

Broadcrest Consulting Pty Ltd

259 Aumuna Rd, Terrey Hills NSW

On-Site Wastewater Report

October 2022

REF: 1381-WW-A-03

BLANK PAGE

DOCUMENT CONTROL

Approval and Authorisation

Title	259 Aumuna Rd, Terrey Hills NSW On-Site Wastewater Report
Authored by:	A. McAllister
Released on behalf of Broadcrest Consulting Pty Ltd by:	Logan Starkey Engineer Environmental & Civil
Signed:	J. Stanley
Dated:	31/10/2022

Document Status

Date	Internal Reference	Document Status	Prepared by	Reviewed by
11/09/21	1381-WW-A-01	For Release	L. Starkey	C. Hudson
07/04/22	1381-WW-A-02	Revised Architectural	A. McAllister	L. Starkey
31/10/2022	1381-WW-A-03	Revised Site Plan	A. McAllister	L. Starkey

Copyright: This document is the property of Broadcrest Consulting Pty Ltd. Use or copying of this document in whole or in part without the expressed written permission of Broad crest Consulting is an infringement of copyright.

CONTENTS

DC	симі	ENT CONTROL	. 3
co	NTEN	TS	. 4
1	INTR	ODUCTION	. 1
	1.1	Foreword	1
	1.2	Background	1
	1.3	Objectives	1
	1.4	Scope of Works	1
	1.5	Compliance	1
2	SITE	ASSESSMENT & INVESTIGATION	. 2
_	2.1	Site Information	
	2.2	General	
	2.3	Assessment Methodology	
	2.4	Site Assessment Summary	
	2.5	Climate	
	2.6	Flood potential	
	2.7	Exposure	
	2.8	Slope	
	2.9	Landform	
	2.10	Surface Water and Seepage	6
	2.11	Site drainage	7
	2.12	Erosion potential	7
	2.13	Site & Soil Disturbances	7
	2.14	Domestic Bore	7
	2.15	Rock Outcropping	7
	2.16	Geology / Regolith	8
	2.17	Buffer Distances & Available Land Area	8
3	SOIL	ASSESSMENT	. 9
	3.1	Soil Assessment Summary	
	3.2	Soil Landscape Map	
	3.3	Depth to Bedrock / Hardpan	
	3.4	Depth to High Watertable	
	3.5	Soil Permeability Category	
	3.6	Soil Profiles	
	3.7	Soil Chemistry	14
4	NOM	IINATED WASTEWATER MANAGEMENT	15
•	4.1	Proposed OSSM Summary	
	4.2	Wastewater Treatment	
	4.3	Effluent Management	
	4.4	Recommended Site Modifications	
5	ΔΠΠ	TIONAL INFORMATION	
,	5.1	Pipework Detail	
	5.2	Licensing	
	5.3	Detailed Design	
c		•	
		CLUSION	
		IX A: SITE PLAN	
ΑP	PEND	IX B: CLIMATE DATA	20
ΑP	PEND	IX C: INFORMATION FOR THE PROPERTY OWNER	21
ДΡ	PEND	IX D: VIRAL DIE-OFF ASSESSMENT	22
		IX E: SD10-A: UPSLOPE DIVERSION DRAIN	
^7	LLIND	IA E. 3D IV-A. OF JEUFE DIVERJIUN DRAIN	دے

1 INTRODUCTION

1.1 Foreword

An On-Site Wastewater Report is a technical document which specifies how the sewage produced on-site will be managed, treated, and then disposed. An On-Site Wastewater Report carefully considers the environment, health, cost, and long-term management options for the on-site management of sewage.

1.2 Background

Broadcrest Pty. Ltd. was engaged by to produce an On-Site Wastewater Management Report at 259 Aumuna Rd, Terrey Hills NSW (the site). The report will accompany plans for additions and modification to existing house and construction of an ancillary shed. A site inspection was carried out on 9 September 2021 which involved a visual assessment of the site and soil sampling. The assessment of the results, system design and recommendations are detailed in this report.

1.3 Objectives

The performance objectives of the On-Site Wastewater Assessment are to:

- Protect human health
- Protect ground and surface water
- Maintain and enhance the quality of the land and vegetation
- Maintain and enhance community amenity
- Ensure maximum re-use of resources
- Promote an ecologically sustainable development.

1.4 Scope of Works

The scope of works included the following:

- A site inspection
- Soil sampling and analysis
- Wastewater management assessment
- Drafting of the proposed system
- Reporting in accordance with the associated legislations and guidelines.

1.5 Compliance

This report has been produced in accordance with the following guiding documents:

- DLG 1998, On-site Sewerage Management for Single Households
- SCA 2012, Designing and Installing On-Site Wastewater Systems
- Australian Standard AS 1289.3.8.1:2006 Methods for testing soils for engineering purposes
- Australian Standard AS 1546.1-3:2008 On-site domestic wastewater treatment units
- Australian Standard AS 1547:2012 On-site domestic wastewater management

2 SITE ASSESSMENT & INVESTIGATION

2.1 Site Information

Address / Locality	259 Aumuna Rd, Terrey Hills NSW
Lot Area:	18,000m ²
Council / LGA:	Northern Beaches Council
Intended Water Supply:	Town/bore Water
Inspection Officer:	C. Hudson - 9/09/2021

2.2 General

The site occupies 1.8Ha of land within the Northern Beaches Council LGA. At the time of site inspection, the site was occupied by any existing dwelling and mixed lawn, landscape, and bushland (Figures 2.1 and 2.2). The development is proposed for the internal modifications of the existing 4-bedroom residence (new 5-bedroom count) and the construction of a shed. The existing OSSM system onsite was observed and reported by the occupant to be suitably functional; this report will determine an EMA suitable for the post-development site configuration and continued use of the existing treatment system.

Figure 2-1: East facing photo over proposed EMA-1 location

Figure 2-2: South-west photo over proposed EMA-2 location (background behind carport)

2.3 Assessment Methodology

The assessment methodology of this report follows that prescribed in DLG (1998), whereby the restriction imposed by a site/soil features are categorised by severity, and their impact forms the basis for subsequent system selection, design, and recommendations (Table 2.3.1).

Table 2.3.1 - Site / soil limitation assigned per DLG (1998)

Limitation	Description
Minor	This feature has been assessed and deemed to pose no obstacle to OSSM, given the recommended system and measures are implemented.
Moderate	This feature requires consideration. It may typically be overcome by site modifications or by appropriate selection, design and sizing of treatment / application systems.
Major	This feature precludes the use of a given treatment, land application method, or Effluent Management Area (EMA). Particular Major Limitations may prevent OSSM entirely, require an off-site management approach, or re-evaluation of the development scope.

2.4 Site Assessment Summary

A summary of limitations pertinent to the suitability of the site for On-Site Sewerage Management (OSSM) is provided in Table 2.4.1 below.

Table 2.4.1 – Assessment summary of site features

Factor Assessed	Description	Limitation
Climate	Monthly evaporation exceeds rainfall for all months except for March and June.	Moderate
Temperature	Annual mean daytime maximum > 15°C.	Minor
Flood Potential	Proposed effluent management area positioned above any anticipated flood level.	Minor
Exposure	Good-excellent wind and solar exposure.	Minor
Slope	5% Gently Inclined	Minor
Landform	Waxing planar to divergent	Minor
Run-on and Seepage	Moderate catchment, run-on slow and divergent sheet-flow	Minor
Site-drainage	No ponding or pronounced saturation identified with proposed EMA.	Minor
Erosion Potential	No signs of erosion within the grassed area identified for effluent dispersal.	Minor
Site and Soil Disturbances	No disturbances identified	Minor
Groundwater Bores	A bore listed for water supply use is present on site. A viral die- off calculation has been completed to indicate suitable setback from feature.	Moderate/ Major
Rock Outcropping	No outcropping was identified within the proposed EMA locations.	Minor
Geology / Regolith	NIL	Minor
Buffer Distances & Available land area	All environmental buffers may be achieved other than standard water-bore setback. A viral die-off has been undertaken to inform suitability of setback.	Moderate

2.5 Climate

Terrey Hills has a temperate climate, with mild to warm wet summers, with cooler wet winter. Median annual rainfall is 998 mm and evaporation 1423 mm. Average monthly evaporation is greater than median rainfall for the entire year apart from March and June (Appendix B) (*Moderate Limitation*). To reduce the water balance, it is proposed to construct an upslope diversion drain above the EMA's. The drains should be located as per Appendix A and constructed per Appendix E.

Average maximum and minimum temperatures range from 27.0°C to 7.7°C in January to July respectively. The mean annual daytime maximum of 22.0°C proves suitable for biological wastewater treatment systems (i.e. AWTS) (*Minor Limitation*).

2.6 Flood potential

No flood study or flood levels have been provided . The Site lies above any anticipated flood level (*Minor Limitation*).

2.7 Exposure

The proposed effluent management area (EMA) is Moderately exposed to sun and wind (*Moderate Limitation*).

Landform Feature	Aspect	Solar Exposure	Wind Exposure	Limitation
А	North-East	Good	Good	Minor

2.8 Slope

Slope has the potential to become a restrictive landform feature for OSSM with increased slope increasing the risk of run-off and/or erosion. Slope within the proposed effluent management was determined to be between 3-5% at the EMA1, with 5% in EMA 2 (*Minor Limitation*).

Landform Feature Approximate Slope Tangent (%)		Slope Classification	Limitation
A 3-5%		Gently Inclined	Minor

Table 2.8.1 - Percentage Slope and Land Application Limitations

				Limitation		
Slope Range [%]	Slope Classification	Surface Irrigation (Spray & Drip)	Absorption Systems	Mounds	Conventional Trenches & LPEDs	Sub-surface Irrigation
0 – 1	Level	Minor	Minor	Minor	Minor	Minor
1 – 3	Very Gently Inclined	Minor	Minor	Minor	Minor	Minor
3 - 10	Gently Inclined	Minor	Minor	Minor	Minor	Minor
10 – 15	Moderately	Major	Major	Moderate	Moderate	Minor
15 – 20	Inclined	Major	Major	Major	Moderate ^[2]	Minor
> 20	Steeply Inclined	Major	Major	Major	Moderate ^[3]	Moderate ^[1]

^{[1] 30%} maximum slope without specific design (AS 1547:2012, p.133)

2.9 Landform

The landform describes the surface shape and topographic position at the proposed EMA. Typical landform descriptors per AS1547:2012 are detailed below.

Landform Feature	Slope Configuration	Limitation	
А	Waxing Divergent	Minor	

2.10 Surface Water and Seepage

Surface water and seepage flow is determined by the catchment preceding the EMA and the prevailing landform features. General assessment of the likely surface water interaction with the landform and EMA has been provided.

Landform	Catchment		Surface Flow		Soil	Seepage		
Feature	Size	Surface Coverage	Run-on	Run-off	Moisture		Potential	Limitation
Α	Minor	Grass	Moderate	Minor	Slightly Moist	Minor	Minor	

^{[2] &}gt;15% slope increase difficulty in construction (AS 1547:2012, Table K1)

^{[3] &}gt;25% slope creates difficulty in trenching, risk of erosion during construction (AS 1547:2012, Table K1)

2.11 Site drainage

The proposed effluent management area appeared to be free draining with no signs of soil saturation, surface ponding, or noted presence of macrophytes (i.e. sedges, ferns, juncus) (*Minor Limitation*).

2.12 Erosion potential

Erosion and surface soil movement results from the interaction of the existing landform, surface flows and surface coverage. The following existing erosion conditions were identified and assessed in proposing additional hydraulic loading in the form of effluent.

Landform Feature	Surface Flow Type	Erosion Hazard		Limitation
Landioi III Feature	Surface Flow Type	Surface Flow	Wind	
Α	Sheet	Low	Low	Minor

Note that soils are potentially erodible where surface cover is broken and as such, the EMA should be appropriately preserved and re-vegetated via Establishment of dense (>85% coverage) perennial groundcover prior to commissioning (*Minor Limitation*).

2.13 Site & Soil Disturbances

During construction of the EMA vegetation and topsoil will be disturbed, ensure EMA is revegetated via dense surface coverage prior to commissioning (*Moderate Limitation*).

2.14 Domestic Bore

WaterNSW Realtime data indicated bore ID GW018343.1.1 present on-site listed for water supply use. The location of the bore as listed by the driller is indicated per Appendix A. AS1547:2012 provides guidance of 15-50m offset, with a standard 100m offset typically adopted per WaterNSW (2019) guidelines. In this instance, a 26m offset is proposed, this potentially posing a moderate to major limitation. To assess the proximity, a viral die-off calculation has been completed per Appendix D. With a three times safety factor, the results indicate a ~25m radius offset is recommended; with the proposed being 25m offset. Based upon the viral die-off results and the EMAs being situated down-hill on a separate site sub-catchment, risk of interaction between the features is suitably limited. Secondary treatment and irrigation are proposed to maximise evapotranspiration and reduce reliance on infiltration.

2.15 Rock Outcropping

No rock outcropping or surface boulders were identified (*Minor Limitation*).

2.16 Geology / Regolith

No geological discontinuities, fractures, or highly porous regolith are expected within and surrounding the EMA (*Minor Limitation*).

2.17 Buffer Distances & Available Land Area

Minimum offset distances are designated by local approval authorities within their guiding documents to ensure the ongoing protection of community health, sensitive ecosystems, and the maintenance of community amenity. Where LGA guidance on a constraint is not available, appropriate offsets have been nominated in accordance with AS1547:2012 and Table 5 DLG (1998).

The site-specific constraints for the proposed EMA and land application method have been assessed as per Table 2.17.1.

Table 2.17.1 – Minimum buffer distances from sensitive site features

	Minimum	n Setback	Proposed	
Site Feature	If EMA is upslope of feature	If EMA is downslope / level with feature	Setback	Limitation
Dwellings	15	im	>15m	Minor
Property Boundaries	12m	6m	>3m / >6m	Minor
Driveways	6m	3m	>3/6m	Minor
Buildings	6m	3m	>3/6m	Minor
Pools	61	m	NA	Minor
Watercourses	100	0m	>100m	Minor
Domestic Bore / Well	100m from hi	gh water level	26m	Moderate*
Dam / Drainage Depression	40m from hig	gh water level	>40m	Minor

^{*}See Section 2.14 for discussion regarding bore offset.

3 SOIL ASSESSMENT

3.1 Soil Assessment Summary

Investigation of the site for suitability for OSSM was accompanied by soil assessment within the proposed EMA. Soil sampling was conducted at the time of inspection with the soil characteristics assessed per AS 1547:2012, AS 1289.3.8.1:2006, and NSW DLG (1998) methodologies. The summary of the soil investigation is presented in Table 3.1.1.

Table 3.1.1 – Assessment summary of site features

Factor Assessed	Description	Limitation
Depth to bedrock / hardpan	1000+ mm.	Minor
Depth to high watertable	NIL free water or waterlogging characteristics	Minor
Coarse Fragments	< 10% across all upper strata	Minor
рН	>5.5 across all samples	Minor
Electrical Conductivity (EC)	< 4 dS/m across all samples.	Minor
Dispersiveness (EAT _m)	3+. Non-critical with respect to OSSM	Minor

3.2 Soil Landscape Map

1:100,000 Soil Landscape Mapping indicates the site occurs on the Somersby Residual Soil Landscape. The Landscape features undulating to rolling rises and low hills on Hawkesbury Sandstone. Local relief 40 m, slopes <15%. Rock outcropping absent, coverage is of extensively cleared low eucalyptus woodlands.

Soils typically of moderately deep to deep (1-3m) sandy-loams to sandy-clay-loams over sandy-clay to sandstone at depth. Site results were found to conform to soil landscape mapping.

3.3 Depth to Bedrock / Hardpan

Soil depth was ascertained via three bore holes within potential EMA's and central to the development. All bore holes achieved a full inspection depth of 1000-1,100mm prior to refusal on underlying rock (*Minor Limitation*).

3.4 Depth to High Watertable

No visible free water, soil saturation, grey mottling or similar was encountered within the sampling depth (*Minor Limitation*).

3.5 Soil Permeability Category

Soil permeability has been assigned per Table 5.2 of AS1547:2012 for the excavation site(s) most representative of the EMA location. The hydraulically limiting strata for the application system is bolded within Table 3.7.1 below.

Table 3.5.1: Soil permeability and Design Irrigation Rate

Excavation #		BH2		
Lower Depth (mm)	Field Texture	Structure	Indicative Permeability K _{sat} (m/day)	Design Irrigation Rate (DIR) (mm/day)
150	Loamy Sand	Weak	>3.0	5
900	Sandy Loam	High	0.5-1.5	3.5
1000	Sandy Clay	Strong	0.12-0.5	3

Soil Profiles 3.6

Table 3.6.1						
Excavation #	BH1	Sample size:	50	[mm]	Date Completed:	9/09/2021
Inspection Method:	Thin Wall Tube Sample		Water-table Encountered:	No		

Layer Horizon	Lower Depth [mm]	Moisture	Colour	Field Texture	Structure	Coarse Fragment		
1	150	Mod moist	Light Brown	Sandy Loam	Weak	<5%		
2	900	Mod Moist	Yellow Brown	Sandy Clay Loam	High	<5%		
3	1000	Mod Moist	Yellow/white	Sandy Clay	Strong	<10%		
Refusal:	Refusal encountered on underlying hardpan							

Photo:

Table 3.6.2						
Excavation #	BH2	Sample size:	50	[mm]	Date Completed:	9/09/2021
Inspection Method:	Thin Wall Tube Sample				Water-table Encountered:	No

Layer Horizon	Lower Depth [mm]	Moisture	Colour	Field Texture	Structure	Coarse Fragment		
1	150	Mod moist	Light Brown	Sandy Loam	Weak	<5%		
2	800	Mod Moist	Yellow Brown	Sandy Clay Loam	High	<5%		
3	1000	Mod Moist	red/white	Sandy Clay	Strong	<10%		
Refusal:	Refusal encountered on underlying Clay layer							

Photo:

Table 3.6.3						
Excavation #	ВН3	Sample size:	50	[mm]	Date Completed:	9/09/2021
Inspection Method:	Thin Wall Tube Sample				Water-table Encountered:	No

Layer Horizon	Lower Depth [mm]	Moisture	Colour	Field Texture	Structure	Coarse Fragment
1	250	Mod moist	Light Brown	Sandy Loam	Weak	<5%
2	850	Mod Moist	Yellow Brown	Sandy Clay Loam	High	<10%
3	1000	Mod Moist	Red brown	Sandy Clay	Strong	<10%
				•	_	

Refusal: Sandstone

Photo:

3.7 Soil Chemistry

One sample from each horizon of the most descriptive excavation site was tested for acidity, Electrical Conductivity, and Dispersiveness (pH, EC, and EAT_m) by Broadcrest Consulting. The results were as follows:

Table 3.7.1: Soil Chemistry results

Excava	ation #	BH1	BH1					
Sample Depth (mm)	Test	Result	Description	Limitation	Recommendations			
	рН	6.43	Slightly acidic	Minor	-			
150	EC (dS/cm)	0.31	Non-Saline	Minor	-			
	EAT	3+	Non-critical	Minor	-			
	рН	6.53	Neutral	Minor	-			
600	EC (dS/cm)	0.1	Non-Saline	Minor	-			
	EAT	3+	Non-critical	Minor	-			

Tested soil parameters indicated no restrictive properties to OSSM within the sample location.

4 NOMINATED WASTEWATER MANAGEMENT

4.1 Proposed OSSM Summary

Site and soil constraints were evaluated in selection of appropriate treatment and effluent management method. A summary of the recommended OSSM system and application sizing is presented below:

PROPOSED OSSM SYSTEMS:

Treatment	\rightarrow	Effluent Management
AWTS + disinfection or equivalent	(Pumped dosing)	1165 m ² Surface Semi-Fixed Irrigation

SITE WASTEWATER LOADING:

I.D	Equivalent Bedrooms ^[1]	Population per Bedroom	Equivalent Population [Persons]	Water Supply	Wastewater Generation Rate per Capita [L/Person/Day]	Design Wastewater Loading [L/Day]
Primary Residence	5	2	10	Town /bore water	150	1,500

^[1] Note: Design occupancy estimates per LGA & Industry standard.

4.2 Wastewater Treatment

An Aerated Wastewater Treatment System is presently servicing all wastewater generated by the site and was observed to be suitably functional with a 10EP capacity. It is proposed to continue to treat all wastewater generated by the development to a secondary standard via the existing aerated wastewater treatment systems (AWTS). The unit is assumed to be capable of sustainably treating the calculated daily wastewater load to the DLG 1998 parameters nominated in Table 4.2.1.

Justification of the proposed treatment method is as follows:

- Accidental or deliberate discharges are less detrimental to the environment and have less potential to adversely impact on health
- Higher quality effluent produced
- High commercial availability
- Allows for irrigation methods of effluent management

Table 4.2.1: - Secondary Treatment Targets (per DLG 1998)

Biochemical Oxygen Demand (BOD ⁵)	Suspended Solids (TSS)	Total Nitrogen (TN)	Total Phosphorus (TP)	Faecal of Non- disinfected effluent	oliforms Disinfected effluent	Dissolved Oxygen (DO)
< 20 mg/L	< 30 mg/L	25 - 50 mg/L	10 - 15 mg/L	Up to 10⁴ cfu/100 mL	< 30 cfu/100 mL	> 2 mg/L

4.3 Effluent Management

Given the development proposed and site and soil conditions encountered, it is proposed to dispose of effluent from the treatment system servicing the proposed residence via **Surface Semi-Fixed Irrigation.**

Sizing of the application method was undertaken via water and nutrient balance in accordance with DLG 1998 (see Appendix B), with a minimum **irrigation area of 1165 m^2 required.**

The irrigation field should be positioned within the EMA nominated in Appendix A.

In this instance the irrigation area may be provided over five (5) subfields. The irrigation fields should be positioned within the effluent management area(s) (EMA) nominated in Appendix A.

Justification of the proposed treatment method is as follows:

- Irrigation maximises the surface disposal area and evapo-transpiration.
- An irrigation area is available onsite meeting the minimum buffer distances.
- Irrigation is a suitable OSSM method for the site landform and soil properties.

4.4 Recommended Site Modifications

To address present site constraints, the following modifications are recommended:

- Following the implementation of the irrigation field, the field is to be maintained with dense grass coverage and excluded from vehicle and livestock traffic.
- Signs are to be posted around the EMA indicating effluent dispersal in the area.
- Construct Upslope diversion drains above the EMA's.

5.1 Pipework Detail

All associated plumbing / drainage work is to be in accordance with AS 3500.2:2015 *Sanitary Plumbing Drainage*. Positioning of the receiving treatment system is to ensure drainage from internal plumbing fixtures achieves the minimum grade and cover of the excerpts below.

Table 6.1 – Excerpts of AS3500.2:2015

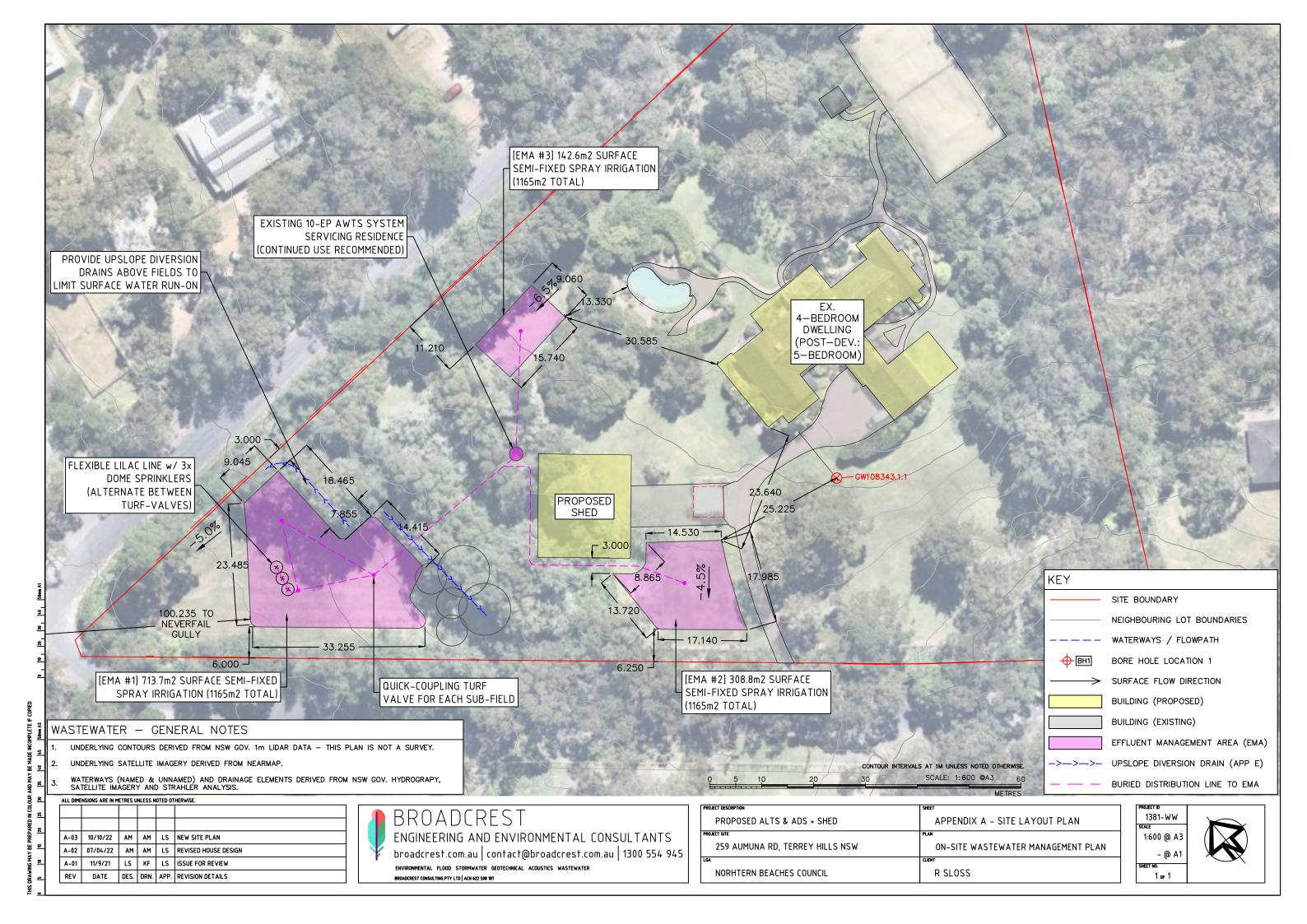
Nominal Pipe Diameter (DN)	Minimum Grade				
(mm)	(%)	(Ratio)			
65	2.50	1:40			
80	1.65	1:60			
100	1.65*	1:60*			
125	1.25	1:80			
150	1.00	1:100			

	Minimum depth of cover (mm)					
Location	Cast iron &	Other materials				
Location	Ductile iron					
Subject to	300	500				
vehicular loading	300	300				
All other	NIL	300				
locations	INIL	300				

^{*}Drains from treatment plants may be 1.00% Min.

5.2 Licensing

Operating a system of sewage management is a Prescribed Activity under the Local Government Act 1993 and clause 45 of the Local Government (Approvals) Regulation 1999. This means that an 'Approval to Operate' a system of sewage management must be obtained from Council.


5.3 Detailed Design

A detailed system design may still be requested at the 'Application to Install' stage. This design will include the size and location of all system components including tanks, distribution lines, valves, etc. These additional requirements will be furnished by the nominated treatment system suppliers / licensed installers. Additional information for the property owner is available in Appendix C.

6 CONCLUSION

- Development is proposed at 259 Aumuna Rd, Terrey Hills NSW for alterations and additions
 to the existing dwelling and construction of a new shed. The alts & ads will expand the
 existing 4-bedroom count to 5-bedroom.
- The anticipated wastewater loading rates generated by the 5 Bedroom Residence is calculated to be 1500 L/day.
- It is proposed to treat all wastewater generated by the residence to a secondary standard within the existing AWTS servicing the residence.
- Application of the effluent is proposed via 1165 m² Surface Semi-Fixed Irrigation within the area(s) nominated in Appendix A.
- The residences are to be fitted with standard-water reductive fixtures.

APPENDIX A: SITE PLAN

APPENDIX B: CLIMATE DATA

B1. - Climate Statistics

Table B1.1. Weather Stations

Statistic	Station No.	Station Name	Distance from site [km]
Temperature	66059	TERREY HILLS AWS	0.84
Precipitation	66059	TERREY HILLS AWS	0.84
Evaporation	66131	RIVERVIEW OBSERVATORY	17.15

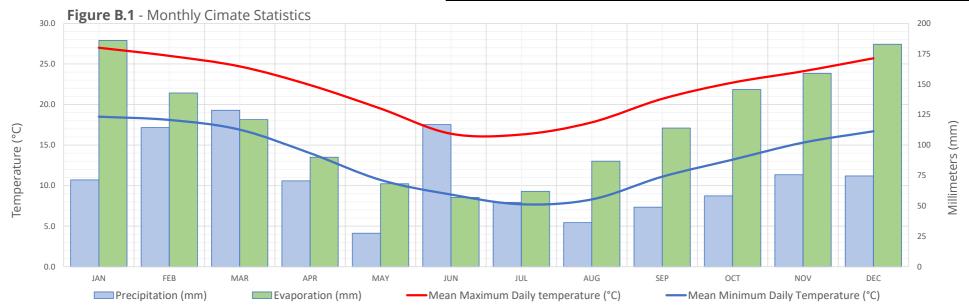


Table B1.2. Site Climate Statistics

Site Factors	Symbol	Units	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL
Mean Max. Temperature	[T]	[°C]	27.0	26.0	24.7	22.4	19.5	16.4	16.3	17.8	20.7	22.7	24.1	25.7	22.0
Mean Min. Temperature	[T]	[°C]	18.5	18.1	16.9	14.0	10.7	8.9	7.7	8.3	11.1	13.2	15.3	16.7	13.3
Days	[D]		31	28	31	30	31	30	31	31	30	31	30	31	365
Precipitation ¹	[P]	[mm/month]	71.4	114.4	128.6	70.6	27.6	116.9	52.9	36.2	49	58.2	75.6	74.6	998
Evaporation	[E]	[mm/day] [mm/month]	6 186	5.1 142.8	3.9 120.9	3 90	2.2 68.2	1.9 57	2 62	2.8 86.8	3.8 114	4.7 145.7	5.3 159	5.9 182.9	3.9 1423.5
Natural Site Balance ²	[P-E]	[mm/month]	-114.6	-28.4	7.7	-19.4	-40.6	59.9	-9.1	-50.6	-65	-87.5	-83.4	-108.3	

¹ Median historic precipitation. Note: total is not equivalent to annual median.

² Negative value indicates monthly mean evaporation > precipitation

B2. - Water Balance

Table B2.1. Site & Soil Parameters

Parameter	Symbols	Values	Units
Design Wastewater Flowrate	Q	1,500	L/day
Soil Texture		Sandy Clay	
Soil Structure		Moderate	
Indicative Permeability	K_{sat}	0.06 to 1.2	m/day
Design Irrigation Rate	DIR_{day}	3	mm/day

Table B2.2. Effluent water balance

Site Factors	Symbol	Units	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL
Days per Month	D	days	31	28	31	30	31	30	31	31	30	31	30	31	365
Crop Factor	C		8.0	0.8	0.8	0.7	0.6	0.55	0.5	0.55	0.65	0.75	0.8	0.8	0.69167
Run-off Coefficient	C_{RO}		0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Effluent Irrigation	(Q x D)	mm/month	46500	42000	46500	45000	46500	45000	46500	46500	45000	46500	45000	46500	547500
Evapotranspiration	(E xC)	mm/month	148.8	114.24	96.72	63	40.92	31.35	31	47.74	74.1	109.275	127.2	146.32	984.588
Design Irrigation Rate	DIR_{Month}	mm/month	93	84	93	90	93	90	93	93	90	93	90	93	1095
Minmum Area Required	A _{wb.min}	m ²	234	324	413	407	396	879	504	391	334	278	262	239	370

 Table B2.3.
 Water Balance Minimum Area Requirement

	Symbols	Area m²
Minimum Area Required to Satisfy Water Balance:	A_{wb}	879

B3. - Nutrient Balance & Minimum irrigation area

Table B3.1. Nitrogen Balance

Parameter	Symbols	Values	Units		
Design Wastewater Flowrate	Q	1,500	L/day		
Surface Vegetation	Lawn - fully managed (clippings removed)				
Effluent Total Nitrogen (TN) Concentration ¹	TN	20	mg/L		
Critical TN Loading Rate ²	$L_{n.sfc}$	66	mg/m²/day		
Minimum Application Area	$A_{n.sfc}$	456	m ²		

¹·Nominal ATWS Nutrient Concerntrations (DLG 1998, AS1547.3:2012)

Table B3.2. Phosphorus Balance

Parameter	Symbols	Values	Units
Design Wastewater Flowrate	Q	1500	L/day
Surface Vegetation	Lawn - fully mai	naged (clip	ppings removed)
Effluent Total Phosphorus (TP) Concentration ¹	TP	10	mg/L
Phosphorus Generated 50 _{YR}	P_{gen}	273.75	kg
Soil Phosphorus Sorption Capacity	P_{sorp}	2,550	kg/Ha
Phosphorus Absorped 50 _{YR}	P_{absorb}	0.085	kg/m ²
Critical TP Loading Rate ²	$L_{p.sfc}$	8	mg/m²/day
Phosphorus Uptake 50YR	$P_{uptake.sfc}$	0.150	kg/m ²
Minimum Application Area	$A_{p.sfc}$	1165	m ²

¹Nominal ATWS Nutrient Concerntrations (DLG 1998, AS1547.3:2012)

B4. - Minimum Effluent Irrigation Areas

Table B4.1. Minimum Irrigation Area Requirement

Balance	Area Required (m²)
Water	879
Nitrogen	456
Phosphorus	1165
Minimum Irrigation Area	1165

²Appendix 6, 'On-site sewage management for single households' (DLG 1998, AS1547.3:2012)

²Appendix 6, 'On-site sewage management for single households' (DLG 1998, AS1547.3:2012)

APPENDIX C: INFORMATION FOR THE PROPERTY OWNER	

APPENDIX C - Information For the Property Owner

ON-SITE SEWAGE MANAGEMENT SYSTEMS

If you live in or rent a house that is not connected to the main sewer then chances are that your yard contains an on-site sewage management system. If this is the case then you have a special responsibility to ensure that it is working as well as

The aim of this pamphlet is to introduce you to some of the most popular types of on-site sewage management systems and provide some general information to help you maintain your system effectively. You should find out what type of system you have and how it works.

More information can be obtained from the pamphlets:

Your Septic System Your Aerated Wastewater Treatment System Your Composting Toilet Your Land Application Area

You can get a copy of these pamphlets from your local council or the address marked on the back of this pamphlet.

It is important to keep in mind that maintenance needs to be performed properly and regularly. Poorly maintained on-site sewage management systems can significantly affect you and your family's health as well as the local environment

What is an on-site sewage management system?

A domestic on-site sewage management system is made up of various components which - if properly designed, installed and maintained - allow the treatment and utilisation of wastewater from a house, completely within the boundary of the property.

Wastewater may be blackwater (toilet waste), or greywater (water from showers, sinks, and washing machines), or a combination of both.

Partial on-site systems - eg. pump out and common effluent systems (CES) - also exist. These usually involve the preliminary on-site treatment of wastewater in a septic tank, followed by collection and transport of the treated wastewater to an off-site management facility. Pump out systems use road tankers to transport the effluent, and CES use a network of small diameter pipes.

How does an on-site sewage management system work?

For complete on-site systems there are two main

- treatment of wastewater to a certain standard
- 2. its application to a dedicated area of land

The type of application permitted depends on the quality of treatment, although you should try to avoid contact with all treated and untreated wastewater, and thoroughly wash affected areas if contact does occur.

Treatment and application can be carried out using various methods

Septic Tank
Septic tanks treat both greywater and blackwater, but they provide only limited treatment through the settling of solids and the flotation of fats and greases. Bacteria in the tank break down the solids over a period of time. Wastewater that has been treated in a septic tank can only be applied to land through a covered soil absorption system, as the effluent is still too contaminated for above ground or near surface irrigation.

Aerated wastewater treatment systems (AWTS) treat all household wastewater and have several treatment compartments. The first is like a septic tank, but in the second compartment air is mixed with the wastewater to assist bacteria to break down solids. A third compartment allows settling of more solids and a final chlorination contact chamber allows disinfection. Some AWTS are constructed with all the compartments inside a single tank. The effluent produced may be surface or sub-surface irrigated in a dedicated area.

Composting toilets collect and treat toilet waste only. Water from the shower, sinks and the washing machine needs to be treated separately (for example in a septic tank or AWTS as above). The compost produced by a composting toilet has special requirements but is usually buried on-site.

SOURCE: NSW DLG, 1998

These are just some of the treatment and application methods available, and there are many other types such as sand filter beds, wetlands, and amended earth mounds. Your local council or the NSW Department of Health have more information on these systems if you need it.

Regulations and recommendations

The NSW Department of Health determines the design and structural requirements for treatment systems for single households. Local councils are primarily responsible for approving the installation of smaller domestic septic tank systems, composting toilets and AWTSs in their area, and are also responsible for approving land application areas. The NSW Environment Protection Authority approves larger systems.

The design and installation of on-site sewage management systems, including plumbing and drainage, should only be carried out by suitably qualified or experienced people. Care is needed to ensure correct sizing of the treatment system and application area

Heavy fines may be imposed under the Clean Waters Act if wastewater is not managed properly.

Keeping your on-site sewage management system operating well

What you put down your drains and toilets has a lot to do with how well your system performs. Maintenance of your sewage management system also needs to be done well and on-time. The following is a guide to the types of things you should and should not do with your system.

DO

- Learn how your sewage management system works and its operational and maintenance
- Learn the location and layout of your sewage management system.
- Have your AWTS (if installed) inspected and serviced four times per year by an approved contractor. Other systems should be inspected at least once every year. Assessment should be applicable to the system design.
- Keep a record of desludgings, inspections, and other maintenance.
- Have your septic tank or AWTS desludged every three years to prevent sludge build up, which may 'clog' the pipes.
- Conserve water. Conservative water use around the house will reduce the amount of wastewater which is produced and needs to be treated.
- \checkmark Discuss with your local council the adequacy of your existing sewage management system if you are considering house extensions for increased occupancy.

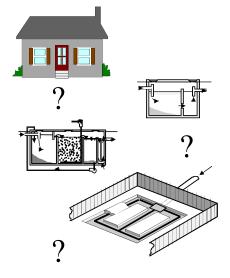
DON'T

- X Don't let children or pets play on land application
- Don't water fruit and vegetables with effluent.
- Don't extract untreated groundwater for cooking and drinking
- Don't put large quantities of bleaches, disinfectants, whiteners, nappy soakers and spot removers into your system via the sink, washing machine or toilet.
- Don't allow any foreign materials such as nappies, sanitary napkins, condoms and other hygiene products to enter the system.
- Don't put fats and oils down the drain and keep food waste out of your system.
- Don't install or use a garbage grinder or spa bath if your system is not designed for it.

Reducing water usage

Reducing water usage will lessen the likelihood of problems such as overloading with your septic system. Overloading may result in wastewater backing up into your house, contamination of your yard with improperly treated effluent, and effluent from your system contaminating groundwater or a nearby waterway.

Your sewage management system is also unable to cope with large volumes of water such as several showers or loads of washing over a short period of time. You should try to avoid these 'shock loads' by ensuring water use is spread more evenly throughout the day and week.


HELP PROTECT YOUR HEALTH AND THE ENVIRONMENT

Poorly maintained sewage management systems are a serious source of water pollution and may present health risks, cause odours and attract vermin and insects

By looking after your management system you can do your part in helping to protect the environment and the health of you and your

For more information please contact:

Managing Wastewater In Your Backyard

Aerated Wastewater Treatment Systems (AWTS)

In unsewered areas, the proper treatment and utilisation of household wastewater on-site is critical in preserving the health of the public and the environment. AWTS have been developed as a way of achieving this.

What is an AWTS?

An AWTS is a purpose built system used for the treatment of sewage and liquid wastes from a single household or multiple dwellings.

It consists of a series of treatment chambers combined with an irrigation system. An AWTS enables people living in unsewered areas to treat and utilise their wastewater.

How does an AWTS work?

Wastewater from a household is treated in stages in several separate chambers. The first chamber is similar to a conventional septic tank. The wastewater enters the chamber where the solids settle to the bottom and are retained in the tank forming a sludge layer. Scum collects at the top, and the partially clarified wastewater flows into a second chamber. Here the wastewater is mixed with air

Cross section of an AWTS

Scum

Air

To pump and land application grant and application area

Sludge

Sludge Return

Disinfection

Chamber

to assist bacteria to further treat it. A third chamber allows additional clarification through the settling of solids, which are returned for further treatment to either the septic chamber (as shown) or to the aeration chamber. The clarified effluent is disinfected in another chamber (usually by chlorination) before irrigation can take place.

Bacteria in the first chamber break down the solid matter in the sludge and scum layers. Material that cannot be fully broken down gradually builds up in the chamber and must be pumped out periodically.

Regulations and recommendations

Local councils are primarily responsible for approving the smaller, domestic AWTSs in their area. The Environment Protection Authority (EPA) approves larger units, whilst the NSW Department of Health determines the design and structural requirements for all AWTSs.

At present AWTSs need to be serviced quarterly by an approved contractor at a cost to the owner. Local councils should also maintain a register of the servicing of each system within their area.

AWTSs should be fitted with an alarm having visual and audible components to indicate mechanical and electrical equipment malfunctions. The alarm should provide a signal adjacent to the alarm and at a

relevant position inside the house. The alarm should incorporate a warning lamp which may only be reset by the service agent.

Maintaining your AWTS

The effectiveness of the system will, in part, depend on how it is used and maintained. The following is a guide on good maintenance procedures that you should follow:

DO

- Have your AWTS inspected and serviced four times per year by an approved contractor.
 Assessment should be applicable to the system design.
- Have your system service include assessment of sludge and scum levels in all tanks, and performance of irrigation areas.
- Have all your tanks desludged at least every three years.
- Have your disinfection chamber inspected and tested quarterly to ensure correct disinfectant levels.
- Have your grease trap (if installed) cleaned out at least every two months.
- Keep a record of pumping, inspections, and other maintenance.
- Learn the location and layout of your AWTS and land application area.
- Use biodegradable liquid detergents such as concentrates with low sodium and phosphorous levels.
- ✓ Conserve water.

DON'T

- Don't put bleaches, disinfectants, whiteners, nappy soakers and spot removers in large quantities into your AWTS via the sink, washing machine or toilet.
- Don't allow any foreign materials such as nappies, sanitary napkins, condoms and other hygiene products to enter the system.
- Don't use more than the recommended amounts of detergents.
- Don't put fats and oils down the drain and keep food waste out of your system.
- Don't switch off power to the AWTS, even if you are going on holidays

Reducing water usage

Reducing water usage will lessen the likelihood of problems such as overloading with your AWTS. Overloading may result in wastewater backing up into your house, contamination of your yard with improperly treated effluent, and effluent from your system entering a nearby river, creek or dam.

Conservative water use around the house will reduce the amount of wastewater which is produced and needs to be treated.

Your AWTS is also unable to cope with large volumes of water such as several showers or loads of washing over a short period of time. You should try to avoid these 'shock loads' by ensuring water use is spread more evenly throughout the day and week.

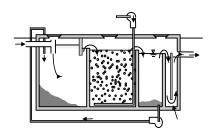
Warning signs

You can look out for a few warning signs that signal to you that there are troubles with your AWTS. Ensure that these problems are attended to immediately to protect your health and the environment.

Look out for the following warning signs:

- A Water that drains too slowly.
- △ Drain pipes that gurgle or make noises when air bubbles are forced back through the system.
- Sewage smells, this indicates a serious problem.
- Water backing up into your sink which may indicate that your system is already failing.
- $\ensuremath{\underline{\square}}$ Wastewater pooling over the land application area.
- Black coloured effluent in the aerated tank.
- Excess noise from the blower or pumping equipment
- Poor vegetation growth in irrigated area.

Odour problems from a vent on the AWTS can be a result of slow or inadequate breakdown of solids. Call a technician to service the system.


HELP PROTECT YOUR HEALTH AND THE ENVIRONMENT

Poorly maintained AWTSs are a serious source of water pollution and may present health risks, cause odours and attract vermin and insects.

By looking after your treatment system you can do your part in helping to protect the environment and the health of you and your family.

If you would like more information please contact:

Your Aerated Wastewater Treatment System

LAND APPLICATION AREAS

The reuse of domestic wastewater on-site can be an economical and environmentally sound use

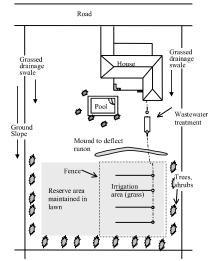
What are land application areas?

These are areas that allow treated domestic wastewater to be managed entirely on-site.

The area must be able to utilise the wastewater and treat any organic matter and wastes it may contain. The wastewater is rich in nutrients, and can provide excellent nourishment for flower gardens, lawns, certain shrubs and trees. The vegetation should be suitably tolerant of high water and nutrient loads

How does a land application area work?

Treated wastewater applied to a land application area may be utilised or simply disposed, depending on the type of application system that is used. The application of the wastewater can be through a soil absorption system (based on disposal) or through an irrigation system (based on utilisation).


Soil absorption systems do not require highly treated effluent, and wastewater treated by a septic tank is reasonable as the solids content in the effluent has been reduced. Absorption systems release the effluent into the soil at a depth that cannot be reached by the roots of most small shrubs and grasses. They rely mainly on the processes of soil treatment and then transmission to the water table, with minimal evaporation and up-take by plants. These systems are not recommended in sensitive areas as they may lead to contamination of surface water and groundwater.

Irrigation systems may be classed as either subsurface or surface irrigation. If an irrigation system is to be used, wastewater needs to be pre-treated to at least the quality produced by an aerated wastewater treatment system (AWTS).

Subsurface irrigation requires highly treated effluent that is introduced into the soil close to the surface. The effluent is utilised mainly by plants and evaporation.

Surface irrigation requires highly treated effluent that has undergone aeration and disinfect treatments, so as to reduce the possibility and disinfection bacteria and virus contamination.

Typical Site Layout (not to scale)

The effluent is then applied to the land area through a series of drip, trickle, or spray points which are designed to eliminate airborne drift and run-off into neighbouring properties.

There are some public health and environmental concerns about surface irrigation. There is the risk of contact with treated effluent and the potential for surface run-off. Given these problems, subsurface irrigation is arguably the safest, most efficient and effective method of effluent utilisation.

Regulations and recommendations

The design and installation of land application areas should only be carried out by suitably qualified or experienced people, and only after a site and soil evaluation is done by a soil scientist. Care should be taken to ensure correct buffer distances are left between the application area and bores, waterways, buildings, and neighbouring properties.

Heavy fines may be imposed under the Clean Waters Act if effluent is managed improperly.

At least two warning signs should be installed along the boundary of a land application area. The signs should comprise of 20mm high Series C lettering in black or white on a green background with the

RECLAIMED EFFLUENT NOT FOR DRINKING AVOID CONTACT

Depending on the requirements of your local council, wet weather storage and soil moisture sensors may need to be installed to ensure that effluent is only irrigated when the soil is not saturated.

Regular checks should be undertaken of any mechanical equipment to ensure that it is operating correctly. Local councils may require periodic analysis of soil or groundwater characteristics

Humans and animals should be excluded from land application areas during and immediately after the application of treated wastewater. The longer the period of exclusion from an area, the lower the risk to public health.

The householder is required to enter into a service contract with the installation company, its agent or the manufacturer of their sewage management system, this will ensure that the system operates efficiently.

Location of the application area

Treated wastewater has the potential to have negative impacts on public health and the environment. For this reason the application area must be located in accordance with the results of a site evaluation, and approved landscaping must be completed prior to occupation of the building. Sandy soil and clayey soils may present special

The system must allow even distribution of treated wastewater over the land application area.

Maintaining your land application area

The effectiveness of the application area is governed by the activities of the owner

DO

- Construct and maintain diversion drains around the top side of the application area to divert surface water.
- Ensure that your application area is kept level by filling any depressions with good quality top soil (not clay).
- Keep the grass regularly mowed and plant small trees around the perimeter to aid absorption and transpiration of the effluent.
- Ensure that any run off from the roof, driveway and other impermeable surfaces is directed away from the application area.
- Fence irrigation areas
- Ensure appropriate warning signs are visible at all times in the vicinity of a spray irrigation area.
- Have your irrigation system checked by the service agent when they are carrying out service on the treatment system.

DON'T

- Don't erect any structures, construct paths, graze animals or drive over the land application
- Don't plant large trees that shade the land application area, as the area needs sunlight to aid in the evaporation and transpiration of the effluent.
- X Don't plant trees or shrubs near or on house drains
- Don't alter stormwater lines to discharge into or near the land application area.
- Don't flood the land application area through the use of hoses or sprinklers.
- x Don't let children or pets play on land application areas. Don't water fruit and vegetables with the
- effluent. Don't extract untreated groundwater for potable use

Warning signs

Regular visual checking of the system will ensure that problems are located and fixed early

The visual signs of system failure include:

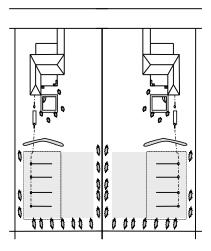
- surface ponding and run-off of treated wastewater
- soil quality deterioration
- poor vegetation growth
- unusual odours

Volume of water

Land application areas and systems for on-site application are designed and constructed in anticipation of the volume of waste to be discharged. Uncontrolled use of water may lead to poorly treated effluent being released from the

If the land application area is waterlogged and soggy the following are possible reasons:

- Overloading the treatment system with wastewater
- The clogging of the trench with solids not trapped by the septic tank. The tank may require desludging.
 The application area has been poorly designed.
- Stormwater is running onto the area


HELP PROTECT YOUR HEALTH AND THE ENVIRONMENT

Poorly maintained land application areas are a serious source of water pollution and may present health risks, cause odours and attract vermin and insects.

By looking after your sewage management system you can do your part in helping to protect the environment and the health of you and your

For more information please contact:

Your Land **Application** Area

APPENDIX D: VIRAL DIE-OFF ASSESSMENT

Viral Die-Off Calculation - Groundwater Setback, Drawdown & Seepage Distance

(Cromer, Gardner & Beavers, 2001)

Climate Data -61366 Norah Head AWS

Maximum Mean Annual Temperature for Coldest Month (°C):

16.3

1. Calculated Time For Viral Die-off:

$$rac{m{M_t}}{m{M_O}} = m{e^{-kt}}$$
 ; And where T > 8.5°C: $k = rac{T-8.5}{20}$

$$k = \frac{T - 8.5}{20}$$

Ratio of Viral Concerntration (M_t/M_o)

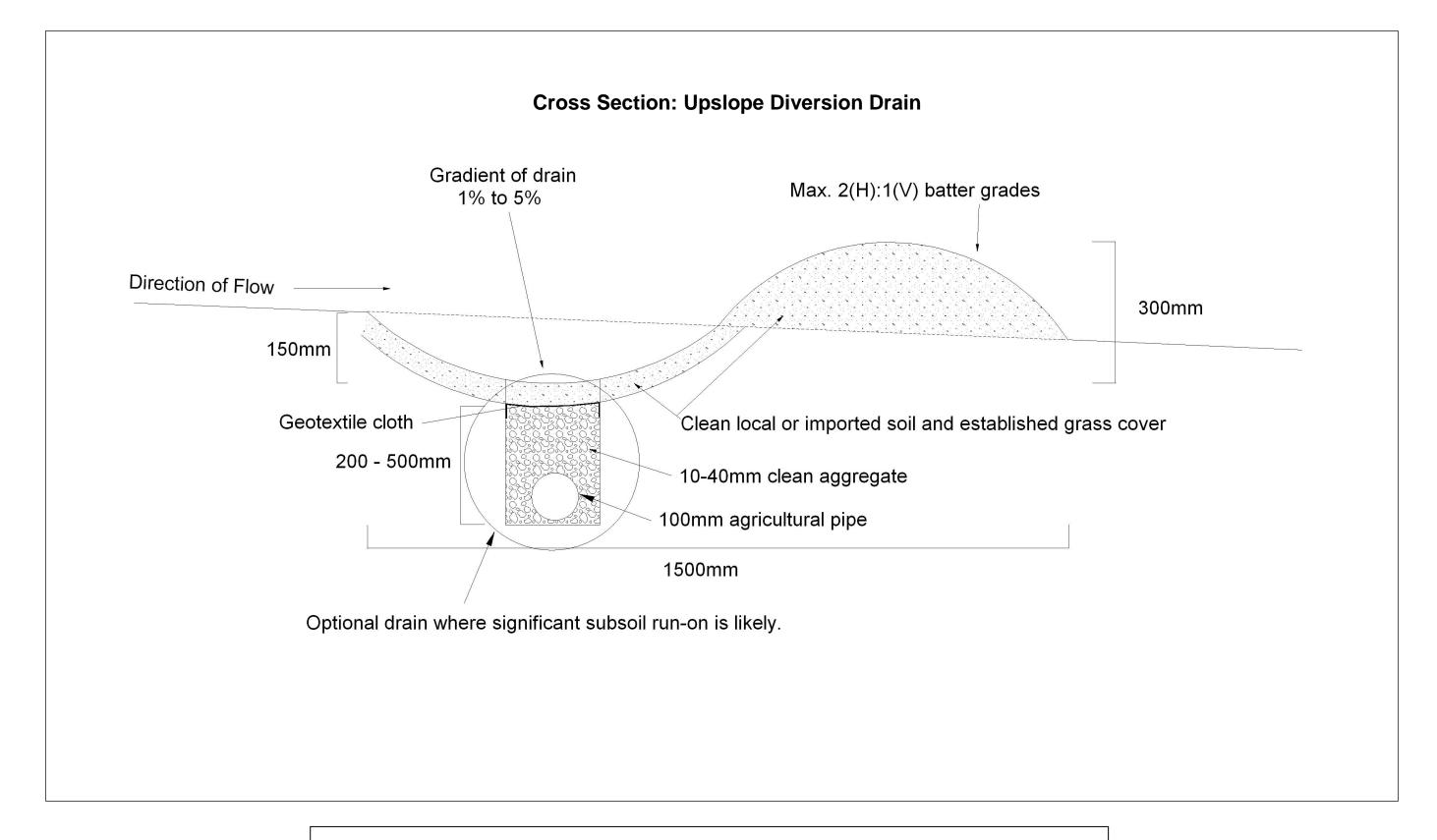
Greywater	1.00E-05
Primary	1.00E-07
Secondary	1.00E-03

Time for Viral Die-Off Calculator

Parameter	Value	Unit	Parameter Discriptor
Treat _{LVL}	Secondary		Effluent Treatment Level
T _{m.m}	16.3	[°C]	Groundwater Temp. (Appoximate to Max. Mean. Air Temp.)
k (Max)	0.39		First Order rate of Viral Die-off Coefficient
M_t/M_o	0.001		Dimsionless ratio of viral concentrations

t (max)	17.7	[days]	Travel Time

2. Calculated Horizontal Setback Distance:


$$d_g = \frac{t - d_v.\frac{P}{K}}{\frac{P}{K.\,i}}$$

Parameter	Value	Unit	Parameter Discriptor
t (max.)	17.7	[days]	Travel Time
d_{v}	100	[m]	Vertical Distance (to water table)
Р	0.2		Effective Porosity (Worst Case)
K	3	[m/day]	Saturated Hydraulic Conductivity (permeability)
i	0.05	[m/m]	Gradient of Groundwater table

d_g	8.284	[m]	Estimated Horizontal Setback Distance
a _s	3.0		Safety Factor Coefficient
d _s	24.852	[m]	Safety adjusted Horizontal Setback Distance

APPENDIX E: SD10-A: UPSLOPE DIVERSION DRAIN

Standard Drawing 8A – Upslope Diversion Drain

(not to scale)