Can drive and manoeuvre a car on driveway.
Steep	18° - 27°	1 on 2	Walkable with effort. Possible to drive straight up or down roughened
			concrete driveway, but cannot practically manoeuvre a car.
Very Steep	27° - 45°	1 on 1	Can only climb slope by clutching at vegetation, rocks, etc.
Extreme	45° - 64°	1 on 0.5	Need rope access to climb slope.
Cliff	64° - 84°	1 on 0.1	Appears vertical. Can abseil down.
Vertical or Overhang	84° - 90±°	Infinite	Appears to overhang. Abseiler likely to lose contact with the face.



Some typical landslides which could affect residential housing are illustrated below:

Rotational or circular slip failures (Figure 1) - can occur on moderate to very steep soil and weathered rock slopes (Table 1). The sliding surface of the moving mass tends to be deep seated. Tension cracks may open at the top of the slope and bulging may occur at the toe. The ground may move in discrete "steps" separated by long periods without movement. More rapid movement may occur after heavy rain.

Translational slip failures (Figure 2) - tend to occur on moderate to very steep slopes (Table 1) where soil, or weak rock, overlies stronger strata. The sliding mass is often relatively shallow. It can move, or deform slowly (creep) over long periods of time. Extensive linear cracks and hummocks sometimes form along the contours. The sliding mass may accelerate after heavy rain.

Rock falls (Figure 3) - tend to occur from cliffs and overhangs (Table 1)

Cliffs may remain, apparently unchanged, for hundreds of years. Collections of boulders at the foot of a cliff may indicate that rock falls are ongoing. Wedge failures and rock falls do not "creep". Familiarity with a particular local situation can instil a false sense of security since failure, when it occurs, is usually sudden and catastrophic.

Debris flows and mud slides (Figure 4) - may occur in the foothills of ranges, where erosion has formed valleys which slope down to the plains below. The valley bottoms are often lined with loose eroded material (debris) which can "flow" if it becomes saturated during and after heavy rain. Debris flows are likely to occur with little warning; they travel a long way and often involve large volumes of soil. The consequences can be devastating.

Figure 1

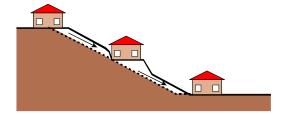


Figure 2

Rock fall

Wedge failure

Figure 3

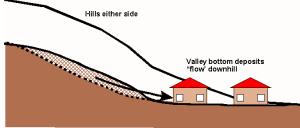


Figure 4

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR3 Soil Slopes
- GeoGuide LR4 Rock Slopes
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls

- GeoGuide LR7 Landslide Risk
- GeoGuide LR8 Hillside Construction
- GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK)

Concept of Risk

Risk is a familiar term, but what does it really mean? It can be defined as "a measure of the probability and severity of an adverse effect to health, property, or the environment." This definition may seem a bit complicated. In relation to landslides, geotechnical practitioners (see GeoGuide LR1) are required to assess risk in terms of the likelihood that a particular landslide will occur and the possible consequences. This is called landslide risk assessment. The consequences of a landslide are many and varied, but our concerns normally focus on loss of, or damage to, property and loss of life.

Landslide Risk Assessment

Some local councils in Australia are aware of the potential for landslides within their jurisdiction and have responded by designating specific "landslide hazard zones". Development in these areas is normally covered by special regulations. If you are contemplating building, or buying an existing house, particularly in a hilly area, or near cliffs, then go first for information to your local council.

<u>Landslide risk assessment must be undertaken by a geotechnical practitioner.</u> It may involve visual inspection, geological mapping, geotechnical investigation and monitoring to identify:

- potential landslides (there may be more than one that could impact on your site);
- the likelihood that they will occur;
- the damage that could result;
- the cost of disruption and repairs; and
- the extent to which lives could be lost.

Risk assessment is a predictive exercise, but since the ground and the processes involved are complex, prediction tends to lack precision. If you commission a landslide risk assessment for a particular site you should expect to receive a report prepared in accordance with current professional guidelines and in a form that is acceptable to your local council, or planning authority.

Risk to Property

Table 1 indicates the terms used to describe risk to property. Each risk level depends on an assessment of how likely a landslide is to occur and its consequences in dollar terms. "Likelihood" is the chance of it happening in any one year, as indicated in Table 2. "Consequences" are related to the cost of the repairs and temporary loss of use if the landslide occurs. These two factors are combined by the geotechnical practitioner to determine the Qualitative Risk.

TABLE 2 – LIKELIHOOD

Likelihood	Annual Probability	
Almost Certain	1:10	
Likely	1:100	
Possible	1:1,000	
Unlikely	1:10,000	
Rare	1:100,000	
Barely credible	1:1,000,000	

The terms "unacceptable", "may be tolerable" etc. in Table 1 indicate how most people react to an assessed risk level. However, some people will always be more prepared, or better able, to tolerate a higher risk level than others.

Some local councils and planning authorities stipulate a maximum tolerable risk level of risk to property for developments within their jurisdictions. In these situations the risk must be assessed by a geotechnical practitioner. If stabilisation works are needed to meet the stipulated requirements these will normally have to be carried out as part of the development, or consent will be withheld.

TABLE 1 - RISK TO PROPERTY

Qualitative Risk		Significance - Geotechnical engineering requirements		
Very high	VH	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low. May be too expensive and not practical. Work likely to cost more than the value of the property.		
High	Н	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable level. Work would cost a substantial sum in relation to the value of the property.		
Moderate	М	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as possible.		
Low	L	Usually acceptable to regulators. Where treatment has been needed to reduce the risk to this level, ongoing maintenance is required.		
Very Low	VL	Acceptable. Manage by normal slope maintenance procedures.		

Risk to Life

Most of us have some difficulty grappling with the concept of risk and deciding whether, or not, we are prepared to accept it. However, without doing any sort of analysis, or commissioning a report from an "expert", we all take risks every day. One of them is the risk of being killed in an accident. This is worth thinking about, because it tells us a lot about ourselves and can help to put an assessed risk into a meaningful context. By identifying activities that we either are, or are not, prepared to engage in, we can get some indication of the maximum level of risk that we are prepared to take. This knowledge can help us to decide whether we really are able to accept a particular risk, or to tolerate a particular likelihood of loss, or damage, to our property (Table 2).

In Table 3, data from NSW for the years 1998 to 2002, and other sources, is presented. A risk of 1 in 100,000 means that, in any one year, 1 person is killed for every 100,000 people undertaking that particular activity. The NSW data assumes that the whole population undertakes the activity. That is, we are all at risk of being killed in a fire, or of choking on our food, but it is reasonable to assume that only people who go deep sea fishing run a risk of being killed while doing it.

It can be seen that the risks of dying as a result of falling, using a motor vehicle, or engaging in water-related activities (including bathing) are all greater than 1:100,000 and yet few people actively avoid situations where these risks are present. Some people are averse to flying and yet it represents a lower risk than choking to death on food. The data also indicate that, even when the risk of dying as a consequence of a particular event is very small, it could still happen to any one of us today. If this were not so, there would be no risk at all and clearly that is not the case.

In NSW, the planning authorities consider that 1:1,000,000 is the maximum tolerable risk for domestic housing built near an obvious hazard, such as a chemical factory. Although not specifically considered in the NSW guidelines there is little difference between the hazard presented by a neighbouring factory and a landslide: both have the capacity to destroy life and property and both are always present.

TABLE 3 - RISK TO LIFE

Risk (deaths per participant per year)	Activity/Event Leading to Death (NSW data unless noted)	
1:1,000	Deep sea fishing (UK)	
1:1,000 to 1:10,000	Motor cycling, horse riding, ultra- light flying (Canada)	
1:23,000	Motor vehicle use	
1:30,000	Fall	
1:70,000	Drowning	
1:180,000	Fire/burn	
1:660,000	Choking on food	
1:1,000,000	Scheduled airlines (Canada)	
1:2,300,000	Train travel	
1:32,000,000	Lightning strike	

$\label{thm:may-be-found-in-other-australian-geo-Guides:} More information relevant to your particular situation may be found in other Australian Geo-Guides:$

- GeoGuide LR1 Introduction
- GeoGuide LR3 Soil Slopes
- GeoGuide LR4 Rock Slopes
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls

- GeoGuide LR7 Landslide Risk
- GeoGuide LR8 Hillside Construction
- GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

APPENDIX B

SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

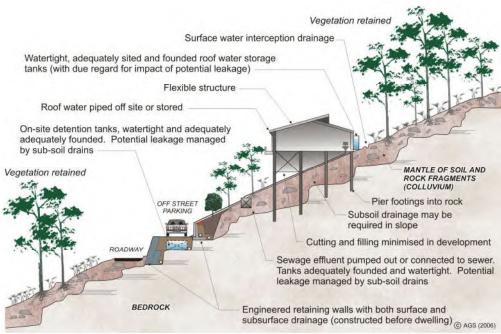
GOOD ENGINEERING PRACTICE

ADVICE

POOR ENGINEERING PRACTICE

ADVICE		
GEOTECHNICAL ASSESSMENT	Obtain advice from a qualified, experienced geotechnical consultant at early stage of planning and before site works.	Prepare detailed plan and start site works before geotechnical advice.
PLANNING	early stage of planning and before site works.	geotechnical advice.
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk	Plan development without regard for the Risk.
	arising from the identified hazards and consequences in mind.	
DESIGN AND CONSTRUCT	ION	
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels. Use decks for recreational areas where appropriate.	Floor plans which require extensive cutting and filling. Movement intolerant structures.
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS & DRIVEWAYS	Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	Excavate and fill for site access before geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminant bulk earthworks.
CUTS	Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control. Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements. Loose or poorly compacted fill, which if it fails, may flow a considerable distance (including onto properties below). Block natural drainage lines. Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil, boulders, building rubble etc. in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on bedrock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.
FOOTINGS	Found within bedrock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE		
SURFACE	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide generous falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond bench areas.
SUBSURFACE	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge of roof run-off into absorption trenches.
SEPTIC & SULLAGE	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use of absorption trenches without consideration of landslide risk.
EROSION CONTROL & LANDSCAPING	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.
	ITS DURING CONSTRUCTION	1.000mmendations when landscaping.
DRAWINGS AND SITE VIS	Building Application drawings should be viewed by a geotechnical consultant.	
SITE VISITS	Site visits by consultant may be appropriate during construction.	
INSPECTION AND MAINTI	ENANCE BY OWNER	
OWNER'S RESPONSIBILITY	Clean drainage systems; repair broken joints in drains and leaks in supply pipes. Where structural distress is evident seek advice. If seepage observed, determine cause or seek advice on consequences.	
This table is extracted from	PRACTICE NOTE GUIDEUNES FOR LANDSLIDE RISK MANAGEMENT as presen	tod in Australian Coomachanics Vol 42 No. 1 March

This table is extracted from PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT as presented in *Australian Geomechanics*, Vol 42, No 1, March 2007 which discusses the matter more fully.



AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES FOR GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LRS).

Cuttings - are supported by retaining walls (GeoGuide LR6).

Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that due to level ground. Retaining walls must be designed taking these forces into account.

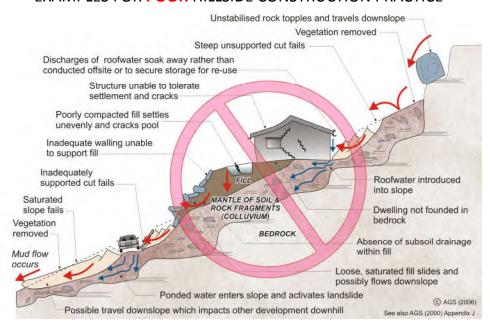
Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfill the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.

Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.


Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

EXAMPLES FOR POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soaks into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herringbone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

• GeoGuide LR1 - Introduction

GeoGuide LR3 - Soil Slopes

• GeoGuide LR4 - Rock Slopes

GeoGuide LR5 - Water & Drainage

GeoGuide LR6 - Retaining Walls

• GeoGuide LR7 - Landslide Risk

GeoGuide LR8 - Hillside Construction

• GeoGuide LR9 - Effluent & Surface Water Disposal

• GeoGuide LR10 - Coastal Landslides

GeoGuide LR11 - Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

