GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER FORM NO. 1 – To be submitted with Development Application

Development Application for										
Name of Applicant										
Addre	Address of site 133 Riverview Road, Avalon Beach									
The following checklist covers the minimum requirements to be addressed in a Geotechnical Risk Declaration made by geotechnical engineer or engineering geologist or coastal engineer (where applicable) as part of a geotechnical report										
l,	Ben White (Insert Name)	on behalf of	White Geotechn (Trading or Comp							
organisa	engineer as defined	sue this document a	l Risk Management Polic	am a geotechnical engine y for Pittwater - 2009 and nisation/company has a d	I I am authorised by	the above				
l: Please i	mark appropriate	box								
\boxtimes			•	pelow in accordance with 7) and the Geotechnical						
	am willing to technically verify that the detailed Geotechnical Report referenced below has been prepared in accordance with the Australian Geomechanics Society's Landslide Risk Management Guidelines (AGS 2007) and the Geotechnical Risk Management Policy for Pittwater - 2009									
	have examined the site and the proposed development in detail and have carried out a risk assessment in accordance with Section 6.0 of the Geotechnical Risk Management Policy for Pittwater - 2009. I confirm that the results of the risk assessment for the proposed development are in compliance with the Geotechnical Risk Management Policy for									
	Pittwater - 2009 and further detailed geotechnical reporting is not required for the subject site. have examined the site and the proposed development/alteration in detail and I am of the opinion that the Development Application only involves Minor Development/Alteration that does not require a Geotechnical Report or Risk Assessment and hence my Report is in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009									
	Hazard and does	not require a Geote	•	on is separate from and is ssessment and hence my requirements.	•					
	have provided th	e coastal process ar	d coastal forces analysis	for inclusion in the Geote	chnical Report					
Geotec	nnical Report Deta									
	Report Title: Geof	technical Report 133	Riverview Road, Av	alon Beach						
	Report Date: 23/	5/25								
	Author: BEN WH	HITE								
	Author's Compan	y/Organisation: Wh	ite Geotechnical	Group Pty Ltd						
Docum	entation which rel	ate to or are relied	upon in report preparat	on:						
_ 500				sk Management M	larch 2007.					

I am aware that the above Geotechnical Report, prepared for the abovementioned site is to be submitted in support of a Development Application for this site and will be relied on by Pittwater Council as the basis for ensuring that the Geotechnical Risk Management aspects of the proposed development have been adequately addressed to achieve an "Acceptable Risk Management" level for the life of the structure, taken as at least 100 years unless otherwise stated and justified in the Report and that reasonable and practical measures have been identified to remove foreseeable risk.

Signature

Name

Ben White

Chartered Professional Status

MScGEOL AIG., RPGeo

Membership No.

10306

Company

White Geotechnical Group Pty Ltd

White Geotechnical Group company archives.

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER FORM NO. 1(a) - Checklist of Requirements for Geotechnical Risk Management Report for Development Application

		Development Application
Deve	Iopment Applicatio	Name of Applicant
A .1.1		
Addr	ess of site	133 Riverview Road, Avalon Beach
		ers the minimum requirements to be addressed in a Geotechnical Risk Management Geotechnical accompany the Geotechnical Report and its certification (Form No. 1).
	chnical Report Deta	
Repo	rt Title: Geotechnical	Report 133 Riverview Road, Avalon Beach
Repo	rt Date: 23/5/25	
Autho	or: BEN WHITE	
Auth	or's Company/Orga	nisation: White Geotechnical Group Pty Ltd
Please	mark appropriate I	юх
\boxtimes	Comprehensive sit	e mapping conducted 24/5/24 (date)
\boxtimes	Mapping details pr	esented on contoured site plan with geomorphic mapping to a minimum scale of 1:200 (as appropriate)
\boxtimes	Subsurface investi	
	□ No	Justification
	⊠ Yes	Date conducted 24/5/24
\boxtimes	Geotechnical mod	el developed and reported as an inferred subsurface type-section
\boxtimes	Geotechnical haza	rds identified
	⊠ Abov	re the site
	⊠ On ti	ne site
		w the site
		de the site
\boxtimes		rds described and reported
		conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
		sequence analysis
		uency analysis
\boxtimes	Risk calculation	
\boxtimes		or property conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
\boxtimes	Risk assessment f	or loss of life conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
\boxtimes	Assessed risks har	ve been compared to "Acceptable Risk Management" criteria as defined in the Geotechnical Risk
_	•	y for Pittwater - 2009
\boxtimes	-	provided that the design can achieve the "Acceptable Risk Management" criteria provided that the
_	specified condition	
\boxtimes	Design Life Adopte	
	⊠ 100 ;	
	☐ Othe	
_		specify
\boxtimes		ditions to be applied to all four phases as described in the Geotechnical Risk Management Policy for
_	Pittwater - 2009 ha	·
\boxtimes		p remove risk where reasonable and practical have been identified and included in the report.
	Risk assessment v	vithin Bushfire Asset Protection Zone.
I am av	ware that Pittwater C	ouncil will rely on the Geotechnical Report, to which this checklist applies, as the basis for ensuring
		anagement aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk
		life of the structure, taken as at least 100 years unless otherwise stated, and justified in the Report
and tha	at reasonable and pra	actical measures have been identified to remove foreseeable risk.
		Scelet OFESSIONAL
		70°
	Signature	AUSTRALIAN • C
	Name	Ben White
	- Tallio	
	Chartered Profession	nal Status MScGEOL AIG RPGeo

222757

White Geotechnical Group Pty Ltd

Membership No.

Company

J5472. 23rd May, 2025. Page 1.

GEOTECHNICAL INVESTIGATION:

Alterations and Additions and New House and Garage at 133 Riverview Road, Avalon Beach

1. Proposed Development

- **1.1** Demolish the existing house and construct a new house by excavating to a maximum depth of ~4.2m.
- 1.2 Construct a two-storey garage with lift by excavating to a maximum depth of ~4.3m.
- **1.3** Construct a boatshed, jetty and decking at the waterfront.
- **1.4** Construct an inclined lift between the house and the boatshed.
- Details of the proposed development are shown on 27 drawings prepared by Rise Projects, drawings numbered A000, A101 to 103, A201 to 208, A301 to 303, A401 to 402, A501, A600, A605, A801 to 802, A901 to 902, A1001 to 1003. All revision A. All dated 22.05.25.

2. Site Description

- **2.1** The site was inspected on the 24th May, 2024.
- 2.2 This waterfront residential property is on the low side of the road and has a W aspect. It is located on the moderate to very steeply graded middle and lower reaches of a hillslope. The natural slope falls across the upper two-thirds of the property at an average angle of ~21° before increasing to very steep angles of ~30° to the waterfront. The slope above the property continues at similar steep angles.
- **2.3** At the road frontage, a concrete and bitumen driveway runs to a compacted fill parking area on the uphill side of the property (Photo 1). The fill for the parking area is supported by a stable low formed concrete and brick retaining wall. Fill for

J5472. 23rd May, 2025. Page 2.

Riverview Road is supported by a low stable timber retaining wall (Photo 2), or is battered at stable angles (Photo 3). Between the parking space and the house is a moderately graded lawn (Photo 4). The cut for the house is battered at stable angles, has a covering of dense vegetation (Photo 5), and is partially supported by a mortared rock retaining wall (Photo 6). The retaining wall exhibited cracking in the mortar, however it will be demolished as part of the proposed works. The single-story fibreboard house is supported on sandstone block walls and sandstone piers. The house will also be demolished for the proposed works. Sandstone boulders are scattered across the steep slope below the house (Photo 7), and were observed to be sufficiently embedded in stable positions. This slope continues for some ~20m before increasing to very steep angles (Photo 8). The very steep slope in this location consists of alternating bands of thinly-bedded Very Low Strength Shale and thicker bands of Low Strength Sandstone (Photo 9). The majority of the slope consists of thin sandstone beds. The weathering process of the bedrock is that the softer beds undercut the harder beds. Because the bedding is thin and tightly jointed, the resulting failures are very small in scale. There is evidence of these failures occurring in the past and they are expected into the future, particularly during and immediately after heavy rainfall. Additionally, the weathering process is slow and the failures are not considered a threat to life or property. A near level shelf of Low to Medium strength sandstone extends from the base of this cliff to the waterfront (Photo 10).

3. Geology

The Sydney 1:100 000 Geological Sheet indicates the site is underlain by the Newport Formation of the Narrabeen Group. This is described as interbedded laminite, shale, and quartz to lithic-quartz sandstone.

4. Subsurface Investigation

One hand Auger Hole (AH) was put down to identify the soil materials. Eleven Dynamic Cone Penetrometer (DCP) tests were put down to determine the relative density of the overlying

J5472. 23rd May, 2025. Page 3.

soil and the depth to weathered rock. The locations of the tests are shown on the site plan attached. It should be noted that a level of caution should be applied when interpreting DCP test results. The test will not pass through hard buried objects so in some instances it can be difficult to determine whether refusal has occurred on an obstruction in the profile or on the natural rock surface. As such, due to the possibility that the actual ground conditions vary from our interpretation there should be allowances in the excavation and foundation budget to account for this. We refer to the appended "Important Information about Your Report" to further clarify. The results are as follows:

AUGER HOLE 1 (~RL38.5) – AH1 (Photo 11)

Depth (m)	Material Encountered
0.0 to 0.3	TOPSOIL , dark brown, medium dense, dry, medium grained, rock fragments included.
0.3 to 0.7	SANDY CLAYEY COLLUVIUM , orange to brown, stiff, fine to coarse grained, rock fragments included.

Refusal @ 0.7m. Auger grinding in clayey colluvium. No water table encountered.

DCP TEST RESULTS ON THE NEXT PAGE

J5472. 23rd May, 2025. Page 4.

DCP TEST RESULTS – Dynamic Cone Penetrometer							
Equipment: 9kg hammer, 510mm drop, conical tip. Standard: AS1289.6.3.2 - 1997							
Depth(m) Blows/0.3m	DCP 1 (~RL16.0)	DCP 2 (~RL1.0)	DCP 3 (~RL7.5)	DCP 4 (~RL21.5)	DCP 5 (~RL22.0)	DCP 6 (~RL27.0)	
0.0 to 0.3	2	Rock	17	5	9	15	
0.3 to 0.6	7	Exposed at Surface	#	10	10	9	
0.6 to 0.9	8			#	6	8	
0.9 to 1.2	#				#	15	
1.2 to 1.5						21	
1.5 to 1.8						24	
1.8 to 2.1						10	
2.1 to 2.4						#	
	Refusal on Rock @ 0.7m		Refusal on Rock @ 0.3m	Refusal on Rock @ 0.6m	Refusal on Rock @ 0.7m	Refusal on Rock @ 2.0m	

#refusal/end of test. F = DCP fell after being struck showing little resistance through all or part of the interval.

DCP TEST RESULTS – Dynamic Cone Penetrometer								
Equipment: 9	Equipment: 9kg hammer, 510mm drop, conical tip. Standard: AS1289.6.3.2 - 1997							
Depth(m) Blows/0.3m	DCP 7 (~RL30.5)	DCP 8 (~RL33.0)	DCP 9 (~RL36.5)	DCP 10 (~RL38.5)	DCP 11 (~RL39.5)			
0.0 to 0.3	7	9	10	7	7			
0.3 to 0.6	20	10	14	15	21			
0.6 to 0.9	15	24	#	38	22			
0.9 to 1.2	46	#		22	46			
1.2 to 1.5	#			#	#			
	Refusal on Rock @ 1.2m	Refusal on Rock @ 0.9m	Refusal on Rock @ 0.6m	Refusal on Rock @ 1.1m	Refusal on Rock @ 1.1m			

#refusal/end of test. F = DCP fell after being struck showing little resistance through all or part of the interval.

DCP Notes:

DCP1 – Refusal on Rock @ 0.7m, DCP bouncing off rock surface, maroon and white impact dust, and maroon shale on dry tip.

DCP2 – Medium Strength Sandstone exposed at waterfront.

J5472. 23rd May, 2025. Page 5.

DCP3 – Refusal on Rock @ 0.3m, DCP thudding on rock surface, orange and maroon shale on dry tip, brown clay in collar above tip.

DCP4 – Refusal on Rock @ 0.6m, DCP bouncing off rock surface, white and orange impact dust, and orange shale on dry tip.

DCP5 – Refusal on Rock @ 0.7m, DCP bouncing off rock surface, white orange and yellow sandy clay on dry tip, yellow sandy clay in collar above tip.

DCP6 – Refusal on Rock @ 2.0m, DCP bouncing off rock surface, white impact dust and maroon shale on dry tip, orange clay in collar above tip.

DCP7 – Refusal on Rock @ 1.2m, DCP thudding on rock surface, yellow and white impact dust on dry tip.

DCP8 – Refusal on Rock @ 0.9m, DCP thudding on rock surface, white yellow and maroon impact dust on dry tip.

DCP9 – Refusal on Rock @ 0.6m, DCP bouncing off rock surface, yellow and maroon shale on dry tip.

DCP10 – Refusal on Rock @ 1.1m, DCP bouncing off rock surface, clean dry tip, orange clay in collar above tip.

DCP11 – Refusal on Rock @ 1.1m, DCP thudding on rock surface, maroon and orange clay in collar above.

5. Geological Observations/Interpretation

The natural slope materials are colluvial at the near surface and residual at depth. Filling has been placed across the uphill side of the property for landscaping. The very steep slope at the waterfront exposes the underlying bedrock (Photo 9). The slope consists of alternating bands of thinly-bedded Very Low Strength Shale and thicker bands of Low Strength Sandstone. The majority of the face consists of thin sandstone beds. This ground profile is expected to extend under the proposed works for the boatshed and inclined lift. In the test locations, where rock was not exposed at the surface, it was encountered at depths of between 0.3m to 2.0m below the current surface, being deeper due to the presence of filling and a variable weathering profile. See Type Section attached for a diagrammatical representation of the expected ground materials.

J5472. 23rd May, 2025.

Page 6.

6. Groundwater

Normal ground water seepage is expected to move over the buried surface of the rock and

through the cracks. The water table was not encountered during the testing but is expected

to sit just above the waterline. As such, it is expected to be many metres below the base of

the proposed excavations on the uphill side of the property.

7. Surface Water

No evidence of significant surface flows were observed on the property during the inspection.

Normal sheet wash from the slope above will be intercepted by the street drainage system

for Riverview Road above.

It is recommended as part of the development a cut off drain be installed immediately above

the proposed house to catch surface flows generated between the proposed garage and the

house. The captured flows from this drain should be piped to waterfront. All drains, pits and

associated plumbing are to be oversized and designed to cope with extreme prolonged

rainfall events. The drain is to be designed by a stormwater/civil engineer in consultation with

the geotechnical consultant. It is a condition of the slope stability assessment in Section 8

(Hazard One) that this be done.

8. Geotechnical Hazards and Risk Analysis

No geotechnical hazards were observed below or beside the property. The moderate to

steeply graded slope that falls across the upper two thirds of the property and continues

above at steep angles is a potential hazard (Hazard One). The Very Steeply graded portion of

the slope is a potential hazard. (Hazard Two). The vibrations from the proposed excavations

are a potential hazard (Hazard Three). The proposed excavations are a potential hazard until

retaining walls are in place (Hazard Four).

J5472. 23rd May, 2025. Page 7.

Risk Analysis Summary

HAZARDS	Hazard One	Hazard Two	
	The moderate to steep slope that	that Small scale surface failures	
	falls across the property and	occurring across the Very Steep	
TYPE	continues steeply above, failing	portion of the slope (Photos 8 & 9)	
	and impacting on the	immediately above the	
	property/proposed works.	waterfront.	
LIKELIHOOD	'Unlikely' (10 ⁻⁴)	'Likely (10 ⁻²)	
CONSEQUENCES TO PROPERTY	'Medium' (35%)	'Minor' (1.0%)	
RISK TO PROPERTY	'Low' (2 x 10 ⁻⁵)	'Moderate' (5 x 10 ⁻⁴)	
RISK TO LIFE	9.1 x 10 ⁻⁷ /annum	9.96 x 10 ⁻⁶ /annum	
COMMENTS	This level of risk is 'ACCEPTABLE', provided the recommendations in Section 7 & 16 are followed.	This level of risk to life and property is 'TOLERABLE', provided the recommendations in Section 16.1 & 16.2 are followed.	

(See Aust. Geomech. Jnl. Mar 2007 Vol. 42 No 1, for full explanation of terms)

HAZARDS	Hazard Three	Hazard Four	
ТҮРЕ	The vibrations produced during the proposed excavation impacting on the surrounding structures.	The excavation collapsing onto the work site before retaining walls are in place.	
LIKELIHOOD	'Possible' (10 ⁻³)	'Likely' (10 ⁻²)	
CONSEQUENCES TO PROPERTY	'Minor' (5%)	'Medium' (30%)	
RISK TO PROPERTY	'Moderate' (5 x 10 ⁻⁵)	'Moderate' (2 x 10 ⁻⁴)	
RISK TO LIFE	5.3 x 10 ⁻⁷ /annum	5.3 x 10 ⁻⁴ /annum	
COMMENTS	This level of risk to property is 'UNACCEPTABLE'. To move risk to 'ACCEPTABLE' levels, the recommendations in Section 12 are to be followed.	This level of risk to life and property is 'UNACCEPTABLE'. To move risk to 'ACCEPTABLE' level the recommendations in Sectio 13 and 14 are to be followed.	

(See Aust. Geomech. Jnl. Mar 2007 Vol. 42 No 1, for full explanation of terms)

J5472. 23rd May, 2025.

Page 8.

9. Suitability of the Proposed Development for the Site

The proposed development is suitable for the site. No geotechnical hazards will be created by

the completion of the proposed development provided it is carried out in accordance with

the requirements of this report and good engineering and building practice.

10. Stormwater

There is fall to the waterfront below. All stormwater or drainage runoff from the proposed

works is to be piped to the waterfront through any tanks that may be required by the

regulating authorities.

11. Excavations

Two excavations are required for the proposed development:

A stepped excavation into the slope is required to construct the proposed Garage and Lift.

• The lower step for the lift will reach a maximum depth of ~4.3m.

• The upper step for the garage guest room will reach a maximum depth of ~2.2m.

• The width of the bench between the two excavations is ~3.7m

An additional stepped excavation into the slope is required to construct the house.

• The lower step will reach a maximum depth of ~4.2m at the location of the cut for the

stairs.

• The upper step for the lower ground floor will reach a maximum depth of ~4.2m.

• The benches between the two steps are of variable widths apart.

The excavations are expected to be through fill and shallow soil over colluvium and clay with

Very Low to Low Strength Rock expected at depths of between ~0.3m and ~2.0m. It is

envisaged that excavations through fill, soil, clay, and shale can be carried out with an

excavator and toothed bucket, and excavations through rock will require grinding or rock

sawing and breaking.

J5472. 23rd May, 2025.

Page 9.

12. Vibrations

Possible vibrations generated during excavations through fill, soil, colluvium, clay, shale, and jointed Low Strength Rock will be below the threshold limit for building damage utilising a domestic-sized excavator up to 16 tonnes. Where excavations are through Medium Strength Rock, they should be carried out to minimise the potential to cause vibration damage to the N and S neighbouring houses. Allowing ~0.5m for backwall drainage, the setbacks from the

proposed excavations to the existing structures are as follows:

The garage and lift excavation will be set back.

~1.0m from the N neighbouring house.

• ~7.0m from the S neighbouring house.

The excavation for the house will be set back.

• ~1.0m from the N neighbouring house.

~1.2m from the S neighbouring house.

Dilapidation reporting carried out on the N and S neighbouring properties is recommended prior to the excavation works commencing to minimise the potential for spurious building damage claims.

Close controls by the contractor over rock excavation are recommended so excessive

vibrations are not generated.

Excavation methods are to be used that limit peak particle velocity to 5mm/sec at the house walls. Vibration monitoring will be required to verify this is achieved. Vibration monitoring must include a light/alarm so the operator knows if vibration limits have been exceeded. The

equipment is to log and record vibrations throughout the excavation works.

In Medium Strength rock or better techniques to minimise vibration transmission will be

required. These include:

J5472. 23rd May, 2025. Page 10.

- Rock sawing the excavation perimeter to at least 1.0m deep prior to any rock breaking with hammers, keeping the saw cuts below the rock to be broken throughout the excavation process.
- Limiting rock hammer size.
- Rock hammering in short bursts so vibrations do not amplify.
- Rock breaking with the hammer angled away from the nearby sensitive structures.
- Creating additional saw breaks in the rock where vibration limits are exceeded, as well
 as reducing hammer size as necessary.
- Use of rock grinders (milling head).

Should excavation induced vibrations exceed vibration limits after the recommendations above have been implemented, excavation works are to cease immediately and our office is to be contacted.

It is worth noting that vibrations that are below thresholds for building damage may be felt by the occupants of the subject and neighbouring houses.

13. Excavation Support Requirements

It is recommended, before the structural design commences for the project, exploration core drilling is to be carried out on the site to confirm to the rock quality and strength. This is to be arranged and supervised by the geotechnical consultant and should consist of a minimum of two cored bore holes taken to a depth of not less than 8.0m each. The following ground support advice can be considered preliminary and will be reviewed on recovery of the drill core. It may change as a result of the assessment of the drill core.

As this job is considered technically complex and due to the depth of the excavation, we recommend it be carried out by builders and contractors who are well experienced in similar work and can provide a proven history of completed work. We recommend a pre-construction meeting between the structural engineer, the builder, and the geotechnical consultant to

J5472. 23rd May, 2025.

Page 11.

discuss and confirm the excavation plan and to ensure suitable excavation equipment will be

on site.

Bulk Excavation for Garage and Lift

The excavation for the proposed garage and lift will reach a maximum depth of ~4.3m in the

location of the lift, and ~2.2m on the uphill side of the cut for the guest room level. Allowing

for 0.5m of back wall drainage, the setbacks from the proposed excavation to the existing

structures/boundaries are as follows:

~Flush with the N common boundary.

~1.0m from the road reserve.

• ~1.0m from the N neighbouring house.

As such, the road reserve, N common boundary, and N neighbouring house will lie within the

zone of influence of the proposed excavation. In this instance, the zone of influence is the

area above a theoretical 45° line from the base of the excavation towards the surrounding

structures and boundaries. This line reduces to 30° through the fill and soil.

Due to the steep grade of the slope, depth of the excavation and its proximity to the

surrounding boundaries and structures, we recommend heavy ground support be installed

prior to the commencement of the excavation to ensure the safety of any workers below the

cut and integrity of the neighbouring properties. As the excavation will be stepped, both the

upper and lower stepped portion will need to be supported with a piled shoring wall around

all sides of the excavation. The support for the upper portion will need to be installed before

the excavation commences following the advice below. After the excavation has been

lowered to the level of the guest room, the support for the lift portion of the excavation is to

be installed. See the site plan attached for the minimum required extent of the shoring shown

in blue.

Spaced piled retaining walls are one suitable method of support. Pier spacing for the wall is

typically ~2.0m but can vary between 1.6 to 2.4m depending on the design. To drill the pier

J5472.

23rd May, 2025.

Page 12.

holes for the wall, a mini piling rig or similar that can excavate through Medium to High

Strength Rock is recommended as the ground testing did not extend to the likely required

depth of the piles. As the excavation is lowered in 1.5m lifts, infill sprayed concrete panels or

similar are added between the piers to form the spaced wall. Drainage is installed behind the

panels. The piers can be temporarily supported by embedment below the base of the

excavation, or by a combination of embedment and temporary propping. We note the

structural engineer will need to calculate the required embedment of the piles using the

parameters in **Table 1** of **Section 14** and these depths are to be noted on the structural plans.

Upon completion of the excavation, the piled walls are to be tied into the concrete floor and

ceiling slabs of the garage and lift shaft to provide permanent bracing.

The geotechnical consultant is to inspect the drilling process of the entire first pile and the

ground materials at the base of all pier holes/excavations for ground support purposes.

Bulk Excavation for House

The excavation for the proposed house will reach a maximum depth of ~4.2m in the location

of the stairwell at the level of the cellar, and ~4.2m at the NE side of the cut for the Lower

Ground Floor Level. Allowing for 0.5m of back wall drainage, the setbacks from the proposed

excavation to the existing structures/boundaries are as follows:

~Flush with the N common boundary.

• ~0.7m from the S common boundary.

~1.0m from the N neighbouring house.

Due to the steep grade of the slope, depth of the excavation and its proximity to the

surrounding boundaries and structures, we recommend heavy ground support be installed

following the above advice, prior to the commencement of the excavation to ensure the

safety of any workers below the cut and integrity of the neighbouring properties.

As the excavation will be stepped, both the upper and lower stepped portion will need to be

supported with a piled shoring wall around all sides of the excavation. The support for the

J5472. 23rd May, 2025. Page 13.

Lower Ground Floor will need to be installed before the excavation commences following the methodology outlined above. After the excavation has been lowered to the level of the Lower Ground Floor, the support for the cellar level portion of the excavation is to be installed. See the site plan attached for the minimum required extent of the shoring shown in blue.

Advice Applying to All Excavations

The excavations are to be carried out during a dry period. No excavations are to commence if heavy or prolonged rainfall is forecast.

All excavation spoil is to be removed from site following the current Environmental Protection Agency (EPA) waste classification guidelines.

14. Retaining Walls

For cantilever or singly propped retaining walls it is suggested the design be based on a triangular distribution of lateral pressures using the parameters shown in Table 1.

Table 1 – Likely Earth Pressures for Retaining Walls

	Earth Pressure Coefficients					
Unit	Unit weight (kN/m³)	'Active' K _a	'At Rest' K ₀	Passive		
Fill and Topsoil	20	0.40	0.55	N/A		
Clay	20	0.35	0.45	Kp = 2.0 'ultimate'		
Very Low Strength Rock	22	0.22	0.35	400kPa 'ultimate'		
Low Strength Rock	24	0.20	0.35	1000kPa 'ultimate'		

For rock classes refer to Pells et al "Design Loadings for Foundations on Shale and Sandstone in the Sydney Region". Australian Geomechanics Journal 1978.

J5472. 23rd May, 2025.

Page 14.

It is to be noted that the earth pressures in Table 1 assume a level surface above the wall and

do not account for any surcharge loads, noting that surcharge loads from the structures/road

above will be acting on the wall. It also assumes retaining walls are fully drained. It should be

noted that passive pressure is an ultimate value and should have an appropriate safety factor

applied. No passive resistance should be assumed for the top 0.4m to account for any

disturbance from the excavation. Ground materials and relevant earth pressure coefficients

are to be confirmed on site by the geotechnical consultant.

All retaining walls are to have sufficient back-wall drainage and be backfilled immediately

behind the structure with free-draining material (such as gravel). This material is to be

wrapped in a non-woven Geotextile fabric (i.e. Bidim A34 or similar), to prevent the drainage

from becoming clogged with silt and clay. If no back-wall drainage is installed in retaining wall,

the likely hydrostatic pressures are to be accounted for in the structural design.

15. Foundations

15.1 The proposed garage excavation is expected to be partially seated in Very Low to Low

Strength Rock. This is a suitable foundation material. It is expected to be exposed across the

uphill side of the excavation at the level of the guest room. Where it is not exposed, due to

the steep to very steep grade of the slope across the property, piers taken to and embedded

~0.4m into rock will be required to maintain a uniform foundation material across the

structure. The piers for the downhill side of the garage are expected to encounter this

material at depths of between ~0.6m to ~1.1m below the current surface.

15.2 The proposed lift excavation is expected to be entirely seated in Very Low to Low

strength rock. This is a suitable foundation material.

15.3 The proposed house excavation is expected to be partially seated on Very Low to Low

Strength rock. This is a suitable foundation material. This material is expected to be exposed

across the uphill side of the excavation. Where it is not exposed, and where the footprint of

J5472.

23rd May, 2025.

Page 15.

the proposed house does not fall over the excavations, piers taken to and embedded ~0.5m

into this rock will be required to maintain a uniform foundation material across the structure.

The piers for the downhill side of the house are expected to encounter this material at depths

of between ~1.0m to ~2.0m below the current surface.

15.4 Piers socketed at least ~0.4m into Very Low to Low Strength Rock are suitable footings

for the proposed inclined lift. This material is expected to be encountered at depths of

between ~0.3m to ~0.7m below the current surface where it is not exposed across the

location of the proposed inclined lift.

15.5 The proposed boat shed and decking can be supported on concrete piers supported

directly off the Low to Medium Strength Rock exposed at the waterfront.

it is recommended a catch fence/barrier be constructed on the uphill side of the proposed

boat shed to stop any boulders or loose joint blocks that may move down the Very Steep

portion of the slope over the life of the boatshed. The catch fence or barrier is to be designed

and approved by the structural engineer.

No temporary or permanent excavation works are currently proposed across the Very Steep

portion of the slope on the downhill side of the property. The project Geotechnical engineer

is to be consulted if any excavations in this area are required.

15.6 It is envisaged the jetty will be supported on driven piles as is typical of jetties in the

Pittwater area. Estimating the depth of the river sediment below the waterline is beyond the

scope of this report. However, we expect the sediment to get progressively deeper with an

increase in the depth of water as it drops away from the Low to Medium Strength Rock shelf

at the waterfront.

The piling contractor is responsible for certifying these foundations but should inform the

geotechnical consultant of the pile embedment depths as they are installed.

J5472. 23rd May, 2025.

Page 16.

15.7 Due to the grade of the slope on the uphill side of the property, piers socketed at least

~0.4m into Very Low to Low Strength Rock are suitable footings for the proposed driveway.

15.8 A maximum allowable bearing pressure of 600kPa can be assumed for footings on Very

Low to Low Strength Rock or better.

As the bearing capacity of clay and shale reduces when it is wet, we recommend the footings

be dug, inspected, and poured in quick succession (ideally the same day if possible). If the

footings get wet, they will have to be drained and the soft layer of wet clay or shale on the

footing surface will have to be removed before concrete is poured.

If a rapid turnaround from footing excavation to the concrete pour is not possible, a sealing

layer of concrete may be added to the footing surface after it has been cleaned and inspected

by the geotechnical consultant.

NOTE: If the contractor is unsure of the footing material required, it is more cost-effective to

get the geotechnical consultant on site at the start of the footing excavation to advise on

footing depth and material. This mostly prevents unnecessary over-excavation in clay-like

shaly-rock but can be valuable in all types of geology.

16. Site Maintenance/Remedial Works

16.1 Where slopes approach or exceed 20°, such as on this site, it is prudent for the

owners to occasionally inspect the slope (say annually or after heavy rainfall events,

whichever occurs first). Should any of the following be observed: movement or

cracking in retaining walls, cracking in any structures, cracking or movement in the

slope surface, tilting or movement in established trees, leaking pipes, or newly

observed flowing water, or changes in the erosional process or drainage regime, then

a geotechnical consultant should be engaged to assess the slope. We can carry out

these inspections upon request. The risk assessment in **Section 8** is subject to this site

maintenance being carried out.

J5472.

23rd May, 2025.

Page 17.

16.2 To reduce risk, during heavy and prolonged rainfall events, the Very Steep

portion of the slope that drops to the waterfront (Photos 8 & 9) should not be

approached until the slope materials are fully dry, as small-scale failures are expected

to occur while the slope is saturated. The risk assessment in **Section 8** is subject to this

advice being followed.

17. Geotechnical Review

The structural plans are to be checked and certified by the geotechnical engineer as being in

accordance with the geotechnical recommendations. On completion, a Form 2B will be

issued. This form is required for the Construction Certificate to proceed.

18. Inspections

The client and builder are to familiarise themselves with the following required inspections

as well as council geotechnical policy. We cannot provide geotechnical certification for the

owners and Occupation Certificate if the following inspections have not been carried out

during the construction process.

• The geotechnical consultant is to inspect the ground materials while the first pier for

the ground support is being dug to assess the ground strength and to ensure it is in

line with our expectations.

• All finished pier holes for shoring walls, for excavation ground support are to be

inspected and measured before concrete is placed.

All footings are to be inspected and approved by the geotechnical consultant while

the excavation equipment and contractors are still onsite and before steel reinforcing

is placed or concrete is poured.

J5472. 23rd May, 2025. Page 18.

White Geotechnical Group Pty Ltd.

Kleardner

Reviewed By:

Bulia

Nathan Gardner B.Sc. (Geol. & Geophys. & Env. Stud.) AIG., RPGeo Geotechnical & Engineering.

No. 10307

Engineering Geologist & Environmental Scientist.

Ben White M.Sc. Geol., AIG., RPGeo Geotechnical & Engineering. No. 10306

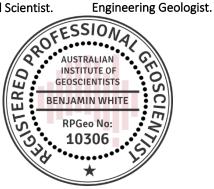


Photo 1

J5472. 23rd May, 2025. Page 19.

Photo 2

Photo 3

J5472. 23rd May, 2025. Page 20.

Photo 4

Photo 5

J5472. 23rd May, 2025. Page 21.

Photo 6

Photo 7

J5472. 23rd May, 2025. Page 22.

Photo 8

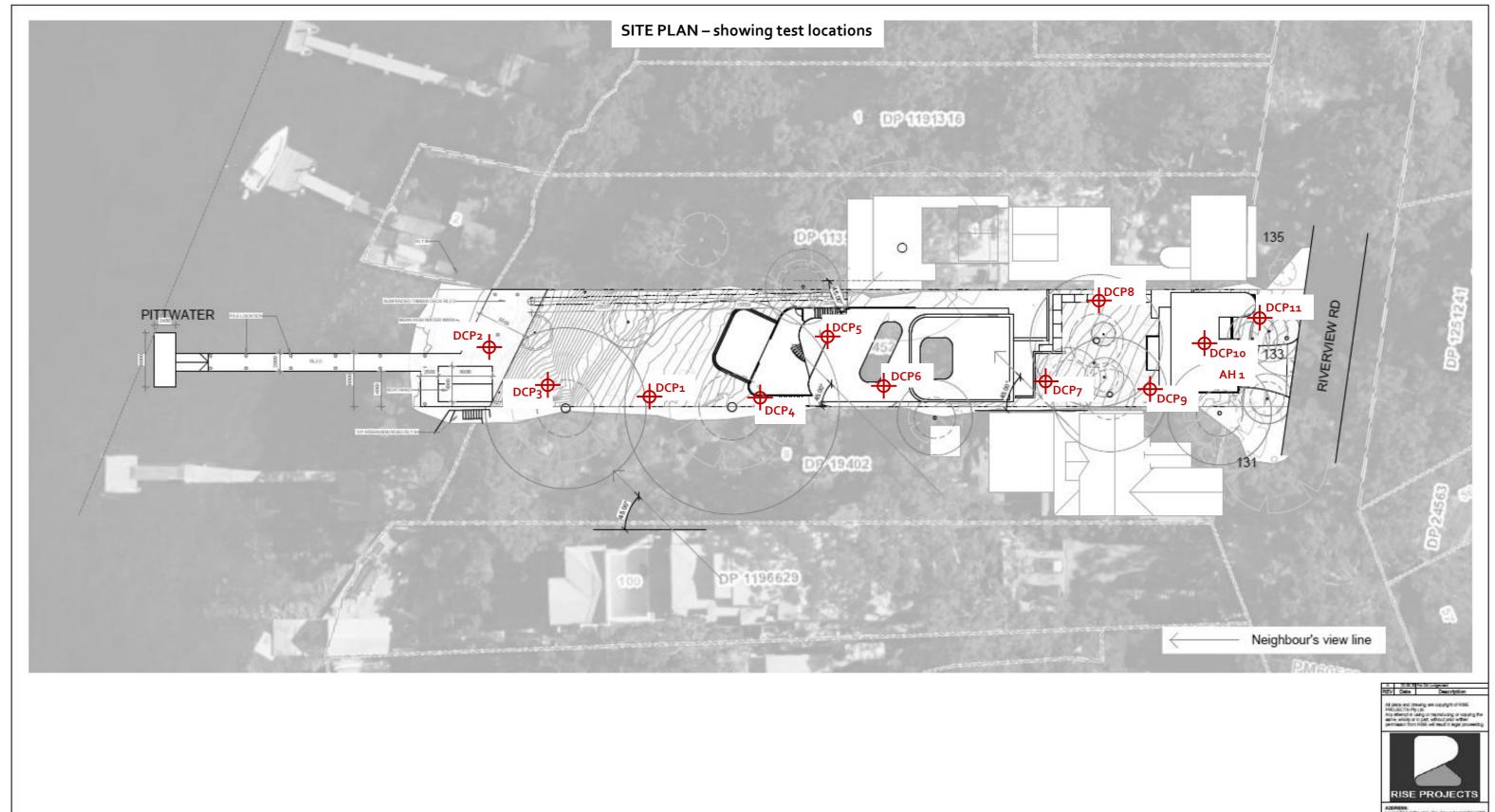
Photo 9

J5472. 23rd May, 2025. Page 23.

Photo 10

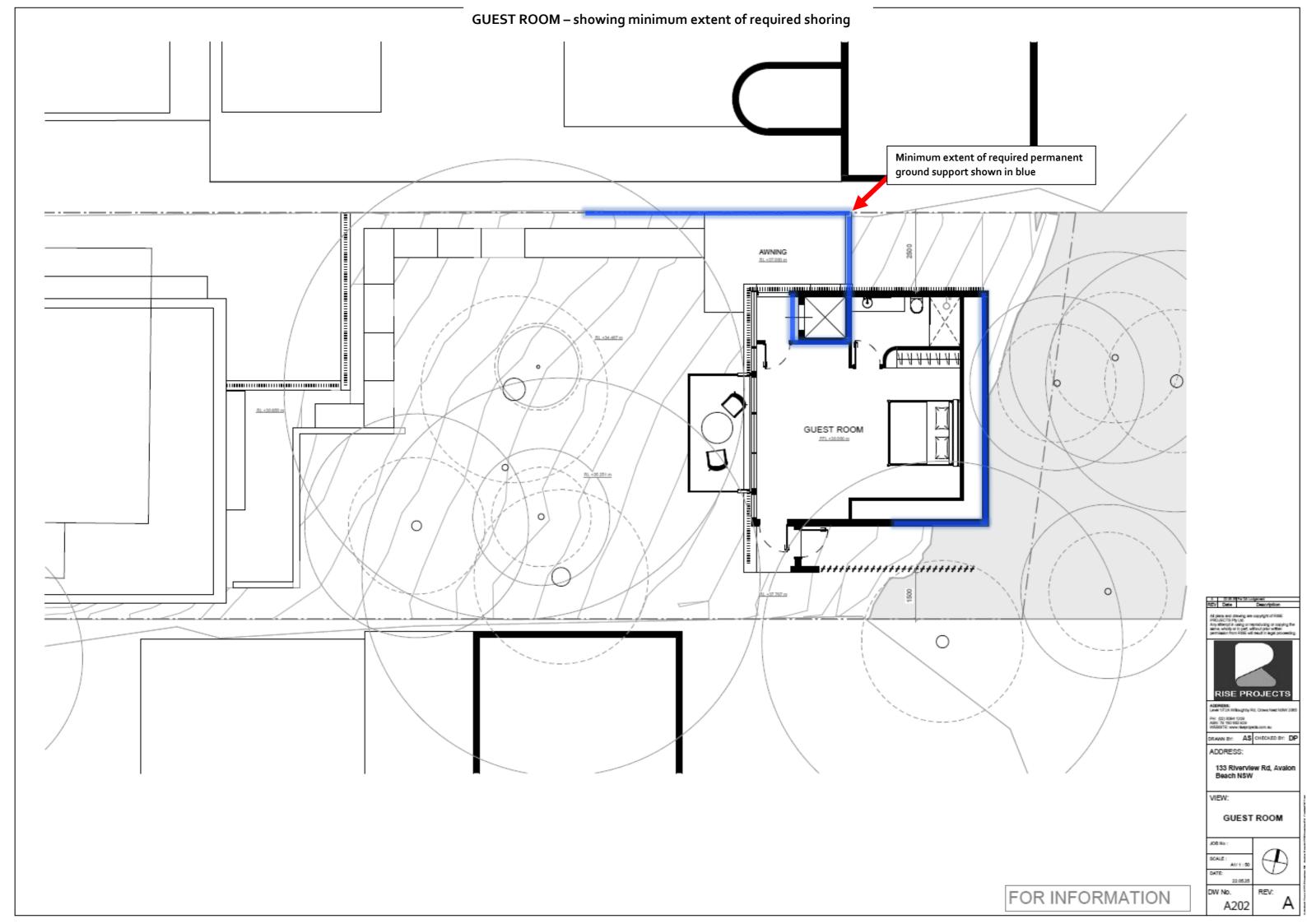
J5472. 23rd May, 2025. Page 24.

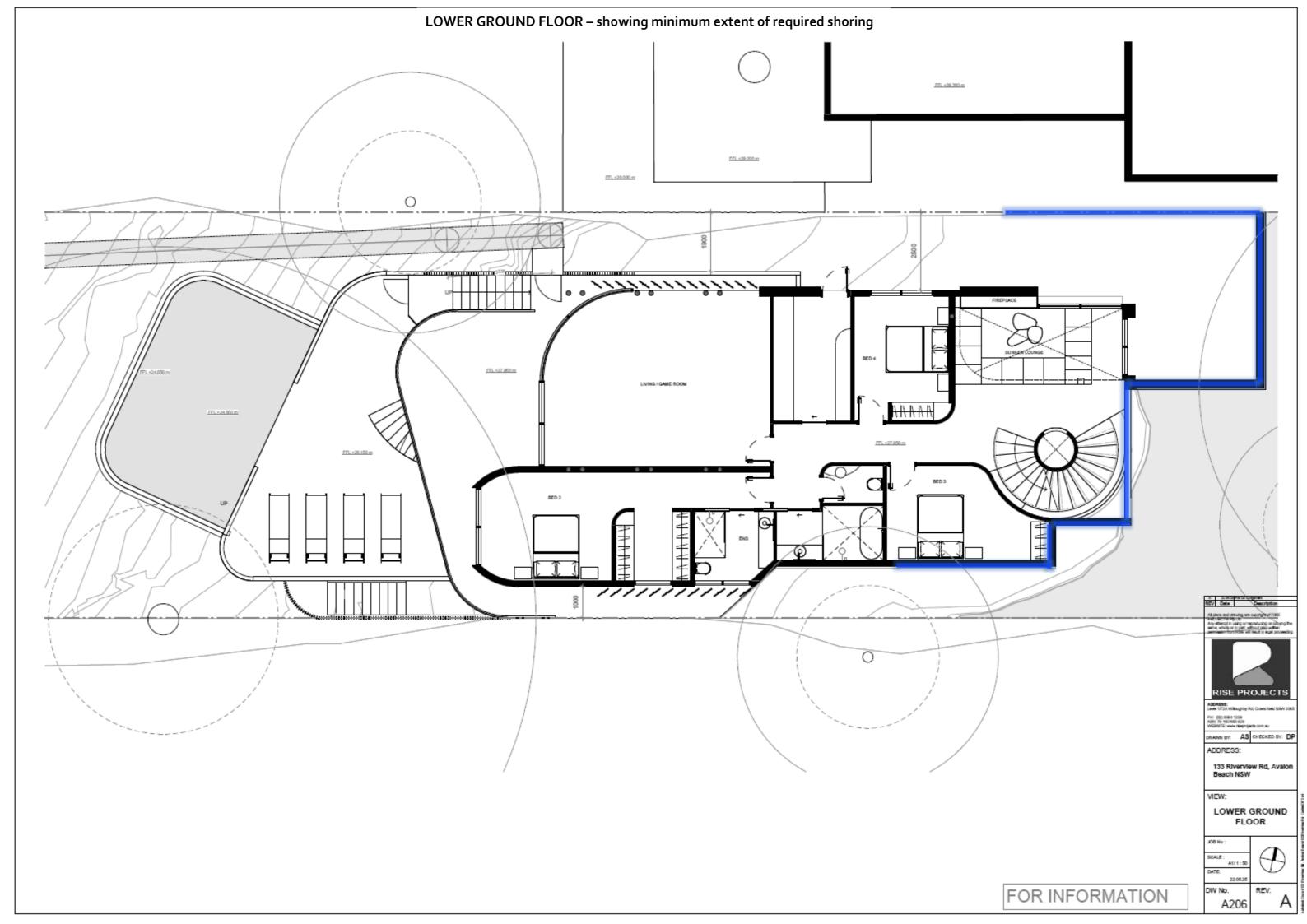
Photo 11 – Ah1 – Downhole is top to bottom

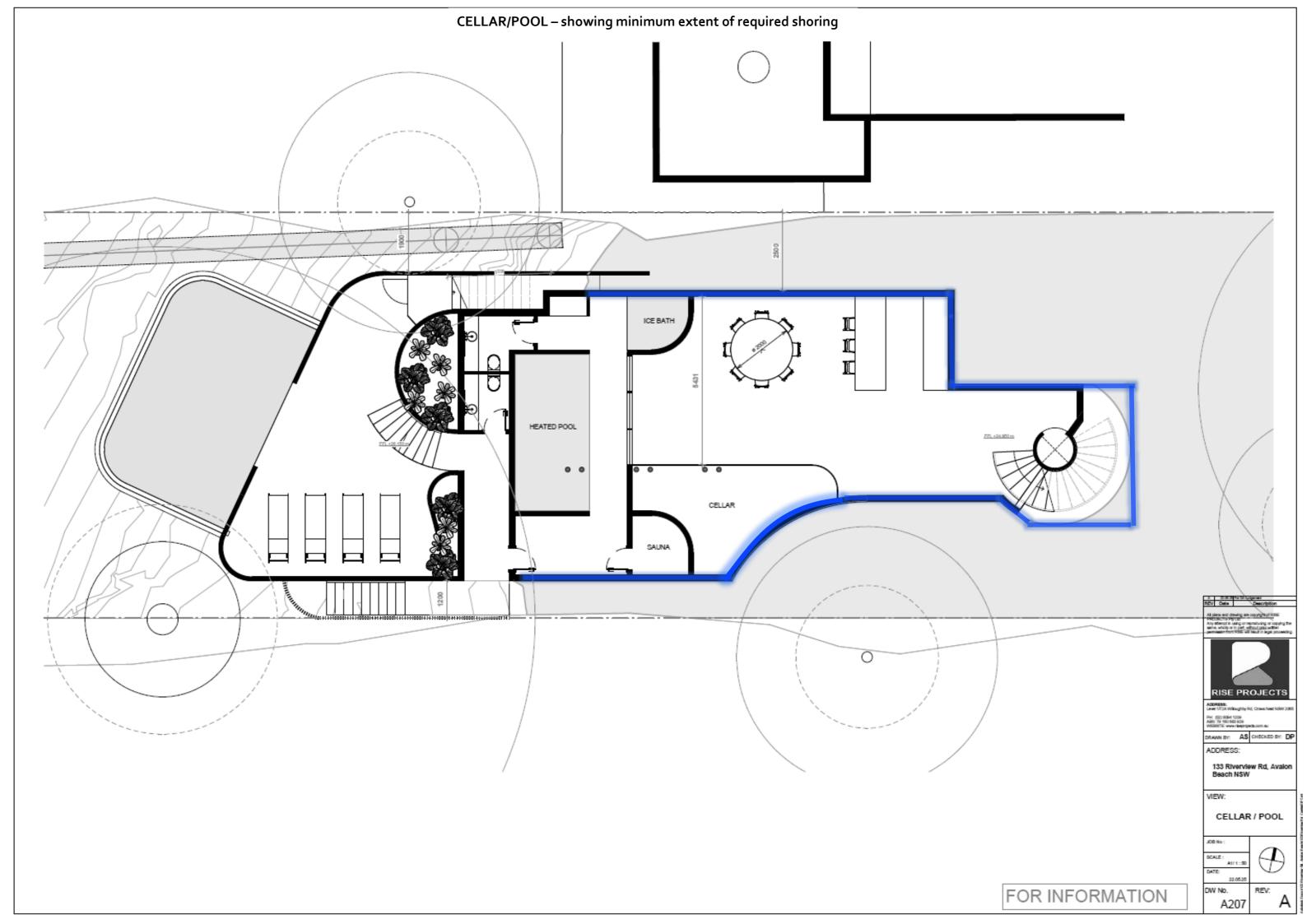

J5472. 23rd May, 2025. Page 25.

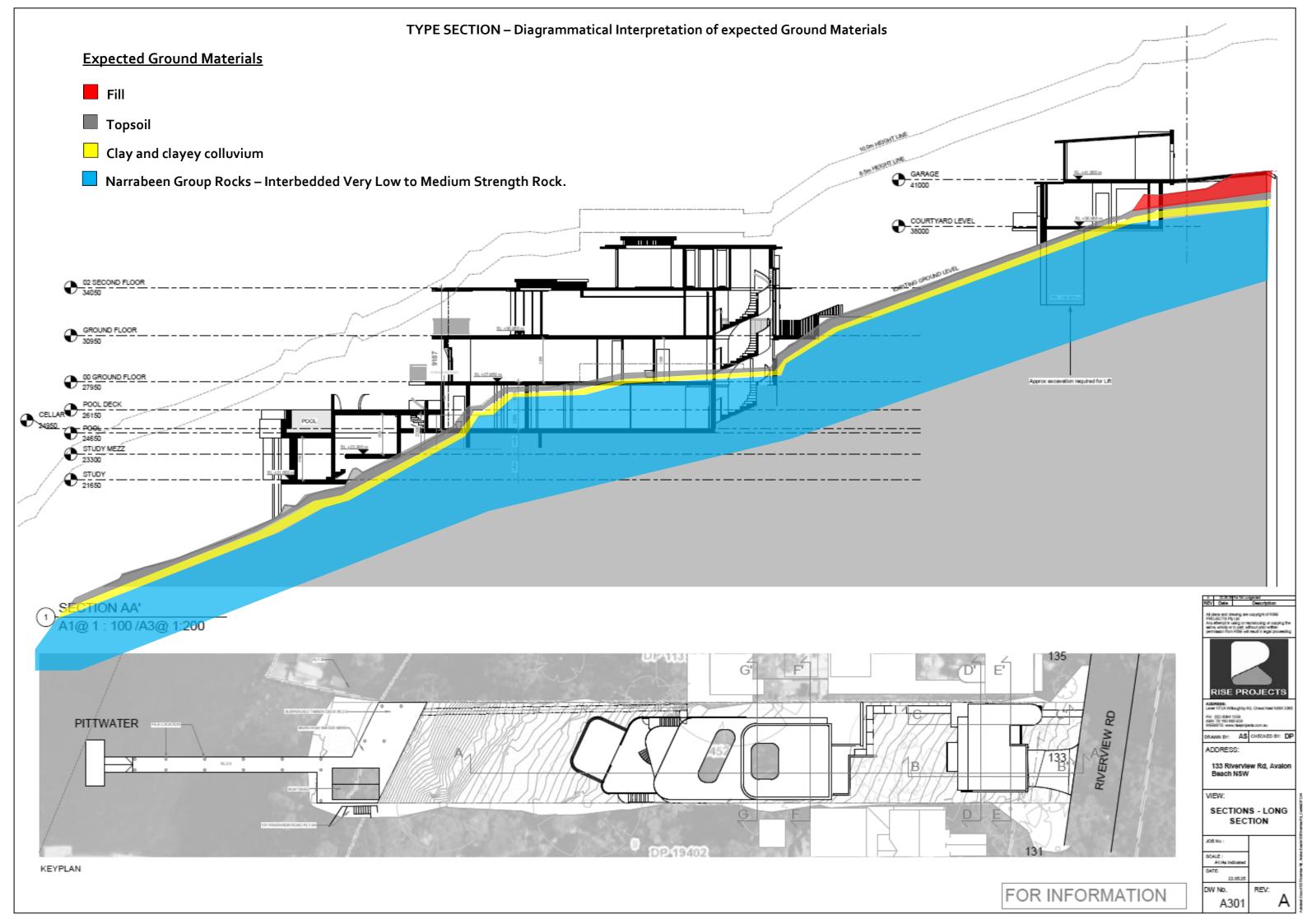
Important Information about Your Report

It should be noted that Geotechnical Reports are documents that build a picture of the subsurface conditions from the observation of surface features and testing carried out at specific points on the site. The spacing and location of the test points can be limited by the location of existing structures on the site or by budget and time constraints of the client. Additionally, the test themselves, although chosen for their suitability for the particular project, have their own limiting factors. The testing gives accurate information at the location of the test, within the confines of the test's capability. A geological interpretation or model is developed by joining these test points using all available data and drawing on previous experience of the geotechnical consultant. Even the most experienced practitioners cannot determine every possible feature or change that may lie below the earth. All of the subsurface features can only be known when they are revealed by excavation. As such, a Geotechnical report can be considered an interpretive document. It is based on factual data but also on opinion and judgement that comes with a level of uncertainty. This information is provided to help explain the nature and limitations of your report.


With this in mind, the following points are to be noted:


- If upon the commencement of the works the subsurface ground or ground water conditions prove different from those described in this report, it is advisable to contact White Geotechnical Group immediately, as problems relating to the ground works phase of construction are far easier and less costly to overcome if they are addressed early.
- If this report is used by other professionals during the design or construction process, any questions should be directed to White Geotechnical Group as only we understand the full methodology behind the report's conclusions.
- The report addresses issues relating to your specific design and site. If the proposed project design changes, aspects of the report may no longer apply. Contact White Geotechnical if this occurs.
- This report should not be applied to any other project other than that outlined in section 1.0.
- This report is to be read in full and should not have sections removed or included in other documents as this can result in misinterpretation of the data by others.
- It is common for the design and construction process to be adapted as it progresses (sometimes
 to suit the previous experience of the contractors involved). If alternative design and construction
 processes are required to those described in this report, contact White Geotechnical Group. We
 are familiar with a variety of techniques to reduce risk and can advise if your proposed methods
 are suitable for the site conditions.





FOR INFORMATION

EXAMPLES OF GOOD HILLSIDE PRACTICE

EXAMPLES OF POOR HILLSIDE PRACTICE

