

Opal Aged Care Pty Ltd (Principal Healthcare Finance Pty Ltd) C/O Midson Group Pty Ltd

Remedial Action Plan

Opal Seaside Aged Care 184-194 Garden Street, Warriewood, NSW

3 September 2019

55792/124336 (Rev 0)

JBS&G Australia Pty Ltd

Opal Aged Care Pty Ltd (Principal Healthcare Finance Pty Ltd) C/O Midson Group Pty Ltd

Remedial Action Plan

Opal Seaside Aged Care 184-194 Garden Street, Warriewood, NSW

> 3 September 2019 55792/124336 (Rev 0) JBS&G Australia Pty Ltd

Table of Contents

Abb	reviati	ons	vii			
1.	Intro	oduction & Objectives	1			
	1.1	Introduction	1			
	1.2	Objective	1			
2.	Prop	osed Development Details	2			
3.	Site	Condition and Surrounding Environment	3			
	3.1	Site Identification				
	3.2	Site Description	3			
	3.3	Surrounding Land Use	3			
	3.4	Topography	4			
	3.5	Geology and Soils	4			
	3.6	Hydrology	5			
	3.7	Hydrogeology	5			
	3.8	Acid Sulfate Soils (ASS)	5			
	3.9	Meteorology	5			
4.	Site	History	7			
5.	Prev	Previous Investigations				
	5.1	Preliminary Site investigation (PSI), Douglas Partners (DP 2017a)	8			
	5.2	Geotechnical Investigation, Douglas Partner (DP 2017b)	9			
	5.3	Detailed Site Investigation (DSI), JBS&G (JBS&G 2019)	9			
6.	Cont	amination Status / Conceptual Site Model	11			
	6.1	Areas of Environmental Concern	11			
	6.2	Potential for Migration	11			
	6.3	Potential Exposure Pathways				
	6.4	Receptors	12			
	6.5	Preferential Pathways	12			
7.	Rem	edial Options	14			
	7.1	Remedial Objectives	14			
	7.2	Extent of Remediation	14			
	7.3	Consideration of Possible Remedial Options	15			
		7.3.1 EPA (2017) Guidance	15			
		7.3.2 WA DOH (2009) Guidance	15			
	7.4	Preferred Remedial Strategy	19			
8.	Rem	ediation Plan	20			
	8.1	Regulatory and Planning Requirements	20			

		8.1.1	Environment Planning and Assessment Act 1979 / SEPP 55	20
		8.1.2	Environment Planning and Assessment Regulation 2000 – Scheo Designated Development	
		8.1.3	Protection of the Environment Operations (POEO) Act 1997	21
		8.1.4	Water Management Act 2000	21
		8.1.5	Protection of the Environment Operations (Waste) Regulation 2	
	8.2	Approv	als, Licences and Notifications	21
	8.3	Site Est	ablishment	22
	8.4	Remed	ial Scope of Works	22
		8.4.1	Site Establishment	22
		8.4.2	Removal of Lead Impacted Soils (HA01)	22
		8.4.3	Removal of FA Impacted Soils (TP18)	23
		8.4.4	Cap/Cover Remedial Strategy	23
	8.5	Off-Site	Disposal	24
	8.6	Materia	als Importation	25
	8.7	Validat	ion	25
	8.8	Site Dis	establishment	25
9.	Valid	dation Pla	n	26
	9.1	Overview		
	9.2	Data Q	uality Objectives	26
		9.2.1	State the Problem	26
		9.2.2	Identify the Decision	26
		9.2.3	Identify Inputs to the Decision	26
		9.2.4	Define the Study Boundaries	27
		9.2.5	Decision Rules	27
		9.2.6	Specify Limits of Decision Error	28
		9.2.7	Optimise the Design for Obtaining Data	30
	9.3	Soil Sar	npling Methodology	32
		9.3.1	Validation of Excavation(s)	32
		9.3.2	Stockpile Sampling	32
		9.3.3	Field PID Screening	32
		9.3.4	Sample Handling	32
		9.3.5	Soil Duplicate and Triplicate Sample Preparation and QA/QC Requirements	32
		9.3.6	Soil Sampling Equipment Decontamination	
		9.3.7	Laboratory Analyses	
	9.4	Validat	ion Criteria	
		9.4.1	Soil Validation Criteria and Rationale	34

	9.5	Ground	water/Leachate Assessment Criteria	34		
	9.6	Statistic	al Analysis of Data	34		
		9.6.1	Offsite Disposal Criteria	35		
		9.6.2	Imported Soil Criteria	35		
		9.6.3	Validation of Soil Placement Areas (Capped Soil)	35		
	9.7	Validatio	on Reporting	36		
		9.7.1	Validation Report	36		
	9.8	Long Te	rm Environmental Management Plan	36		
10.	Conti	ngency P	lan	38		
	10.1	Unexpe	cted Finds Protocol	38		
	10.2	Conting	ency Scenarios	40		
		10.2.1	Material Storage Breach	40		
		10.2.2	Complaints	40		
		10.2.3	Severe Weather	40		
11.	Site N	M anagem	ent Plan	41		
	11.1	Hours o	f Operation	41		
	11.2	Soil and	Water Management	41		
	11.3	Stockpil	e Management	41		
	11.4	Site Acc	ess	42		
	11.5	Excavati	ion Pump-out	42		
	11.6	Landsca	ping / Rehabilitation	42		
	11.7	Noise		42		
	11.8	Vibratio	n	42		
	11.9	Air Qual	lity	42		
		11.9.1	Air Monitoring	42		
		11.9.2	Dust Control	43		
		11.9.3	Odour / Volatile Emissions Control	43		
	11.10) Transpo	ort of Material Offsite	43		
	11.11	11.11 Hazardous Materials43				
	11.12	1.12 Disposal of Contaminated Soil44				
	11.13	3 Imported Fill44				
	11.14	.4 Groundwater4				
	11.15	L1.15 Site Signage and Contact Numbers4				
	11.16	11.16 Site Security				
	11.17	7 Commu	nity Consultation	44		
12.	Conc	lusions ar	nd Recommendations	45		
	12.1	Conclus	ions	45		
	12.2	Recomn	nendations	45		

13.	Limitations	46
List o	f Tables	
Table	3.1: Summary of Site Details	3
Table	3.2: Registered Groundwater Bore Search Summary	.5
Table	5.1 Areas of Environmental Concern and Associated Contaminants of Potential Concerns	11
Table	7.1 - Remedial Options	16
Table	7.2 - Soil Contamination and Remedial Methodology	19
Table	9.1 - Remedial Extents	27
Table	0.2 - Summary of Decision Rules	27
Table	0.3: Summary of Data Quality Indicators	30
Table	9.4: Characterisation / Remediation and Validation Sampling Program	31
Table	9.5: Characterisation of Unexpected Finds / Importation	31
Table	9.6 Soil Laboratory Analysis Methods (all units in mg/kg unless stated)	33
Flowc	art 10.1 – Unexpected Finds Protocol	39
List o	f Figures	
Figure	1 Site Location	
Figure	2 Site Layout	
Figure	3 Sample Locations	
Figure	4 Inferred Groundwater Flow	
Figure	5 Soil Exceedances	
Figure	6 Asbestos Detects	
Figure	7 Remedial Extent	
Figure	8 Conceptual Capping Requirements	
Δnn	ndices	

Appendices

Appendix A Design Plans

Appendix B Summary Tables

Abbreviations

Term	Definition		
ACM	Asbestos Containing Materials		
AEC	Areas of Potential Environmental Concern		
AF	Asbestos Fibres		
AHD	Australian Height Datum		
AMP	Asbestos Management Plan		
ASS	Acid Sulfate Soils		
ASSMP	Acid Sulfate Soil Management Plan		
bgs	Below ground surface		
BTEX	Benzene, Toluene, Ethylbenzene , Xylenes		
B(a)P	Benz(a)pyrene		
CLM Act	Contaminated Land Management Act 1997		
COC	Chain of Custody		
COPC	Contaminants of Potential Concern		
CSM	Conceptual Site Model		
DP	Deposited Plan		
DQI	Data Quality Indicators		
DQO	Data Quality Indicators Data Quality Objectives		
DSI	Detailed Site Investigation		
EIL	Ecological Investigation Levels		
EMP	Environmental Management Plan		
EPA	NSW Environmental Protection Authority		
ESLs	Ecological Screening Levels		
FA	Friable Asbestos		
ha	Hectare Hectare		
HILS	Health Investigation Levels		
HSLs			
JBS&G	Health Screening Levels JBS&G Australia Pty Ltd		
LEP	Local Environmental Plan		
LOR			
NATA	Limit of Reporting National Accreditation Testing Authority		
NEPC	National Environmental Protection Council		
NEPC	National Environmental Protection Measure		
OCP PAH	Organochlorine Pesticides		
PASS	Polycyclic Aromatic Hydrocarbons Potential Acid Sulfate Soil		
PCB			
PCB	Polychlorinated Biphenyls Photoionisation Detector		
POEO Act	Protection of Environment Operations Act (1997)		
PSI OA (OC	Preliminary Site Investigation		
QA/QC	Quality Assurance/Quality Control		
RAP	Remedial Action Plan		
RPD	Relative Percentage Difference		
SAR	State Audit Report		
SAS	Site Audit Statement		
SEPP55	State Environmental Planning Policy No 55 – Remediation of Land		
TCLP	Toxicity Characteristic Leachate Potential		
SWA	Safework Australia		
TRH	Total Recoverable Hydrocarbons		
UCL	Upper Confidence Limit		
UPSS	Underground Petroleum Storage System		
VENM	Virgin Excavated Natural Materials		
VOC	Volatile Organic Compounds		
WHS	Work, Health and Safety		

1. Introduction & Objectives

1.1 Introduction

JBS&G Australia Pty Ltd (JBS&G) was engaged by Midson Group Pty Ltd (Midson) on behalf of Principal Healthcare Finance Pty Ltd (Opal, the client) to prepare a Remedial Action Plan (RAP) for the Opal Aged Care Seaside property, located at 184-194 Garden Street, Warriewood, NSW (the site). The site is legally identified as Lot 2 in Deposited Plan (DP) 595174 and occupies an area of approximately 1.17 hectares (ha). The site location and layout are shown on **Figures 1** and **2**, respectively.

It is understood that the client proposes to undertake redevelopment an existing facility over two stages and construction a new Residential Aged Care Facility including car parking areas and landscaping. Detailed Site Investigation (DSI) has been completed to assess the environmental condition of the site prior to redevelopment and also to fulfil condition no.C22 of the Conditions of Approval¹ (Land and Environment Court proceedings 2017/370138). The environmental condition of the site has been assessed in JBS&G (2019²).

Previous environmental (and geotechnical) investigations completed at the site, namely DP (2017a³), DP (2017b⁴) and JBS&G (2019), identified impacted fill at the site. This impact in fill consisted of fragments of bonded asbestos containing materials (ACM), friable asbestos at one location and lead at one location. Significant inclusions of foreign materials were also identified in fill across the site including building rubble of bricks, concrete, metal, plastic, tyres and timber. It was recommended that remediation was required for the site to be made suitable for the proposed land use as a retirement aged care facility (RACF)

As such, JBS&G has prepared a RAP for the site to guide the remediation and validation of the site as an aged care facility which is equivalent to a land use of residential with gardens and accessible soils (NEPC 2013⁵).

1.2 Objective

The objectives of this RAP are to guide the required remediation to enable the site to be validated as suitable for land use of residential with gardens and accessible soils, pursuant to NEPC 2013.

Conditions of Approval, Section 34 Agreement Between Parties, Land and Environment Court of NSW, Case No. 2017/370138, Filed 2 October 2018

Detailed site Investigation, Opal Seaside Aged Care, 184-194 Garden Street, Warriewood, NSW. JBS&G Australia Pty Ltd. Prepared for Opal Aged Care Pty Ltd. 5 March 2019. 55792/120711 Rev A (JBS&G 2019)

Report on Preliminary Site Investigation for Contamination with Limited Sampling, Proposed Aged Care Facility. 184 – 194 Garden Street, Warriewood NSW. Prepared for Opal Aged Care. Douglas Partners, March 2017. Project 85505.01 (DP 2017a)

Report on Geotechnical Investigation, Proposed Aged Care Facility. 184 – 194 Garden Street, Warriewood NSW. Prepared for Opal Aged Care Pty Ltd. Douglas Partners, March 2017. Project 85505.00 (DP 2017b)

National Environment Protection (Assessment of Site Contamination Measure) Measure 1999 (As Amended 2013). National Environment Protection Council (NEPC 2013).

2. Proposed Development Details

Based on the Design Plan provided by the client, included in **Appendix A**, the site is proposed to be developed in two stages with two adjoining buildings providing 127 bedrooms and 147 beds for the aged care facility. An outdoor car parking area with 37 car spaces will be constructed along the southern portion of the site. Remainder of the site will comprise of a combination of landscaping areas and walkways / pavements. Stage 1 will occur in the southern half of the site at the location of the currently unoccupied former independent living area. Stage 2 will occur after Stage 1 construction is complete. Stage 2 is currently active and occupied by an aged care facility.

It is anticipated that the remediation will occur over two stages in alignment with the proposed redevelopment stages and final built form. Therefore, two validation signoffs will be required, one for each stage. A Site Audit Statement and a Site Audit Report will be issued to the consent authority at completion of remediation and validation of each stage.

As shown in the cut-and-fill plan provided by the client (**Appendix A**), Stage 1 developable area with an approximate area size of 5418 m², will be subject to predominantly filling with an estimated 1454 m³ of materials deficit to construction requirements, requiring importation. Whereases Stage 2 developable area with an approximate area size of 5279 m², will be subject to slightly more cutting with an estimated 288 m³ of materials surplus to construction requirements, requiring off-site disposal.

To accommodate the proposed cap/cover remedial strategy, excavated fill/natural materials are proposed to be placed within new building footprints and beneath the engineered concrete slab associated with the overlying built form, or alternatively in areas require filling with an implementation of a physical separation remedial strategy – validated environmentally suitable materials are proposed to be placed above the fill materials in accordance with the requirements of this RAP as discussed in **Section 8.4.4**.

3. Site Condition and Surrounding Environment

3.1 Site Identification

The site location and layout are shown in **Figures 1** and **2**, respectively. Site details are summarised in **Table 3.1** and described in detail in the following sections.

Table 3.1: Summary of Site Details

Lot/DP	Lot 2 DP 595174
Address	184-194 Garden Street, Warriewood, NSW
Local Government Authority	Northern Beaches Council (formed in May 2016 by amalgamation of Manly, Pittwater and Warringah Councils)
Approximate Area size 1.17 ha	
Current Zening	R3 Medium Density Residential
Current Zoning	(Pittwater Local Environmental Plan (LEP) 2014)
	Vacant unoccupied buildings within the southwestern portion (Stage 1
Current Land Use	Developable Area)
Current Land Ose	Active Residential aged care facility within the northwestern portion (Stage
	2 Developable Area)
Previous Land Use	Agricultural, market gardens prior to 1980s
Previous Land Ose	Residential as aged care facility after 1980s
Proposed Land Use	Residential as ongoing aged care facility

3.2 Site Description

A detailed inspection of the site was conducted on 11 February 2019 by one of JBS&G's trained and experienced environmental scientists. Observations of the current site configuration and potential areas of concern are discussed below.

The site was observed to consist of one occupied (single storey) aged care building at the northwestern portion and one vacant (two storey) aged care building at the southwest portion of the site. The buildings were brick construction. Ground level was constructed on concrete slabs with vinyl/carpet flooring internally. Remaining portions of the site were observed to contain asphalt-paved carpark and open spaced courtyards in between the buildings (i.e. grassed areas and constructed garden beds) with paved access walkways around the perimeter of the site. A leased single storey free standing house occupied the northwest corner. The site appeared to have undergone cut-and-fill balancing to establish the current site levels, and vegetated mounds were also observed along the eastern boundary of the site. Drainage channels and pits were observed across the site and the general down gradient direction of the site was interpreted to be gradually south and southeast. Surface water flowed into the Mullet Creek via constructed drainage lines on site/Garden Street.

The fill/soil profile was noted to comprise brown to grey heterogenous gravely silty sand and gravelly sandy clay with anthropogenic inclusions of bricks, concrete boulders, metals, plastic, timber, terracotta pipe fragments, lithic gravels at most locations. No odours or staining were observed in soil at the site. Visible ACM fragments were observed within the fill materials across the site at 17 out of 41 locations with no discernible distribution pattern.

3.3 Surrounding Land Use

The current land uses of adjacent properties or properties across adjacent roadways are summarised below.

- North The site is bounded by residential properties;
- East The site is bounded by Garden Street, further afield is Warriewood Wetlands and Mullet Creek;

- South The site is bounded by a highly vegetated area associated with Mullet Creek, beyond which is Irrawong Road and further, residential properties; and
- West The site is bounded by residential properties, further afield is Banksia Parade.

3.4 Topography

Review of published regional topographic data via the Spatial Information exchange (Six Maps⁶) indicated that the site lies at an elevation of between 5 m to 10 m Australian Height Datum (AHD).

During the site inspection surrounding roads and neighbouring properties were noted to grade slightly downward to the south and south east, towards the creek. Site levels as confirmed during the site inspection were generally flat, suggesting that the overall profile may have been subject to some filling to create existing levels. Additionally, several raised mounds were evident along the eastern boundary of the site along Garden Street.

3.5 Geology and Soils

Reference to the online ESPADE 2.0 tool hosted by the NSW Office of Environment and Heritage (OEH 2019⁷) and the 1:100 000 Geological Series Sydney Geological Survey of NSW Sheet 9030 (DMR 1991⁸) indicates that the northern portion of the site falls within the Newport and Garie Formations, whilst the southeastern portion of the site is within an area of stream alluvial and estuarine sediment. Relevant details of the two soil formations are summarized below:

Geology:

- The Newport and Garie Formation comprises interbedded laminite, shale and quartz, to lithic-quartz sandstone.
- The stream alluvial and estuarine sediment comprises silty to peaty quartz sand, silt and clay with ferruginous and humic cementation in places and common shell layers.

• Landscape:

- 'Warriewood Swamp'; Level to gently undulating swales, depressions and infilled lagoons on Quaternary sands. Local relief <10m, slopes <3%, water table at <2m.
- 'Watagan Colluvial'; Rolling to very steep hills on fine-grained Narrabeen Group sediments. Local relief 60- 120 m, slopes >25%. Narrow, convex crests and ridges, steep colluvial side-slopes, occasional sandstone boulders and benches.

• Soils:

- 'Warriewood Swamp'; deep (>150 cm), well sorted, sandy Humus Podzols and dark, mottled Siliceous Sands, overlying buried Acid Peats in depressions; deep (>200 cm) Podzols and pale Siliceous Sands (Uc1.2) on sandy rises.
- 'Watagan Colluvial'; shallow to deep (30-200 cm) Lithosols/Siliceous Sands and Yellow Podzolic Soils on sandstones; moderately deep (100-200 cm) Brown Podzolic Soils, Red Podzolic Soils and Gleyed Podzolic Soils on shales.

• Limitations:

- 'Warriewood Swamp'; localised flooding and run-on, high water tables, highly permeable soil.
- 'Watagan Colluvial'; mass movement hazard, steep slopes, severe soil erosion hazard, occasional rock outcrop.

⁶ Six Maps website, <u>https://maps.six.nsw.gov.au/</u> accessed 24 January 2019

ESPADE 2.0. NSW Office of Environment and heritage, Accessed 3 January 2019, OEH 2019;

⁸ Penrith Geological Series Sheet 9030 (Edition 1) 1983. Geological Survey of NSW, Department of Mineral and Resources (DMR 1991)

3.6 Hydrology

Review of SIX Maps indicated that the closest down-gradient surface water body is Mullet Creek, located approximately 0.25 km to the south of the site and which generally flows towards South Creek located approximately 1.65 km to the southeast. This system eventually discharges into the South Pacific Ocean.

As discussed in **Section 3.2**, areas external to site structures, pavements and carpark were largely unpaved, particularly the eastern portion of the site along Garden Street. As such, precipitation falling onto the site is expected to infiltrate surface soils at a rate reflective of the permeability of the underlying site soils (**Section 3.5**). In periods of heavy or prolonged rainfall, following surface soil saturation, excess water movement is expected to follow the topographic gradient and be collected by the site's stormwater drainage network and transferred to the regional stormwater network on Garden Street.

3.7 Hydrogeology

Review of the registered bore information identified several registered groundwater bores within 1 km radius of the site. Relevant information is summarised in **Table 3.2** below.

	Table 3.2: Registered	Groundwater Bore	Search Summary
--	-----------------------	-------------------------	----------------

Bore ID	Use	Standing Water Level (m bgs)	Well Depth (m bgs)	Distance from site	Lithology
GW013478	Domestic	Unknown	47.80	800 m to the southwest	Sandstone to 46.02 m, shale to 47.85
GW113169		1.52	4.8	1 km to the	
GW113170	Monitoring	1.2	5.5	southeast	Unknown
GW113171		1.53	4.5	Southeast	
GW106699	Monitoring	Unknown	3.0	850 m to the northeast	Fill to 0.2 m, weathered sandstone to 0.6 m, clayey sand to 1 m, clay to 2 m. clayey sand to 3 m
GW106697	Monitoring	Unknown	3.0	1 km to the northeast	Fill to 1.2 m, clay to 3 m

Based on the reported geology, topography and site observations of the site, groundwater is expected to be encountered at shallow depths (less than 3 m bgs). Groundwater is expected to flow south and southeast into the Mullet Creek, in line with regional topography.

3.8 Acid Sulfate Soils (ASS)

Review of the Hornsby/Mona-Vale Acid Sulfate Soil Risk Map indicates that the site is located within an area of 'High probability of Acid Sulfate Soil Occurrence'. Based on review of geology maps, soil maps, site topography and site observations it is likely that ASS may be present on-site between 1 m bgs to 3 m bgs.

During most recent site investigation works by JBS&G (2019), no indicators of ASS or potential ASS (PASS) were observed in any sample locations. However, DP (2017b) reported presence of PASS within sample locations DPBH4 and DPBH11A from depths of 5 m bgs and 3 m bgs, respectively.

3.9 Meteorology

A review of average climatic data for the nearest Bureau of Meteorology monitoring location (Terrey Hills⁹) indicates the site is located within the following meteorological setting:

Average minimum temperatures vary from 7.6 °C in July to 18.5 °C in January;

http://www.bom.gov.au/climate/averages/tables/cw_066059.shtml
Commonwealth of Australia, 2013 Bureau of Meteorology, accessed 18 February 2019.

- Average maximum temperatures vary from 16.3 °C in July to 27.0 °C in January;
- The average annual rainfall is approximately 1089.9 mm with rainfall greater than 1 mm occurring on an average of 92.9 days per year; and
- Monthly rainfall varies from 51.1 mm in May to 144.3 mm in June with the wettest periods occurring on average between November and June.

4. Site History

Based on information provided in JBS&G (2019), the site has been utilised for agricultural purposes (market gardening and cropping) until acquisition by Seaside Nursing Home Pty Ltd in 1982. The current buildings were constructed between 1982 and 1986 within the western half of the site with a carpark in the middle of the site and open space in the remaining area, based on the review of historical title records and aerials photographs in JBS&G (2019). The site has remained relatively unchanged in recent years with some changes in the surrounding lands.

JBS&G (2019) reported that EPA searches indicated no notices are present for the site or surrounding properties, and the site is not on the published list of NSW contaminated sites. No dangerous goods storage licences were identified to have been issued for the site or immediately surrounding properties.

5. Previous Investigations

The following environmental assessment report prepared for the site has been reviewed and summarised in the following section:

- Douglas Partners Report on Preliminary Site Investigation for Contamination with Limited Sampling, Proposed Aged Care Facility. 184-194 Garden Street, Warriewood NSW. Prepared for Opal Aged Care. Project ID: 85505.01, March 2017, DP (2017a);
- Douglas Partners Report on Geotechnical Investigation, Proposed Aged Care Facility. 184-194 Garden Street, Warriewood NSW. Prepared for Opal Aged Care. Project ID: 85505.00, March 2017, DP (2017b); and
- JBS&G Australia Pty Ltd R01 Detailed Site Investigation for Opal Seaside Aged Care, 184-194 Garden Street, Warriewood, NSW, Reference 55792/120711 (Rev A), 5 March 2019, JBS&G (2019).

5.1 Preliminary Site investigation (PSI), Douglas Partners (DP 2017a)

Douglas Partners (DP) was engaged by Planix Projects on behalf of Opal to complete a preliminary site investigation (PSI) with limited sampling in 2017. It was understood the site development was proposed in two stages and the report was to facilitate design and planning of the redevelopment.

The PSI comprised a combined desktop study and limited soil sampling across accessible portions of the site. The intrusive investigation was limited to the collection of twelve (12) soil samples via a combination of drill rig and hand auger within accessible areas of the site, external to building footprints and site structures.

Key findings of the DP PSI are summarised below:

- From before 1951 until 1978, part (northwestern) of the site was used as market gardens, and the southern half remained as bushland. Between 1978 and 1986, redevelopment for construction of the current aged care facility occurred;
- Potential sources of contamination at the site were identified as imported fill, hazardous building materials from former market gardening structures (i.e. asbestos, lead paint) and broadcast pesticides from former market garden use;
- Fill materials comprising clay, sand, gravel and crushed sandstone with anthropogenic inclusions of concrete, ceramic tile, brick, timber, slag, clay pipe fragments and steel were encountered at all locations. Natural material (sand, clayey sand and clay) was encountered at 5 locations (DPBH4, DPBH10, DPBH11A, DPBH12 and DPBH14) at depth ranging from 2.5 m bgs to 3.9 m bgs;
- Two monitoring wells were installed and groundwater was encountered at 1.61 m bgs at DPBH11A and at 2.21 m bgs at DPBH12, respectively;
- Representative soil and groundwater samples were collected and analysed in accordance
 with site contaminants of potential concern (COPC) and compared against adopted criteria
 for residential land use as an aged care facility. All results were reported within the adopted
 criteria, with the exception of elevated copper concentration which exceeded the ecological
 criterion, and chrysotile asbestos was detected but reported below the formal laboratory
 LOR in fill materials at sample locations DPBH6 and DPBH14;
- With the presence of asbestos within the fill materials, the site material was preliminarily classified as General Solid Waste & Special Waste (GSW&S);
- DP (2017a) recommended to undertake a DSI to further characterise fill identified across the site, including the footprints of existing buildings (where accessible) with respect to

asbestos impacts identified within site fill materials in accordance with NEPC 2013 protocols, and also to confirm a final waste classification for the general site material;

 DP (2017a) also recommended to undertake a hazardous building materials survey of existing buildings prior to demolition.

5.2 Geotechnical Investigation, Douglas Partner (DP 2017b)

Douglas Partners was engaged by Planix Projects on behalf of Opal to complete a geotechnical investigation in 2017. It was understood that the site development comprised demolition of existing buildings and construction of a new two-storey aged care facility. It was understood there was to be no basement and the ground level will be close to the existing ground level with minor cut and fill activities. The geotechnical investigation was considered to be read in conjunction with the PSI (DP 2017a).

Apart from geotechnical compaction testings, field and laboratory testings for acid sulfate soil (ASS) and potential ASS (PASS) were also conducted and developed in general accordance with the ASSMAC Acid Sulfate Soil Manual.

Vigorous reaction was noted within sample DPBH4 at the depth of 5 m bgs and sample DPBH11A at the depth of 4.0 m bgs. Subsequent laboratory testing confirmed the presence of PASS within these two locations from the depths of 5 m bgs and 3 m bgs, respectively. It was recommended that management would be required should PASS be excavated or disturbed. Liming rates for treatment of ASS/PASS were also provided in laboratory reports.

5.3 Detailed Site Investigation (DSI), JBS&G (JBS&G 2019)

JBS&G was engaged by Midson on behalf of Opal to complete a DSI following recommendation of DP's PSI (2017a) to further characterise the site condition with regards to potential contamination prior to redevelopment, and draw conclusions regarding the suitability of the site for use as an ongoing aged care facility, and if warranted, develop a RAP and/or management plans for contamination that may pose unacceptable risks under the land use of a residential aged care facility, equivalent to Residential A with garden/accessible soil land use in NEPC (2013).

The DSI comprised a desktop assessment and a summary of key historical activities at the site is provided in **Section 3**. Based on the review of historical information for the site, it appears the site was historically utilised for agricultural purposes and market gardens, and currently for an aged care facility. Historical activities at the site would not normally be expected to have the potential for gross or widespread contamination, however there is the potential for impacts associated with pesticides and cut-fill activities.

Site investigation works were undertaken by JBS&G from 11 February 2019 to 15 February 2019. The field program comprised a detailed site inspection, advancement of 41 locations via a combination of excavator, drill rig and hand auger across the site, installation of one new groundwater monitoring well and groundwater sampling at 2 existing and 1 newly installed well locations. Sampling locations and exceedances are shown in **Figure 3** and **Figure 5**, respectively. Sampling and laboratory results are provided in **Appendix B**.

Several types of fill materials were encountered across the site, however the dominant fill consisted of grey/brown heterogenous gravelly silty sand and gravelly sandy clay. Fill material, containing significant amount of anthropogenic inclusions of bricks, concrete boulders, metals, plastic, timber and terracotta pipe fragments and lithic gravels to the depth of 4 m bgs, was encountered at all test pit sample locations. The extent of fill was not determined at some locations due to refusal or groundwater intrusion resulting in testpit collapse. There was no evidence of staining or odours observed in any of new sample locations across the site. This aligned with the previous findings of DP (2017a) PSI report.

Visible ACM fragments with no discernible distribution pattern were observed in 17 out of 41 sample locations with a maximum concentration of 0.993% w/w reported during field asbestos quantification. Laboratory testing reported fibrous asbestos (FA) was at one location, TP18_1.0-2.0, with a concentration of 0.0017%w/w, exceeding the adopted health-based criterion of 0.001 %w/w. Asbestos fibres (AF) was reported at one location, TP20_0-1.0, with a concentration of AF within the adopted health-based criterion of 0.001 %w/w. As such, it is considered the general site fill material is impacted with asbestos, requiring further management/remediation. Locations of asbestos detections in soil are shown on **Figure 6**.

Elevated lead was reported in sample HA01_0.6-0.7 and TP16_2.3-2.4 with a concentration of 810 mg/kg and 320 mg/kg, respectively, exceeding the adopted health-based criterion (HIL-A) of 300 mg/kg. However statistical analyses for lead indicated that the exceedance in sample TP16_2.3-2.4 was not statistically significant with regard to the population data set. Therefore, only the lead exceedance in sample HA01_0.6-0.7 requires managing/remediation.

Elevated zinc was also reported in sample TP16_2.3-2.4 with a concentration of 1,600 mg/kg, exceeding the adopted ecological (EIL) criterion of 400 mg/kg. However, EIL criterion only applies to soil down to a depth 2 m below the current soil surface according to NEPC (2013), while the sample was collected below 2 m bgs and elevated zinc condition was not reported in the shallower sample (TP16_0.1-0.2). Therefore, the zinc exceedance at TP16_2.3-2.4 is not considered to pose an unacceptable ecological risk.

Elevated total recoverable hydrocarbons (TRH) and polycyclic aromatic hydrocarbon (PAHs) were also reported in several samples, exceeding the adopted ecological and/or human health site criterion. However, statistical analyses have indicated that the TRH and PAH exceedances were not statistically significant with regard to the population data set. As such, the exceedances are not considered to pose an unacceptable risk.

Aesthetic impacts were identified across the site within the fill materials to contain visible ACM fragments in 17 out of 41 locations and significant quantities of building/construction rubbles including bricks, concrete, metals, plastic, tyres, timber, terracotta pipe fragments and lithic gravels. The above fill observations pose an aesthetic issue for permissible land uses of the site as an aged care facility.

Groundwater was at reported at a depth of approx. 2m bgs and the flow direction was south towards Mullet Creek, as shown on **Figure 4**. No impact was reported in groundwater.

No other contaminants of concern exceeded the adopted health based or ecological assessment criteria applicable to the proposed residential land use as aged care facility.

Based on the results of the DSI, fill materials were noted to be generally similar across the site and impacted with asbestos. As a conservative approach, all site fill materials were classified as General Solid Waste (non-putrescible) / Special Waste (Asbestos Waste) (GSW&S).

The DSI recommended the development of a RAP to guide the required remediation to enable the site to be considered suitable for the permissible land uses as an ongoing aged care facility. It also recommended a separate Asbestos Management Plan (AMP) and Acid Sulfate Soil Management Plan (ASSMP) should also be prepared to manage and control potential exposure during remediation and/or construction works.

6. Contamination Status / Conceptual Site Model

The conceptual site model (CSM) presented in this Section is based on the assessment and conclusions presented in DP (2017a and 2017b) and JBS&G (2019).

6.1 Areas of Environmental Concern

Based on the review of the site history and of previous investigations, JBS&G's assessment and understanding of site conditions, potential areas/aspects of environmental concern (AEC) and associated contaminants of potential concern (COPC) have been identified as summarised in **Table 6.1**. The actual presence of these constituents is discussed further in the following sections.

Table 6.1 Areas of Environmental Concern and Associated Contaminants of Potential Concerns

Location	Depth	Constituent and	Concentration	Criteria Ex	cceeded
Location	(m bgs)	Level	Concentration	Aesthetic Impacts	NEPC (2013)
HA01	0.6-0.7	Lead	810 mg/kg	YES	HIL-A
вноз	0-0.1	Benzo(a)pyrene	2.0 mg/kg	YES	ESL-A
TP16	2.3-2.4	Zinc	1,600 mg/kg	YES	EIL-A
TP18	1.0-2.0	FA	0.0017 %w/w	YES	HSL-A
		Aesthetic Impacts	NA	YES	-
Remainder of Site	Fill materials	ACM	0 – 0.993 %w/w (based on asbestos quantification)	YES	HSL-A (17 out of 41 locations)

On the basis of previous investigations and the summary presented in **Table 6.1**, site contaminants are restricted to both friable (FA) and non-friable (bonded) asbestos, lead and aesthetic impacts.

JBS&G note that there is the potential for additional aesthetic impacts and fragments of non-friable (bonded) ACM to be present within fill at the site, and particularly below the footprints of former site structures where assessment was not undertaken. Therefore, this AEC has been considered in the formulation of the remedial strategy for the site.

6.2 Potential for Migration

Contaminants generally migrate away from a site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential for the migration of contaminants via surface processes including aeolian transport at the site is considered to be substantially mitigated by the nature of the site given the site is currently covered with vegetation and capped with hardstands. Following remediation/validation, contamination sources will have been removed/managed appropriately.

Soil contaminants are generally in a solid form (i.e. asbestos) and are unlikely to represent a risk to groundwater or surface water contamination given their nature.

JBS&G (2019) undertook a limited assessment of the leachability of contaminants from sample HA01_0.6-0.7 which was reported to contain elevated concentrations of lead, exceeding the

adopted human health criterion. The reported concentration in leachate for lead is within the adopted site criterion and therefore the potential for the migration of lead leachate is considered very low.

6.3 Potential Exposure Pathways

Based on the COPCs identified in potentially contaminated media as discussed above, the exposure pathways for the site include:

- Potential dermal and oral contact to impacted soils (lead and asbestos); and
- Potential ingestion and inhalation exposure to impacted air due to generation of airborne fibres (asbestos).

6.4 Receptors

Potential receptors of environmental impact present within the site include:

- Excavation/construction/maintenance workers conducting demolition/redevelopment
 activities at the site, who may potentially be exposed to COPCs through direct contact with
 impacted soils present within excavations and/or inhalation of fibres associated with the
 destruction of fragments of non-friable ACM;
- Future site maintenance/service workers who may come into direct contact with potentially contaminated soils should services/infrastructure be installed in soil underlying the site; and
- Future onsite residents (potential) who may potentially be exposed to COPCs through direct contact with impacted soils.
- Potential ecological receptors within future landscaped site areas if vegetation is planted into site soils.

Exceedances of the adopted ecological criteria (EIL-A) for zinc in sample TP16_2.3-2.4 are not likely to present an unacceptable risks to ecological receptors as the sample was collected below 2 m bgs and EIL criteria only applies to soil down to a depth 2 m below the current soil surface in accordance with Schedule B5a: Guideline on Ecological Risk Assessment of NEPC (2013).

Furthermore, elevated concentrations of benzo(a)pyrene (B(a)P) reported in samples BH10_0.5-0.6 and QC20181102 (duplicate sample of BH03_0-0.1), exceeded the adopted ecological under a residential with accessible land use (ESL-A), are also unlikely to present unacceptable risks to ecological receptors given that NEPC (2013) Schedule B7 guidance¹⁰ notes that plant uptake of anthropogenic PAHs is limited and therefore it is considered that B(a)P ecological exceedances do not represent an unacceptable risk requiring remediation or management.

6.5 Preferential Pathways

A range of preferential pathways are currently present on the site as associated with near surface fill horizons and former/current services present across the site area (i.e. drainage lines, sumps, pits etc.).

Preferential pathways may be created with the proposed development. Future installation of services will occur in shallow soils where remediation works are proposed. Based on the absence of

¹⁰ NEPC (2013) has advised that plants grown on PAH contaminated soil have only limited ability to take up and incorporate anthropogenic PAHs through their roots and into their biomass, especially those PAHs with higher molecular weights including benzo(a)pyrene. Physical and biochemical processes within soil and the soil ecosystem in conjunction with the low solubility of benzo(a)pyrene generally result in benzo(a)pyrene bonding firmly to soil particles or the outside layers of root tissue with uptake rates being very slow and/or non-existent. As such, it was concluded that benzo(a)pyrene ecological exceedances did not represent an unacceptable risk requiring remediation or management.

significant levels of near surface soils and general absence of potential leachable constituents, these potential pathways are not considered to be significant.

Although fill materials are anticipated to have a higher permeability than the underlying natural soil and/or bedrock, JBS&G consider that given the solid (non-soluble) nature of the contaminates identified at the site, there is limited capacity for the migration of contaminants along preferential pathways.

7. Remedial Options

7.1 Remedial Objectives

The remediation objectives are as follows:

- Removal of unacceptable risks to human health and aesthetic issues associated with the identified impacts;
- Addressing any unexpected finds as may arise during the remedial works;
- Validate the remedial works in accordance with the relevant NSW EPA guidelines and with reference to the RAP requirements; and
- Document the validation process.

This RAP has been prepared with reference to the following guidelines:

- Managing Land Contamination, Planning Guidelines, SEPP 55 Remediation of Land.
 Department of Urban Affairs and Planning 1998 (DUAP 1998);
- Sampling Design Guidelines. NSW EPA 1995 (EPA 1995);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW Office of Environment and Heritage 2011 (OEH 2011);
- Contaminated Site: Guidelines for NSW Site Auditor Scheme (3rd Edition). NSW Environmental Protection Authority 2017 (NSW EPA 2017);
- National Environment Protection (Assessment of Site Contamination Measure) Measure 1999 (As Amended 2013). National Environment Protection Council (NEPC 2013).
- Work Health and Safety Regulation 2011. NSW Government Legislation. (WHS Act 2011);
- How to Safely Remove Asbestos Code of Practice. NSW Government, Safe Work NSW, 2016 (SWA 2016a);
- How to Manage and Control Asbestos in the Workplace Code of Practice. NSW Government Safe Work Australia, 2016 (SWA 2016b);
- Management of Asbestos in the Non-occupational Environment. enHealth Council, 2005 (enHealth 2005); and
- Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. WA Department of Health, 2009 (WA DoH 2009).

7.2 Extent of Remediation

As discussed in **Section 5** and **Section 6**, impacted soils identified at the site require remediation / management for the site to be considered suitable for residential with accessible soils land uses.

The following areas, as shown on **Figure 7**, have been identified as requiring remediation to ensure that the site will be suitable for residential with gardens and accessible soils:

- Lead impacted materials at HA01;
- Asbestos impact as FA in fill at TP16;
- Asbestos impact as ACM in general site fill; and
- Aesthetic impacts within the site fill materials including bricks, concrete boulders, metals, plastic, timber and terracotta pipe fragments and lithic gravels.

7.3 Consideration of Possible Remedial Options

7.3.1 EPA (2017) Guidance

NEPC 2013 (Vol 1, s6 (16)) presents the following hierarchy of options for soil remediation and management approaches. This hierarchy is followed in NSW (EPA 2017, s4.3.2):

- On-site treatment of the contamination so that it is either destroyed or the associated risk is reduced to an acceptable level;
- Off-site treatment of excavated soil so that the contaminant is destroyed, or the associated risk is reduced to an acceptable level, after which the soil is returned to the site; or

If the above are not practicable,

 Consolidation and isolation of the soil on site by containment with a properly designed barrier;

or,

• Removal of contaminated material to an approved facility, followed, where necessary, by replacement with appropriate material;

or,

 Where the assessment indicates remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.

Consideration of each of the approaches, is presented in **Table 7.1**.

7.3.2 WA DOH (2009) Guidance

WA DOH (2009) provides specific guidance for the remediation and management of asbestos impact and is called up into NEPC (2013). WA DOH (2009) note the following considerations as important when assessing the acceptability of any remediation:

- Minimisation of public risk;
- Minimisation of contaminated soil disturbance; and
- Minimisation of contaminated material/soil moved to landfill.

Consideration of each of the WA DOH (2009) guidance is presented in **Table 7.1**, taking into account the proposed future reuse of the site.

Table 7.1 - Remedial Options

Remedial Option	Applicability	Assessment
1. On-site treatment so that the	Lead Impacted Soil	Lead Impacted Soil
contaminants are either	Metals are unable to be destroyed. However, there are a number of	Not a Suitable Option
destroyed or the associated hazards are reduced to an	microencapsulation treatment technologies which can reduce the mobility of	Metals are unable to be destroyed, so this is not an option which is
acceptable level.	the identified inorganic contaminants of concern (e.g. cement stabilisation).	able to be considered. Microencapsulation is not considered necessary given the absence of identified groundwater impacts
acceptable level.		requiring remediation.
		requiring remediation.
	FA Only Impacted Soil	FA Only Impacted Soil
	There are no known methods for destruction/treatment of asbestos	Not a Suitable Option
	ACM Only Impacted soil	ACM Only Impacted Soil
	There are no known methods for destruction/treatment of asbestos	Not a Suitable Option
	There are no known methods for destruction, treatment of dissesses	Not a Sultable Option
	Aesthetic Impacts (Building Rubble)	Aesthetic Impacts (Building Rubble)
	Building rubble can be removed from impacted soils either by hand-picking or by	Not a Suitable Option
	mechanical screening. Mechanical screening should not be undertaken in areas	
	of co-located asbestos impact. The unsuitable building rubble can be	
2. Off-site treatment so that the	disposed/recycled offsite in accordance with waste regulations and exemptions. Lead Impacted Soil	Lead Impacted Soil
contaminants are either	Metals are unable to be destroyed. However, there are a number of	Not a Suitable Option
destroyed or the associated	microencapsulation treatment technologies which can reduce the mobility of	Not a Saltable Option
hazards are reduced to an	the identified inorganic contaminants of concern (e.g. cement stabilisation).	
acceptable level, after which the		
soil is returned to the site.	FA Only Impacted Soil	FA Only Impacted Soil
	There are no known methods for destruction/treatment of asbestos	Not a Suitable Option
	Asbestos Only Impacted Soils	ACM Only Impacted Soils
	There are no known methods for destruction/treatment of asbestos	Not a Suitable Option
	Aesthetic Impacts (Building Rubbles)	Aesthetic Impacts (Building Rubbles)
	The waste poses an aesthetics issue that cannot be treated offsite and returned.	Not a Suitable Option
3. Excavation and off-site removal	Lead Impacted Soil	Lead Impacted Soil
of the impacted material.	Excavation and offsite disposal of impacted material is the fastest method of	The Preferred Option
,	remediating the site suitable for proposed use.	This is the preferred option given the relatively limited volume of fill
		requiring remediation and short duration required to achieve
		validation.

Remedial Option	Applicability	Assessment
	FA Only Impacted Soil Offsite disposal is a suitable remedial option for areas where FA impact is present above a threshold.	FA Only Impacted Soil The Preferred Option This is the preferred option given the relatively limited volume of fill requiring remediation and short duration required to achieve validation.
	ACM Only Impacted Soils Offsite disposal is a suitable remedial option for areas where ACM impact is present above a threshold. Applicability may be limited by inability to effectively separate included ACM due to soil type and building rubble concentration.	ACM Only Impacted Soils Due to amount of ACM impacted fill materials to be excavated, it is likely not commercially feasible to dispose all asbestos impacted soil offsite and import significant amount of clean validated material to establish site final level. Considered to be a suitable contingency option for fill that is surplus to construction requirements.
	Aesthetic Impacts (Building Rubble) Offsite disposal to suitably licenced receiving facility. Applicability is limited by presence of ACM and capacity to separate building rubble inclusions from fill matrix.	Aesthetic Impacts (Building Rubble) The environmental impact of waste processing, transport of materials and resource use in identifying and importing materials to re-instate the two-stages of Developable Area to final levels is considered to be non-sustainable. The presence of asbestos will trigger a more stringent waste classification Considered to be a suitable contingency option if unable to effectively remove bonded ACM due to soil type and building rubble concentration. A potentially applicable option but inferior to on-site placement (Option 4).
4 On-site in-situ management of the soil by capping and cover, and ongoing management.	Lead impacted soil Lead impacted soil may be located under less sensitive areas such as beneath a building, however this will result in detailed material tracking and additional detailed survey of a relatively small amount of materials.	Lead impacted soil A suitable option if unable to remediate onsite or dispose off-site.
	FA Only Impacted Soil FA impacted soil may be located under less sensitive areas such as beneath a building, however this will result in detailed material tracking and additional detailed survey of a relatively small amount of materials.	FA Only Impacted Soil A suitable option if unable to remediate onsite or dispose off-site.
	ACM and Aesthetic Impacted Soil The amount of material able to be contained onsite will be dependent upon final design levels and the total volumes of fill materials required. On this basis, the	ACM and Aesthetic Impacted Soil The Preferred Option

Remedial Option	Applicability	Assessment
	impacted fill materials are considered suitable for retention on site in areas	The retention of the materials will reduce the waste generation and
	where human/ecological exposures can be restricted with appropriate capping	resource requirements of the remediation of the site. The site will be
	layer. However, consideration of the practical implications of an ongoing site	subject to significant areas of building footrint and pavements which
	management plan is required prior to implementation.	will provide physical separation between site users and retained fill
		materials.
		Consideration of the practical implications of an ongoing site
		management plan is required prior to implementation.

7.4 Preferred Remedial Strategy

A number of potential remedial options have been outlined in **Table 7.1**. The preferred remedial strategies for the site are presented in **Table 7.2** and are summarised as follows:

- Offsite disposal of material impacted with lead;
- Offsite disposal of material impacted with FA; and
- Cap/Cover Remedial Strategy for remaining site fill materials impacted with bonded asbestos (ACM) and aesthetics (i.e. significant amount of construction / building rubbles).

Table 7.2 - Soil Contamination and Remedial Methodology

Location	Depth of Remediation (m bgs)	Constituent	Remedial Strategy
HA01	0-0.7	Lead	Excavate/Offsite Disposal
вноз	0-0.1	B(a)P	No Remediation Required
TP16	2.3-2.4	Zinc	No Remediation Required
TP18	0-2.0	FA	Excavate/Offsite Disposal
Remainder of Site	Reduced Level as per design plans, also meeting the requirements of capping layer	Aesthetic Impacts	
		ACM	On-site retention

8. Remediation Plan

8.1 Regulatory and Planning Requirements

This RAP has been prepared with reference to the following guidelines and legislation. Details regarding regulatory approvals/licensing requirements are presented below.

8.1.1 Environment Planning and Assessment Act 1979 / SEPP 55

The remediation works are classified as Category 2 Remediation Works as per the meaning provided in SEPP 55 and will not require specific development consent under the *Environmental Planning and Assessment Act 1997*, given the works are not considered/proposed to be:

- Designated development; or
- Carried out on land declared to be a critical habitat; or
- Likely to have a significant effect on a critical habitat or a threatened species, population or ecological community; or
- Development for which another State environmental planning policy or a regional environmental plan requires development consent; or
- Carried out in an area or zone to which any classifications to the following effect apply under an environmental planning instrument:
 - Coastal protection;
 - Conservation or heritage conservation;
 - o Habitat area, habitat protection area, habitat or wildlife corridor,
 - Environment protection;
 - o Escarpment, escarpment protection or escarpment preservation;
 - Floodway;
 - Littoral rainforest;
 - Nature reserve;
 - Scenic area or scenic protection;
 - o Wetland; or
- Carried out on any land in a manner that does not comply with a policy made under the
 contaminated land planning guidelines by the council for any local government area in which
 the land is situated (or if the land is within the unincorporated area, the Western Lands
 Commissioner).

With regards to floodway, it was advised by client's environmental planner that a small area to the southern extremity of the site is affected by high hazard flooding in the Probable Maximum Flood (PMF) and '1 in 100 year ARI Flood Fringe' and the site is not classified as a 'floodway' pursuant to the Pittwater LEP 2014. Based on the client's design plans (**Appendix A**), the southern boundary of the site will be subject to minor cutting and predominantly filling.

Notification of remediation works will be required to be given to council at least 30 days prior to commencement, and council requires notification within 30 days from completion of remediation works, consistent with SEPP 55 requirements and Council's Contaminated Land Policy.

It is noted by JBS&G that Section 5.2 of Council's Contaminated Land Policy states that Council require copies of any preliminary investigation, detailed investigation and RAP for the subject site.

Following the completion of remedial works at the site, Council must also be notified within 30 days after the completion of remediation works and supply Council with copies of validation report(s) and other relevant records.

8.1.2 Environment Planning and Assessment Regulation 2000 – Schedule 3 Designated Development

The proposed remedial strategy is not considered to be 'Designated Development' under Schedule 3 of the EP&A Regulation (2000) given the expected works will not:

- Incinerate more than 1,000 m³ per year of contaminated soil;
- Treat otherwise than incineration and store more than 30,000 m³ of contaminated soil; or
- Disturb more than an aggregate area of 3 hectares of contaminated soil.

8.1.3 Protection of the Environment Operations (POEO) Act 1997

The proposed remediation / validation activities are not required to be licensed under the *POEO Act* 1997.

8.1.4 Water Management Act 2000

Depth to groundwater is approx. 2 mbgs. The redevelopment does not require deep excavation for construction of basements or other major infrastructure. Dewatering is not required to facilitate remedial works or construction at the site and therefore provisions of the Water Management Act (2000) do not apply.

8.1.5 Protection of the Environment Operations (Waste) Regulation 2014

The regulations make requirements relating to non-licensed waste activities and waste transport. The proposed remedial works on the site do not require a separate license. Section 48 of the Reg. requires that wastes are stored in an environmentally safe manner. It is also stipulated that vehicles used to transport waste must be appropriately licensed and covered when loaded with impacted materials. This regulation also details additional transport and tracking requirements for vehicles carrying Special (asbestos) waste if material is identified to contain asbestos following waste classification activities (Part 7, p44).

Provision is provided in the Regulation and EPA (2014) guidelines for the NSW EPA to approve the immobilisation of contaminants in waste (if required with unexpected finds).

Waste Classification Guidelines (EPA 2014)

All wastes generated and proposed to be disposed off-site shall be assessed, classified and managed in accordance with this guideline. Where wastes require immobilisation prior to off-site disposal (to reduce waste classifications) an immobilisation approval shall be sought in accordance with Part 2 of this guideline. Immobilisations may only be required with unexpected finds.

8.2 Approvals, Licences and Notifications

SEPP55 and Council's Contaminated Land Policy requires Council to be notified 30 days prior to Category 2 remediation works commencing, and within 30 days of completion. It is noted by JBS&G that Section 5.2 of Council's Contaminated Land Policy states that Council require copies of any preliminary investigation, detailed investigation, the Remediation Action Plan (this document) and copies of validation report(s) and other relevant records following the completion of remedial works at the subject site.

The WHS Regulation (2017) and SafeWork NSW regulations require all works pertaining to the removal of greater than 10 m² of non-friable (bonded) asbestos impacted materials and friable asbestos impacted materials to be notified and approved prior to commencement. In these

instances, works are required to be undertaken by a SafeWork NSW 'Class A (friable and non-friable) Asbestos Removalist' licence holder or 'Class B (non-friable) Asbestos Removalist' licence holder.

Given the current site condition at the time of reporting, the general site fill materials are considered to be impacted with bonded ACM fragments and location TP18 reported an elevated concentration of FA, exceeded the site adopted human health criterion, requiring remediation/management. Therefore a Class A (friable and non-friable) asbestos removal contractor shall be engaged to complete the remedial works.

8.3 Site Establishment

The extent of remediation is summarised in **Section 7** and visually shown on **Figure 7**. The remedial contractor shall secure the site to ensure that all safety and environmental controls are implemented. These controls will include, but not be limited to:

- Locate and isolate all required utilities in the proximity of the works;
- Work area security fencing;
- Site signage and contact numbers;
- Stabilised site entry gate;
- Appropriate decontamination areas for personnel and plant, if required;
- Sediment fencing (attached to security fencing); and
- Stormwater runoff and sediment controls (e.g. silt fences and hay bales).

8.4 Remedial Scope of Works

It is envisaged that remedial and validation works will be potentially conducted over two stages in alignment with the proposed redevelopment of the site. Within each proposed stage, remediation works will comprise the following actions.

8.4.1 Site Establishment

For each stage of remediation works the boundary will be defined (via survey) and secured as appropriate to ensure that all safety and environmental controls are implemented, including necessary contractor briefings and inductions for the remediation workforce. A summary of the controls is provided in **Section 11**.

Areas requiring remediation are discussed in **Section 6** and shown on **Figure 7**.

8.4.2 Removal of Lead Impacted Soils (HA01)

The following procedure should be undertaken for the remediation of soils impacted with lead, identified in **Section 6** and shown on **Figure 7**:

- The former hand auger location (HA01) will be located by the field scientist utilising a handheld Trimble GPS with sub-metre accuracy;
- The excavation will be required to be advanced to at least 0.5 m below the depth of
 identified contamination, that is to 1.2 m bgs, and to a minimum lateral extent of 5 m x 5 m,
 or as delineated by the JBS&G field scientist. The excavation will be advanced in an 'insideout' approach, so as to minimise the volume of spoil generated and requiring remediation;
- Disposal of the material to an appropriately licensed waste facility according to waste classification;
- Excavations are to be validated as per **Section 9.2.7.** Should validation fail the failed wall/s or base of the excavation will be excavated a further 0.3 m in the direction of the failure, and the validation process repeated until validation is achieved; and

• Following validation of the excavation as outlined in **Section 9.2.7**, the excavations generated by the removal of impacted soil will be backfilled using general site fill material and/or validated materials in accordance with **Section 9.2.7**.

8.4.3 Removal of FA Impacted Soils (TP18)

The following procedure should be undertaken for the remediation of soils impacted with FA, identified in **Section 6** and shown on **Figure 7**:

- The former test pit location (TP18) will be located by the field scientist utilising a hand-held Trimble GPS with sub-metre accuracy;
- The excavation will be required to be advanced to at least 0.5 m below the depth of identified contamination, that is to 2.5 m bgs, and to a minimum lateral extent of 5 m x 5 m, or as delineated by the JBS&G field scientist. The excavation will be advanced in an 'insideout' approach, so as to minimise the volume of spoil generated and requiring remediation;
- Disposal of the generated spoil to an appropriately licensed waste facility according to waste classification;
- Excavations are to be validated as per Section 9.2.7. Should validation fail, the failed wall/s
 or base of the excavation will be excavated a further 0.3 m in the direction of the failure, or
 as otherwise indicated by visual observations and field screening, and the validation process
 repeated until validation is achieved; and
- Following validation of the excavation as outlined in **Section 9.2.7**, the excavations generated by the removal of impacted soil will be backfilled using fill material validated in accordance with **Section 9.2.7**.

8.4.4 Cap/Cover Remedial Strategy

Remaining fill material across the site is considered to be impacted with non-friable (bonded) asbestos as ACM fragments were observed across the site with no discernible pattern. Previous investigations (DP 2017a and JBS&G 2019) reported that all other contaminants of concerns (except lead impacts discussed above) were reported within the human-health based criteria except asbestos. Although minor ecological exceedances were reported in JBS&G (2019) at two locations (BH03, TP16, see **Table 7.2**) it is considered that those exceedances do not pose an unacceptable ecological risk.

Given that the contaminants in fill materials are in solid form (i.e. asbestos) and were demonstrated to be non-leachable or having low leachability and no groundwater or vapour contaminations were identified across the site, it is considered that the general site fill material is suitable to be retained on site if placed within areas of restricted exposure for human and ecological receptors, and managed in accordance with an ongoing long term environmental management plan.

This retainment will include the placement of fill materials below the engineered concrete slab associated with the overlying built form (i.e. new aged care facility building) and so will be inaccessible and identified as not representing an unacceptable human health or ecological risk.

Alternatively, where this placement is not possible due to structural stability or final design levelling issues identifies that the material is not suitable for placement below the building footprint, implementation of a physical separation remedial strategy is proposed. This includes:

- Removal of existing fill material to an additional depth of 0.5 m for grass/shrubs and/or 1.5m for trees and/or reduced levels to accommodate future pavements and carparks;
- Placement of marker layer (orange woven, free draining geotextile fabric) above retained fill material;

- Placement of at least 0.5 m of chemically suitable fill material above marker layer for grass/garden areas (refer to Section 9);
- Placement of at least 1.5 m of chemically suitable fill material above marker layer for tree areas (refer to Section 9; and/or
- Establishment of sub-grade layer (environmentally suitable soils, refer to **Section 9**) for pavement and carparks above marker layer.

Installation of physical separation arrangements shall be defined by survey as completed by a registered surveyor and/or building as-built drawings sufficient to identify:

- The lateral extent and upper depth height of known environmentally impacted materials (i.e. residual fill materials underlying the cover) within each remediation area/stage;
- The lateral extent and type of cover (e.g. building engineered concrete slab or permanent pavement/asphaltic hardstands or constructed garden beds) within each remediation area/stage; and
- Confirmation, by photos or otherwise, of the installation of the 'marker layer' underlying the cover (as required).

Adoption of a physical separation remedial strategy within these portions of the site will require development and implementation of a long-term EMP which will be discoverable and legally enforceable.

Given the specific development plans as understood at the time of preparation of the RAP, the following capping and cover procedures are to be implemented:

- Cover of fill materials by buildings installation of a marker layer overlying potentially
 contaminated material to denote the extent of retained fill. The engineered concrete floor
 slab shall act as a physical barrier;
- Cover of fill materials by permanent paved areas beyond building footprints installation of
 a marker layer overlying potentially contaminated material followed by sub-grade material
 validated as environmentally suitable materials for human/ecological exposure (where
 required) and then the permanent pavement and hardstands for carparks (i.e. concrete,
 asphalt, pavers, etc.);
- Capping of fill materials in landscaped areas installation of the marker layer at a minimum depth of 0.5 m below final finished site levels in areas of shallow planting (for grasses and shrubs), or a minimum of 1.5 m below final finished site levels in areas of tree planting, with environmentally suitable materials placed above to the final levels; and
- Within underground services trenches in the event underground services trenches are to be installed, the service infrastructure will require to be installed above a marker layer within suitable materials for potential human and/or ecological exposure.

Generic "typical cross-sections" of the abovementioned capping arrangements were conceptually presented in **Figure 8**. Furthermore, given that the topography of the site slopes towards Mullet Creek to the south, possibilities for erosion or undermining should be taken into account by geotechnical engineers when installing respective capping.

8.5 Off-Site Disposal

Impacted fill materials are proposed to be disposed off-site to appropriately licensed facilities. Fill materials shall be classified in accordance with *Waste Classification Guidelines Part 1: Classifying Waste, November 2014, NSW EPA* (EPA 2014) or an appropriate exemption as created under the *Protection of the Environment Operations (Waste) Regulation 2014*.

On a conservative approach, general site fill materials were preliminary classified as GSW&S(Asbestos), however, additional waste classification sampling might be required to further classify the waste. Material will require transport and disposal according to regulations to a facility lawfully able to receive it.

The remedial contractor must be aware of and conduct all waste disposal in accordance with all relevant regulations. All waste tracking documentation including disposal dockets must be maintained by the remedial contractor and must be provided to the engaged environmental consultant for inclusion in the validation report.

8.6 Materials Importation

Materials imported to the site for the reinstatement of the excavation area, if required, are required to be validated and approved by JBS&G prior to importation to the site, as per **Section 9.2.7.**

8.7 Validation

Validation of the remedial works will be conducted by the environmental consultant to demonstrate the remediation objectives have been achieved. Details of the validation program are provided in **Section 9.**

8.8 Site Disestablishment

On completion of the remediation works all plant / equipment and safety / environmental controls shall be removed from the site by the appointed remedial contractor / principal contractor. All equipment used during remediation works will need to be appropriately decontaminated or disposed of as waste by the contractor / principal contractor, in accordance with relevant waste regulations.

9. Validation Plan

9.1 Overview

Validation data is required to be collected to verify the effectiveness of the remediation works and document the condition of the site as being suitable for the proposed future uses.

Validation activities will be required for the following aspects:

- Collection of appropriate environmental data from excavations formed by the removal of contaminated soils;
- Collection of appropriate environmental data from residual soils underneath stockpiles where excavated contaminated material may be stored;
- Collection of appropriate environmental data from soils to be disposed of off-site or imported to the site;
- Tracking the movement of all soil and fill material on site;
- Tracking the movement of waste materials requiring off-site disposal;
- · Assessment of materials imported to site; and
- Validation of any unexpected finds.

9.2 Data Quality Objectives

DQOs were developed for the validation program, as discussed in the following sections.

9.2.1 State the Problem

Soils at the site were identified to contain elevated concentrations of lead, asbestos and aesthetic impacts that potentially pose an unacceptable risk to human health and preclude the site from being considered suitable for a land use consistent with residential with gardens and accessible soils, pursuant to the *National Environmental Protection Measure* (NEPC 2013). As such, the site is required to be remediated and sufficient data collected to demonstrate that the site can be considered suitable for the proposed land use.

9.2.2 Identify the Decision

The decisions which are required to be made for validation of the site are:

- 1. Are there any unacceptable risks to onsite or offsite receptors from any residual soil contamination?
- 2. Are there any remaining aesthetic issues at the site following remediation works?
- 3. Have the works been completed in accordance with the RAP, or where variations to the works were required, have these met the objectives of the RAP?
- 4. Is an EMP required to address management of any residual potential contamination?
- 5. Is the site considered suitable for the proposed use?

During the remediation activities, sufficient validation of site activities is required to demonstrate that the identified environmental and health based risks to future use(s) of the site have been adequately managed to render the site suitable for the proposed land use.

9.2.3 Identify Inputs to the Decision

The inputs to the decision are:

- Field observations in relation to inspection of all excavation bases, walls and stockpiles for odours, sheen, discolouration, and other indicators of potential contamination;
- Soil validation analysis data collected from the base and walls of the remedial excavations;
- Waste classification and material characterisation data obtained during assessment of fill material prior to and during remediation works;
- Field observations, sampling and analytical data for imported materials;
- Field observations, sampling and analytical data of any unexpected finds;
- Disposal dockets and relevant documents in relation to appropriate disposal of material to be removed from site as part of the remediation works (landfill dockets, beneficial reuse / recycling dockets, trade waste disposal, etc.);
- Relevant guideline criteria for validation and waste classification; and
- Data quality indicators (DQIs) as assessed by quality assurance / quality control (QA/QC).

9.2.4 Define the Study Boundaries

The lateral and vertical extents of areas subject to remediation are detailed in **Table 9.1** below and are shown on **Figure 7**.

Table 9.1 - Remedial Extents

Area	Contaminant	Vertical Extent (depth)	Remedial Strategy
HA01	Lead	0-0.7 m bgs	Excavation and off-site disposal
TP18	FA	0-2.0 m bgs	
Site Wide	ACM	NA	Cap/Cover Remedial Strategy (Section 8.4.4)

In practice, the lateral and vertical extent shall be determined by validation samples / data that satisfy the adopted validation criteria (**Section 9.4**).

Due to the nature of potential contaminants identified temporal variables will not require assessment as part of this investigation. The temporal boundaries of this investigation will be limited to the period of field validation assessment works.

9.2.5 Decision Rules

The decision rules adopted to answer the decisions identified in **Section 9.2.2** are discussed in **Table 9.2** below.

Table 9.2 - Summary of Decision Rules

Decision Required to be Made	Decision Rule
1. Are there any unacceptable risks to onsite	Soil analytical data will be compared against EPA endorsed criteria as
or offsite receptors from any residual soil	established in the RAP.
contamination?	For the validation sample sets, statistical analysis of the data will be
	undertaken in accordance with relevant guidance documents, as
	appropriate, to facilitate the decisions. The following statistical criteria
	will be adopted with respect to soils:
	Either: the reported concentrations will be below the site criteria;
	Or: the average site concentration for each analyte will be below the
	adopted HILs / EILs criterion; no single analyte concentration will exceed
	250% of adopted health / ecological based site criterion; and the standard
	deviation of the results will be less than 50% of the adopted health /
	ecological based criterion.
	And: the 95% UCL of the average concentration for each analyte will be
	below the adopted health / ecological based site criterion.
	If the statistical criteria stated above is satisfied, the answer to the
	decision will be No .

Decision Required to be Made	Decision Rule
	If the statistical criteria are not satisfied, the answer to the decision will be Yes .
2. Are there any aesthetic issues remaining following remediation works?	If there are any remaining unacceptable odours, soil inclusions or soil discolouration, the answer to the decision will be Yes . Otherwise, the answer to the decision will be No .
3. Have any remedial works <u>not</u> been completed in accordance with the RAP, or where variations to the works were required, have these <u>not</u> met the objectives of the RAP?	Evaluation of the RAP requirements and completed scope of works will be undertaken on a qualitative basis. If the completed works are inconsistent with the stated RAP objectives, the answer will be Yes . Otherwise the answer to the decision is No .
4. Is an EMP required to address management of any residual potential contamination?	Was the answer to any of the above decisions Yes? If Yes , the issues are required to be documented within the EMP to be prepared for this site to address outstanding contamination issues. If No , an EMP is not required to be prepared for the site area to address outstanding issues.
5. Is the site considered suitable for the proposed use?	Was the answer to any of the above decisions Yes? If Yes , are the outstanding issues appropriately addressed by implementation of an Environmental Management Plan (EMP)? If the issues are appropriately addressed by the EMP, the answer to the decision will be Yes , subject to ongoing implementation of the EMP. Otherwise, the decision will be No and the requirements for further remediation of the site and / or implementation of additional management measures (as documented in an amended EMP) will be required to be documented such that the answer to the decision can be Yes.

9.2.6 Specify Limits of Decision Error

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from the NSW EPA, NEPC (2013), appropriate indicators of data quality (DQIs used to assess quality assurance / quality control) and standard JBS&G procedures for field sampling and handling.

To assess the usability of the data prior to making decisions, the data will be assessed against predetermined DQIs for to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters). The acceptable limit on decision error is 95% compliance with DQIs.

The pre-determined DQIs established for the project are discussed below in relation to the PARCC parameters, and are shown in **Table 9.3**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD¹¹) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory
 data that are generated during this study is a measure of the closeness of the analytical
 results obtained by a method to the 'true' value. Accuracy is assessed by reference to the

$$RPD(\%) = \frac{|C_o - C_d|}{C_o + C_d} \times 200$$

Where C0 is the analyte concentration of the original sample Cd is the analyte concentration of the duplicate sample

analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.

- Representativeness expresses the degree which sample data accurately and precisely represent a characteristic of a population or an environmental condition.
 Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; and ensuring analysing laboratories use consistent analysis techniques; and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.
- Sensitivity expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted site assessment criteria.

Table 9.3: Summary of Data Quality Indicators

Data Quality Indicators	Frequency	Data Quality Criteria
Precision		
Split duplicates (intra laboratory)	1 / 20 samples	<50% RPD ¹
Blind duplicates (inter laboratory)	1 / 20 samples	<50% RPD ¹
Laboratory Duplicates	1 / 20 samples	<50% RPD ¹
Accuracy		
Surrogate spikes	All organic samples	70-130%
Laboratory control samples	1 per lab batch	70-130%
Matrix spikes	1 per lab batch	70-130%
Representativeness		
Sampling appropriate for media and analytes	All samples	_2
Samples extracted and analysed within holding times.	All samples	Soil: organics (14 days), inorganics (6 months) Water: organics (7 days to extract and 14 days to analyses). Metals (6 months)
Laboratory Blanks	1 per lab batch	<lor< td=""></lor<>
Trip spike	1 per lab batch	70-130% recovery
Storage blank	1 per lab batch	<lor< td=""></lor<>
Rinsate sample	1 per sampling	<lor< td=""></lor<>
	event/media	
Comparability		
Standard operating procedures for sample collection & handling	All Samples	All Samples
Standard analytical methods used for all analyses	All Samples extracted and analysed within holding times	NATA accreditation
Consistent field conditions, sampling staff and laboratory analysis	All Samples	All samples ²
Limits of reporting appropriate and consistent	All Samples extracted and analysed within holding times	All samples ²
Completeness		
Sample description and COCs completed and appropriate	All Samples	All samples ²
Appropriate documentation	All Samples	All samples ²
Satisfactory frequency and result for QC samples		95% compliance
Data from critical samples is considered valid	-	Critical samples valid
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted Site assessment criteria	All samples	LOR<= Site assessment criteria

⁽¹⁾ If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

9.2.7 Optimise the Design for Obtaining Data

The purpose of this step is to identify a resource-effective field validation sampling design that generates data that are expected to satisfy the decision performance criteria, as specified in the preceding steps of the DQO process. The output of this step is the sampling design that will guide development of the field sampling and analysis plan. This step provides a general description of the activities necessary to generate and select data collection designs that satisfy decision performance criteria.

The remediation validation and subsequent laboratory analysis program as outlined in the following sections will need to be implemented during site remediation activities to demonstrate the successful completion of works in compliance with the RAP goals. The validation and

⁽²⁾ A qualitative assessment of compliance with standard procedures and appropriate sample collection methods will be completed during the DQI compliance assessment.

characterisation sampling and analytical program for the site is outlined in **Table 9.4** and **Table 9.5** below, respectively.

Table 9.4: Characterisation / Remediation and Validation Sampling Program

Item	RAP Sampling Frequ		Analytical Suite	
Off-Site Disposal				
If fill materials for off-site disposal are to be classified in accordance with NSW EPA (2014)	will be sampled by the per the sampling der (2013) i.e. 1 per 25 m³, minimu by highest concentration of analif greater than 250 m²	es if classification by 95% alyte. n ³ , minimum 10 sample 5 UCL of average concen	Heavy metals TRH/BTEX PAH Asbestos (presence/absence) TCLP (heavy metals and PAHs)	
Remedial Excavation				
	Excavation Floors	Excavation Walls	Materials	
Excavation formed by the removal of the lead impacted fill	1 / 25 m²	1 / 5 m lineal (from each distinct horizon / material type / 1 m vertical soil profile)	N/A	Lead
Excavation formed by the removal of the FA impacted fill	1 / 25 m²	1 / 5 m lineal (from each distinct horizon / material type / 1 m vertical soil profile)	N/A	Asbestos
Materials Importation				
Imported VENM	m ³ then 1 sample pe			TRH/BTEX PAH Heavy Metals OCP/PCBs Asbestos
Quarry VENM Materials (e.g. blue metal, sandstone, shale)		le material is quarried re Provided by the quarry pual confirmation.	•	Site Inspection required.
Recycled Materials under the NSW EPA Exemptions	thereafter	les per source site then to be imported within 3		TRH/BTEX PAH Heavy Metals OCP/PCBs Asbestos

Table 9.5: Characterisation of Unexpected Finds / Importation

rable side characterisation of chespected rings,		
Validation Sample Type	RAP Sampling Frequency	Analytical Suite
Additional Fill Characterisation	1 / 25 m ³ , minimum of 3	heavy metals
(where fill is considered to be materially different from that	samples per frequency	TRH / BTEX
described in Section 5) and requiring off-site disposal	state above.	PAHs
		OCPs / PCBs
		Asbestos (presence/absence)
		TCLP (heavy metals and PAHs)
Unexpected Finds	Base: 1 / 25 m ²	As appropriate, depending on
	Walls: 1 / 5 m lineal	the location and
		characteristics of the
		unexpected find

The nominated sampling densities and analytical program have considered sample density guidance provided in EPA made and endorsed guidelines.

9.3 Soil Sampling Methodology

9.3.1 Validation of Excavation(s)

Samples will need to be collected by an appropriately trained and experienced environmental scientist / engineer by the use of a hand trowel or from the bucket of mechanical excavation equipment, at the required densities to meet the project DQOs presented in **Section 9.2.** In any event, samples will need to be obtained from at least 100 mm behind the excavation face to minimise the potential for loss of volatile contaminants as a result of disturbance.

Prior to collection of each sample, hand tools will need to be thoroughly decontaminated using phosphate free detergent and distilled water as per **Section 9.3.6**.

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indications of contamination will need to be noted on the field documentation and a photo-ionisation detector (PID) used where possible, to assess the potential occurrence of volatile compounds as per **Section 9.3.3** below.

9.3.2 Stockpile Sampling

For stockpile sampling, material will be obtained from a minimum depth of 0.3 m below the surface of the stockpile at the time of sampling. Appropriate decontamination activities shall be followed following the collection of each sample.

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indications of contamination will be noted on the field documentation and a PID will be used, as appropriate, to assess the potential occurrence of volatile compounds.

9.3.3 Field PID Screening

Soil characterisation / validation samples will be screened on site during works using a PID to assess the presence of VOCs including petroleum hydrocarbons. Samples obtained for PID screening will be placed in a sealed plastic bag for a period of approximately one minute to equilibrate prior to a PID being attached to the bag. Readings will then be monitored for a period of approximately one minute or until values stabilised and the stabilised / highest reading recorded.

9.3.4 Sample Handling

Collected samples will be immediately transferred to sample containers of appropriate composition (glass jars for chemical analysis, plastic bags for asbestos). Sample labels recorded: job number; sample identification number; and date of sampling.

Sample containers will be transferred to a chilled ice box for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form will be completed and forwarded with the samples to the testing laboratory.

9.3.5 Soil Duplicate and Triplicate Sample Preparation and QA/QC Requirements

Field duplicate and triplicate samples for the characterisation / validation assessment will be obtained during sampling using the procedures outlined above at a frequency of 1 in 20 primary samples for both field intra-laboratory duplicates and field inter-laboratory duplicates. The samples will be divided laterally into 3 samples with minimal disturbance to reduce the potential for loss of volatiles and placed in three clean glass jars and / or plastic bags. All jars will be filled with no headspace to reduce the potential for loss of volatiles and separately labelled as the primary, duplicate and triplicate samples before being placed in the same chilled esky for laboratory transport.

Trip spike, storage blank and rinsate samples will be collected as per **Table 9.3**.

9.3.6 Soil Sampling Equipment Decontamination

The following procedure will be used to clean non-disposable equipment, including the trowel, pick etc., prior to the collection of each sample:

- Scrubbing with a wire brush to remove gross contamination;
- Pressure spray with Decon 90 detergent and potable water mix;
- Pressure spray rinse with potable water; and
- Air drying.

Rinsate samples will be obtained during the field decontamination procedures at regular intervals during characterisation / validation sampling activities. Each rinsate sample will be obtained by rinsing the trowel with laboratory grade demineralised water following the decontamination procedure. The water sample will be appropriately preserved and stored with the site samples prior to transport to the laboratory for chemical analysis.

9.3.7 Laboratory Analyses

JBS&G propose to use Eurofins MGT Pty Ltd at Lane Cove, NSW as the primary laboratory for the required analyses. The secondary laboratory to be contracted for the works will be Envirolab Services Pty Ltd (Envirolab) at Chatswood, NSW. All laboratories are National Association of Testing Authorities (NATA) registered for the relevant analyses. In addition, the laboratories are required to meet JBS&G's internal QA/QC requirements.

Laboratory analysis methods for relevant soil contaminants are identified in Table 9.6.

Table 9.6 Soil Laboratory Analysis Methods (all units in mg/kg unless stated)

Analyte	Limit of Reporting	Laboratory Method
Metals		
Arsenic	4.0	ICP-AES (USEPA 200.7)
Cadmium	1.0	ICP-AES (USEPA 200.7)
Chromium (total)	1.0	ICP-AES (USEPA 200.7)
Chromium (VI)	1.0	Alkali leach colorimetric (APHA3500-Cr/USEAP3060A)
Copper	1.0	ICP-AES (USEPA 200.7)
Lead	1.0	ICP-AES (USEPA 200.7)
Nickel	1.0	ICP-AES (USEPA 200.7)
Zinc	1.0	ICP-AES (USEPA 200.7)
Mercury (inorganic)	0.1	Cold Vapour ASS (USEPA 7471A)
TRH		
C ₆ – C ₉ Fraction	25	Purge Trap-GCMS (USEPA8260)
C ₁₀ – C ₃₆ Fraction	250	Purge Trap-GCFID (USEPA8000)
BTEX		
Benzene	1.0	Purge Trap-GCMS (USEPA8260)
Toluene	1.0	Purge Trap-GCMS (USEPA8260)
Ethylbenzene	1.0	Purge Trap-GCMS (USEPA8260)
Total Xylenes	3.0	Purge Trap-GCMS (USEPA8260)
PAHs		
Benzo(a)pyrene	0.05	GCMS (USEPA8270)
Total PAHs	1.55	GCMS (USEPA8270)
PCBs		
PCBs (total)	0.7	GCECD (USEPA8140,8080)
OCPs		
Aldrin + Dieldrin	0.2	GCECD (USEPA8140,8080)
Chlordane	0.1	GCECD (USEPA8140,8080)
DDT + DDD + DDE	0.3	GCECD (USEPA8140,8080)
Endosulfan	0.3	GCECD (USEPA8140,8080)
Endrin	0.1	GCECD (USEPA8140,8080)
Methoxychlor	0.1	GCECD (USEPA8140,8080)

Analyte	Limit of Reporting	Laboratory Method
Heptachlor	0.1	GCECD (USEPA8140,8080)
Other		
Asbestos	Presence/ 0.1 g/kg	PLM / Dispersion Staining as per AS4964:2004

9.4 Validation Criteria

The following is a discussion of validation criteria to be adopted during remediation works within the site.

9.4.1 Soil Validation Criteria and Rationale

The site is proposed to be redeveloped by the client and is required to be validated as suitable for ongoing use as aged care facility, equivalent to residential land use with garden/accessible soil, pursuant to the NEPC (2013). As such, health based criteria for "residential with garden/access to soils" (HIL-A) will be adopted for remedial excavation / site validation. The criteria are based on NSW EPA endorsed investigation levels which, while being used as clean-up levels instead of site-specific criteria derived through a process of risk assessment, are considered adequately conservative for the purposes of characterising and validating the site.

Based on the land-use zoning and potential future use of the site, the concentrations of contaminants in the soil will be compared against published levels, sourced from the following:

- Health Investigation Levels (HILs) for Residential-A use presented in the ASC NEPC: HIL-A;
- Direct contact Health Screening Levels (HSLs) for high density residential use presented in Friebel & Nadebaum (2011): HSL-A;
- Ecological Investigation Levels (EILs) for urban residential use calculated from site specific concentrations (as presented in the ASC NEPC); and
- Ecological Screening Levels (ESLs) for coarse grained soils presented in the ASC NEPC for urban residential use.

9.5 Groundwater/Leachate Assessment Criteria

The groundwater data was compared against adopted criteria, namely:

- ANZAST (2018¹²) 95% Trigger Values for Fresh Water Aquatic Ecosystems; and
- HSLs for vapour intrusion for low-high density residential land uses for coarse grained soils (sand).

It is noted that guideline values for the protection of fresh water ecosystems have been adopted noting the proximity of the site to Mullet Creek as part of the Warriewood Wetlands. Water hardness factors as per *Table 3.4.4* of *ANZAST (2018)* are also applied to soft water trigger values for selected metals in freshwaters of varying water hardness.

Australian Drinking Water Guidelines were not considered to be applicable to groundwater as the aged care facility has reticulated water supply, and there is no known beneficial drinking use in the area. Water discharging to Mullet Creek flows towards the South Creek then eventually discharged into South Pacific Ocean, as discussed in **Section 3.6**.

9.6 Statistical Analysis of Data

Where sufficient data sets are available, statistical criteria as nominated following will apply: Either:

Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand and Australian State and Territory Governments, August 2018 (ANZAST 2018)

all contaminant concentrations were less than the adopted site assessment criteria,

Or:

- The upper 95% confidence limit of the average concentration (95% UCL) for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) was below the adopted criterion;
- No single analyte concentration exceeded 250% of the adopted criterion; and
- The standard deviation of the results was less than 50% of the criterion.

In addition to the numerical criteria, the following observations will also supplement the validation process:

• Soils shall not emit recognisable odours, be discoloured as a result of contamination and / or have any significant additional aesthetic concerns with respect to future site users.

9.6.1 Offsite Disposal Criteria

Contaminated soils requiring disposal off-site shall be assessed in accordance with EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste.

9.6.2 Imported Soil Criteria

In accordance with current EPA policy, only material that does not represent an environmental or health risk at the receiving site may be considered for resource recovery. Imported materials will only be accepted to the site if they meet the restrictions placed on these materials and meet the definition of:

- Virgin Excavated Natural Material (VENM) as defined in the *Protection of the Environment Operations Act* (1997) Schedule 1; or
- Materials under an NSW EPA exemption.

All material imported onto the site is required to be accompanied by appropriate documentation that has been verified by the appointed site contamination (environmental) consultant.

Sampling of materials as per an EPA exemption (recycled products) is required to be undertaken by the facility in accordance with the exemption. In addition, where materials are proposed for beneficial reuse under an NSW EPA exemption (i.e. imported to the site), fill material will need to be further assessed by JBS&G for land use suitability. Sampling densities and analysis for COPC will be dependent on the volume, material type, source and in accordance with **Table 9.4**.

9.6.3 Validation of Soil Placement Areas (Capped Soil)

Soils which are to be moved to another area of the site will be subject to the following data recording process for future reference purposes, and detailed in a Material Tracking Plan:

- A location plan of the placed materials with co-ordinates based on an agreed grid system (e.g., GPS or relative to the lot boundaries);
- The levels in m AHD of the base of the placement location(s) prior to the material placement;
- The levels in m AHD of the placement locations once all materials have been placed;
- The levels in m AHD of any defining layers; and
- Subsequently the total placed volume of materials.

9.7 Validation Reporting

9.7.1 Validation Report

The validation report shall be prepared by the remediation consultant written in general accordance with EPA (2017) and (OEH 2011) *Guidelines for Consultants Reporting on Contaminated Site*, documenting the works as completed. The validation report will be submitted to the client and the NSW EPA accredited Site Auditor at the completion of remedial works at the site. A Site Audit Statement will require to be procured at the completion of validation activities.

This report will contain information including:

- Details of the remediation works conducted;
- The results and findings of the previous investigations as per Section 5;
- Information demonstrating that the objectives of this RAP have been achieved, in particular the validation sample results and assessment of the data against both the pre-defined DQO and the remediation acceptance (validation) criteria;
- Information demonstrating compliance with appropriate regulations and guidelines;
- Any variations to the strategy undertaken during the implementation of the remedial works;
- Results of asbestos monitoring undertaken during the course of the remedial works;
- Details of any environmental incidents occurring during the course of the remedial works and the actions undertaken in response to these incidents;
- Verification of regulatory compliance;
- Details on waste classification, tracking and off-site disposal including landfill dockets;
- Clear statement of the suitability of the site (or part of the site) that is the subject of the validation report, for the proposed use(s); and
- Other information as appropriate, including details of EMPs (if required) that will apply to the part of the site that is the subject of the validation report.

The report will serve to document the remediation works for future reference.

9.8 Long Term Environmental Management Plan

Where required, the Long Term EMP shall contain the following elements:

- A statement of the objectives of the EMP i.e., to ensure continued suitability of the site after it has been remediated:
- Identification of residual environmental contamination issues at the site that require
 ongoing management/monitoring to meet the EMP objectives, including the type of
 contamination and location within the site (including survey plans);
- Documentation of environmental management measures which have been implemented to address the identified environmental issues at/within the site;
- Description of management controls to limit the exposure of the site users to known areas of contamination to acceptable levels;
- Description of responsibilities for implementing various elements of the provisions contained in the EMP;
- Timeframes for implementing the various control/monitoring, etc. elements outlined in the EMP;

- Environmental monitoring and reporting requirements (if required) for the future management of environmental impact underlying/within the site including:
 - Appropriate monitoring locations and depth within and down-gradient of any residual contamination;
 - Relevant assessment criteria to be used in evaluating monitoring results;
 - The regulatory authorities involved and the management inputs required from each;
 - o The integration of environmental management and monitoring measures for soil;
 - Health and safety requirements for particular activities;
 - A program of review and audits;
 - The provisions in the EMP are feasible and practical (i.e. able to be implemented) and able to be legally enforceable (i.e., a mechanism exists, such as development consent conditions, to give the plan a basis in law); and
 - The relevant consent authority is satisfied that the inclusion of a development consent condition relating to the implementation of the EMP is acceptable;
- Corrective action procedures to be implemented where EMP assessment criteria are breached.

The EMP will be provided to the appointed Site Auditor for review and approval prior to preparation of the Site Audit Statement (SAS) and Site Audit Report (SAR).

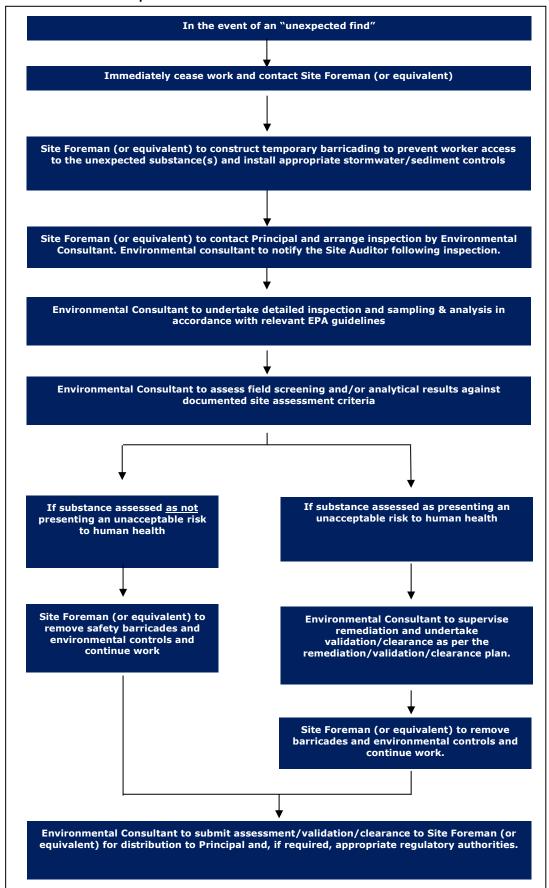
10. Contingency Plan

A review of remediation works has been undertaken to identify potential risks to meeting the specified site validation criteria which has resulted in the identification of a number of potential risks. These are listed following with contingencies that will be implemented to ensure that validation criteria are met.

Additionally, the associated remedial works health and environmental risks / hazards and their minimisation / mitigation are further discussed in **Section 11**.

10.1 Unexpected Finds Protocol

It is acknowledged that previous investigations of the site have been undertaken to assess the identified contaminants of potential concern in selected parts of the site. However, ground conditions between sampling points may vary, and further hazards may arise from unexpected sources and/or in unexpected locations during remediation. The nature of any residual hazards which may be present at the site are generally detectable through visual or olfactory means, for example:


- Ash and/or slag and/or tar contaminated soils / fill materials (visible);
- Significant amounts of fragments of ACM and/or AF/FA impacted materials;
- Petroleum contaminated soils (odorous, staining / discolouration visible);
- Bottles / containers of chemicals (visible);
- VOC contaminated soils (odorous) and vapours; and
- Underground Petroleum Storage Systems (UPSS) and associated infrastructures.

As a precautionary measure to ensure the protection of the workforce and surrounding community, should any of the abovementioned substances be identified (or any other unexpected potentially hazardous substance), the procedure summarised in **Flowchart 10.1** is to be followed.

An enlarged version of the unexpected finds protocol, suitable for use onsite, should be posted in the Site Office and referred to during the site-specific induction by the Contractor.

Flowchart 10.1 - Unexpected Finds Protocol

10.2 Contingency Scenarios

10.2.1 Material Storage Breach

In the event any stockpiled materials escape (or have the potential to escape), then the management controls shall be rectified and investigations undertaken to review the adequacy of the controls and any improvements implemented.

Materials at the site should be transported directly from the excavation to an awaiting truck, and where this is not possible materials will require to be stockpiled. Controls should be emplaced to mitigate the potential for sediment run-off and aeolian transport of particulates.

10.2.2 Complaints

Due to the nature of the activities and type of contaminants identified at the site there is a potential for complaints to be received from members of the public, relating to environmental emissions including:

- Odour emissions arising from excavation or exposing of site fill materials and underlying PASS/ASS, material handling, transport, placement and capping;
- Dust emissions arising from soil excavation, material handling, transport, placement and capping; and
- Noise and vibration from excavation.

Monitoring of all potential environmental emissions shall be undertaken as detailed in **Section 11** and appropriate actions taken to further control emissions following receipt of a complaint. Such additional controls may include the following actions:

- Disturbance of soils during meteorologically favourable periods (minimal wind conditions) only; and / or
- Increasing environmental controls including covering and / or wetting down soils which are generating dust, or use of odour suppressants to control odours.

Where odour complaints occur, the following will be undertaken:

- Installation of an odour screening / masking system at the remediation area boundaries; and / or
- Disturbance of soils during meteorologically favourable periods only; and / or
- The use of odour suppressant additives to water used to keep impact soils / stockpiles moist;
 and / or
- Covering of impacted soils.

10.2.3 Severe Weather

Weather will be monitored on a daily basis via checking an internet based weather service provider. Should severe weather be forecast, especially strong winds, works will stop until safe to recommence. All site management controls will be implemented to the extent practicable as outlined in **Section 11** prior to any severe weather events.

11. Site Management Plan

This section contains procedures and requirements that are to be implemented as a minimum requirement during the remedial works at the site.

11.1 Hours of Operation

It is understood that the hours of operation for remedial works will be conducted in accordance with the recommended site hours suggested by the EPA¹³, however hours may vary from typical hours of operation which will be subject to approval.

Typical hours of operation for remedial works are:

- Monday to Friday: 7 am to 5.30 pm.
- Saturday: 8 am to 2 pm.
- Sunday and public holidays: No work permitted.

11.2 Soil and Water Management

All works shall be conducted in general accordance with Landcom (2004) (Blue Book) guidance, which outlines the general requirements for the preparation of a soil and water management plan.

All remedial works shall be conducted in accordance with a soil and water management plan, which is to be kept onsite and made available to council officers on request. All erosion and sediment measures must be maintained in a functional condition through the remediation works by the remedial contractor.

To prevent the migration of impacted soil off site, silt fences shall be constructed at the down-gradient site boundaries by the remedial contractor. Any material which is collected behind the sediment control structures shall be removed off site to a licensed waste facility subsequent to waste classification.

In storm or extended rainfall event, the structures located on site for sediment control shall be monitored and replaced or altered if necessary by the contractor. Collected material shall be managed in accordance with remediation works by the contractor.

11.3 Stockpile Management

All materials stockpiled onsite will be managed by the remedial contractor. Unique numbers will be provided for each stockpile, the source of the stockpile, its estimated volume, material characterisation and its location onsite recorded. A material tacking plan is recommended.

The following procedures will be implemented by the remedial contractor:

- No stockpiles of soil or other materials shall be placed on footpaths or nature strips unless prior Council approval has been obtained;
- All stockpiles of soil or other materials shall be placed away from drainage lines gutters or stormwater pits or inlets;
- All stockpiles of soil or other materials likely to generate dust or odours shall be covered (where practical);
- All stockpiles of contaminated soil shall be placed on plastic sheeting to limit cross contamination of the underlying soils and stored in a secure area.
- Different materials shall be stockpiled separately, and separation shall be maintained.

¹³ Interim Construction Noise Guideline. Department of Environment & Climate Change NSW. DECC 2009/265. July 2009.

11.4 Site Access

All vehicle access to the site shall be stabilised to prevent the tracking of sediment onto the roads and footpaths. All materials must be removed from the roadway on a daily basis or as required. As a conservative approach, any personnel, equipment, plant or vehicles that enter an asbestos works zone must be appropriately decontaminated prior to exiting.

11.5 Excavation Pump-out

Any excavation pump out water shall be sampled by the environmental consultant for analysis for total suspended solid concentrations, turbidity, pH and the identified contaminants of concern prior to release to stormwater with appropriate documentation indicating that the discharged water is compliant with the ANZAST (2018) toxicity trigger values (TTVs) for the 95% Protection of Fresh Water Ecosystems. If not, appropriate waste disposal practices with a suitably licensed and experienced waste contractor.

Excavation pump out from trenches is not anticipated with the general remediation works given the general remedial plan of minimising ground disturbance and groundwater being undisturbed. Pump out following accumulation of surface water is the most likely scenario for water disposal.

11.6 Landscaping / Rehabilitation

All exposed soils shall be progressively stabilised as remedial works progresses.

11.7 Noise

Remediation work shall not give rise to 'offensive noise' as defined in the *POEO Act 1997*. All equipment and machinery associated with the remediation work shall be operated by the Contractor in accordance with *the POEO Act 1997* and its *Noise Control Regulations 2000*.

The remediation works shall comply with the NSW EPA's environmental noise guidance (DECC 2009 and EPA 2013) for the control of noise from construction sites which specifies that:

• For recommended standard hours, all feasible and reasonable work practices should be employed to meet the noise affected level, described by DECC (2009) as the L_{Aeq} (15 minute) rating background noise level (RBL) plus 10dB(A) (noise affected), and there should be no exceedance of the highly noise affected level of 75 dB(A).

All machinery and equipment used on site will be in good working order and with the fitted with appropriate silencers when necessary.

11.8 Vibration

The use of plant and machinery by the remedial contractor shall not cause vibrations to be felt or capable to be measured at any premises.

11.9 Air Quality

11.9.1 Air Monitoring

During the remedial works, perimeter air monitoring for asbestos will be conducted on each of the site boundaries on days when asbestos works are undertaken. Additional downwind monitoring locations may be included in the air monitoring program as required. Air monitoring should be completed independently of the licensed remediation contractor, under the supervision of a Licensed Asbestos Assessor.

Air monitoring will be conducted in accordance with the requirements of the National Occupational Health and Safety Commission (NOHSC) *Asbestos Code of Practice and Guidance Notes*, in particular the Guidance note for the estimation of airborne asbestos dust [NOHSC 3002:2005]

11.9.2 Dust Control

During the remediation of asbestos, dust levels will be monitored and minimised by using mist sprays as necessary. It is also recommended that asbestos air fibre monitoring be completed in the vicinity of asbestos removal works. Dust shall also be controlled by ensuring vehicles leave via the designated (stabilised) site access point.

Dust shall also be controlled by ensuring vehicles leave via the designated (stabilised) site access and all equipment have dust suppressors fitted by the remedial contractor.

During all remedial works, dust screens will be erected around the perimeter of the site by the remedial contractor. Where significant fugitive emissions are observed from specific site areas, these areas shall be wetted and/or covered by the remedial contractor.

Meteorological conditions will be monitored by the environmental consultant and remedial contractor. Remedial work will be stopped or modified where meteorological conditions are adverse (i.e., dry conditions and strong winds towards sensitive receptors).

Plant and vehicles should limit their speed when working within asbestos exclusion zones and only traverse wetted haul roads. Only essential vehicles are permitted to traverse the asbestos exclusion zone.

11.9.3 Odour / Volatile Emissions Control

No odours should be detectable at the site boundary and volatile emissions of other potentially volatile substances shall be controlled. Appropriate actions will be taken by the remedial contractor to reduce the odours, which may include: increasing the amount of covering of excavations / stockpiles; mist sprays; odour suppressants; and maintenance of equipment.

Records of volatile emissions and odours shall be kept by the remedial contractor. Equipment and machinery will be adequately maintained to minimise exhaust emissions. No materials shall be burnt on the site.

Volatile emissions may be encountered during remediation of the former transformer bunded area.

11.10 Transport of Material Offsite

Trucks will be loaded in a designated area. The Contractor shall ensure that there is no material tracked out onto the street and that the load is securely covered. In addition, all site vehicles must leave the site in a forward direction.

The Contractor shall also log truck movements and approximate volume, via registration number and consignment number (where applicable), into and out of the site.

All appropriate road rules shall be observed and state roads will be selected as far as practicable over local roads when deciding on the transport route to the off-site material disposal location.

Plant and vehicles should limit their speed when working within asbestos exclusion zones and only traverse wetted haul roads.

11.11 Hazardous Materials

Hazardous and / or intractable wastes arising from the remediation work shall be removed and disposed of in accordance with the requirements of NSW EPA, SafeWork NSW and the relevant regulations by the Contractor.

In particular, any hazardous wastes will be transported by an NSW EPA licensed transporter.

11.12 Disposal of Contaminated Soil

All soils will be classified, managed and disposed in accordance with the Waste Classification Guidelines (EPA 2014). Documentary evidence for all soil disposal shall be kept for inclusion in the Validation Report/s.

In addition, the *proximity principle*, under POEO Reg 2014, makes it an offence to transport waste generated in NSW by motor vehicle for disposal more than 150 kilometres from the place of generation, unless the waste is transported to one of the two nearest lawfully disposal facilities to the place of generation.

11.13 Imported Fill

Any materials imported on site by the remedial contractor to re-establish ground levels in remediated areas must be validated as environmentally suitable material (i.e. VENM and materials under an EPA exemption) in accordance with **Table 9.4**.

11.14 Groundwater

It is anticipated no groundwater dewatering will be required for the remediation works. If dewatering is required as part of the remediation works, a licence shall be applied for from the Department of Primary Industry (previously the NSW Office of Water) for approval to extract groundwater.

11.15 Site Signage and Contact Numbers

A sign/s shall be displayed adjacent to the site access point/s throughout the duration of the works with the contact details of the remedial contractor and project manager as provided and maintained by the remedial contractor.

11.16 Site Security

The remedial areas shall be secured against unauthorised access by means of an appropriate fence or barricade by the remedial contractor. All persons working in asbestos remedial areas must be inducted, have undertaken required training and don appropriate person protective equipment (PPE). The access gates will be locked at all times when remedial works are not occurring.

11.17 Community Consultation

Owners and / or occupants of adjacent premises and across the road from the site will be notified at least seven days prior to the commencement of preparation for the remediation works. As a minimum, the notification shall include the details of an appropriate contact person.

The client will be responsible for all community consultation prior to, during and after remediation, as required.

12. Conclusions and Recommendations

12.1 Conclusions

Subject to the successful implementation of the measures described in this RAP and the limitations in **Section 13**, it is concluded that the risks posed by contamination can be managed in such a way as to be adequately protective of human health and the environment, and that the site can be made suitable for use as an ongoing aged care facility with implementation of an ongoing long term EMP, consistent with a residential land use with garden/accessible soils (NEPC 2013).

The preferred remedial strategy is use of cap and cover of impacted fill materials in alignment with the final built form of engineered concrete slabs of buildings, permanent hardstand pavements of car parks and roadways and landscaping of garden and open space areas. Surplus fill and two identified hot spot areas will be classified and disposed to appropriately licenced landfill.

It is anticipated that the remediation will occur over two stages in alignment with the proposed redevelopment stages and final built form. Therefore, two validation signoffs will be required, one for each stage. A Site Audit Statement and a Site Audit Report will be issued to the consent authority at completion of remediation and validation of each stage.

12.2 Recommendations

It is recommended that the processes outlined in this RAP be implemented and that the following documentation be developed and implemented to ensure the risks and impacts during remediation works are controlled in an appropriate manner:

- Preparation of an Asbestos Management Plan (AMP) to manage identified asbestos impacts within fill materials across the site;
- Preparation of a Material Tracking Plan (MTP) to ensure all excavated material are identified
 and appropriately tracked. Documentation will be provided as part of the validation report
 to demonstrate where suitable material has been reused, unsuitable material has been
 disposed of from the site to and material imported from; and
- Preparation of an Acid Sulfate Soil Management Plan (ASSMP) to manage existing ASS/Potential ASS on site (if exposed).

Upon completion of the works, or within various specific areas, validation report(s) are required to be submitted by the Remediation Consultant to the Site Auditor for certification that the site, or relevant portion(s) are suitable for the proposed uses.

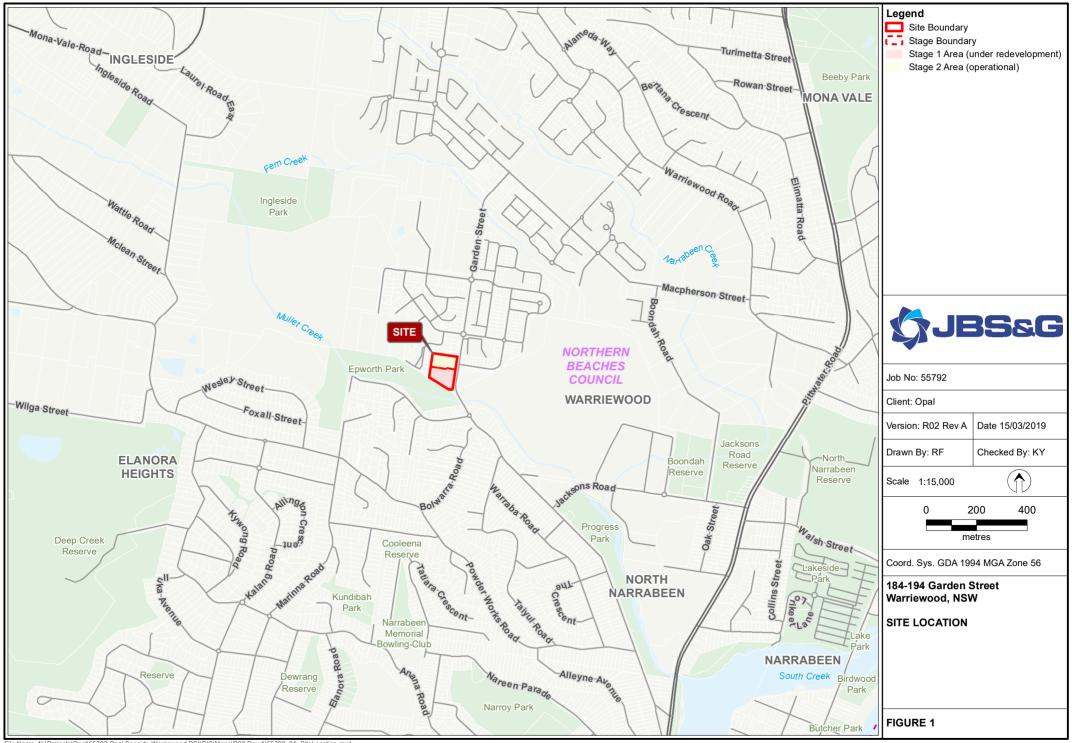
13. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief only, and has been based in part on information obtained from the client and other parties.

The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquires.

Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.


Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.

Figures

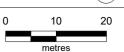
Legend

Site Boundary

Stage Boundary

Stage 1 Area (under redevelopment) Stage 2 Area (operational)

Job No: 55792

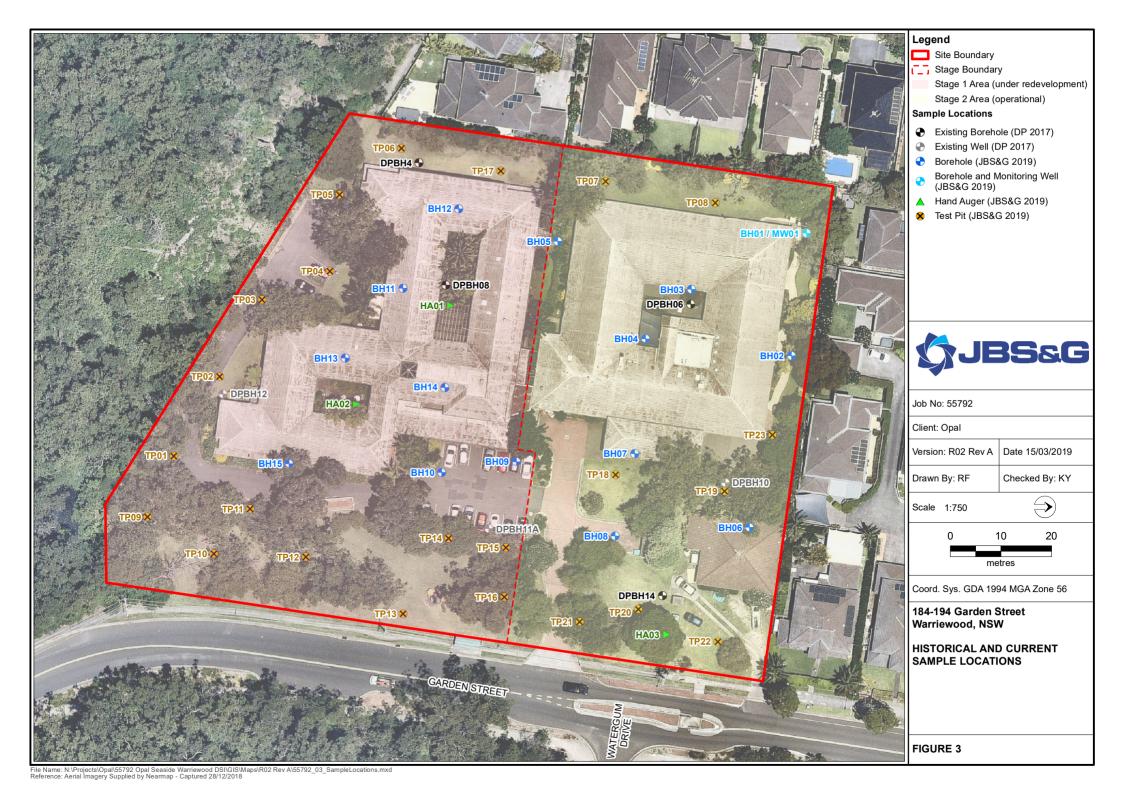

Client: Opal

Version: R01 Rev A Date 15/03/2019

Drawn By: RF

Checked By: KY

Scale 1:750

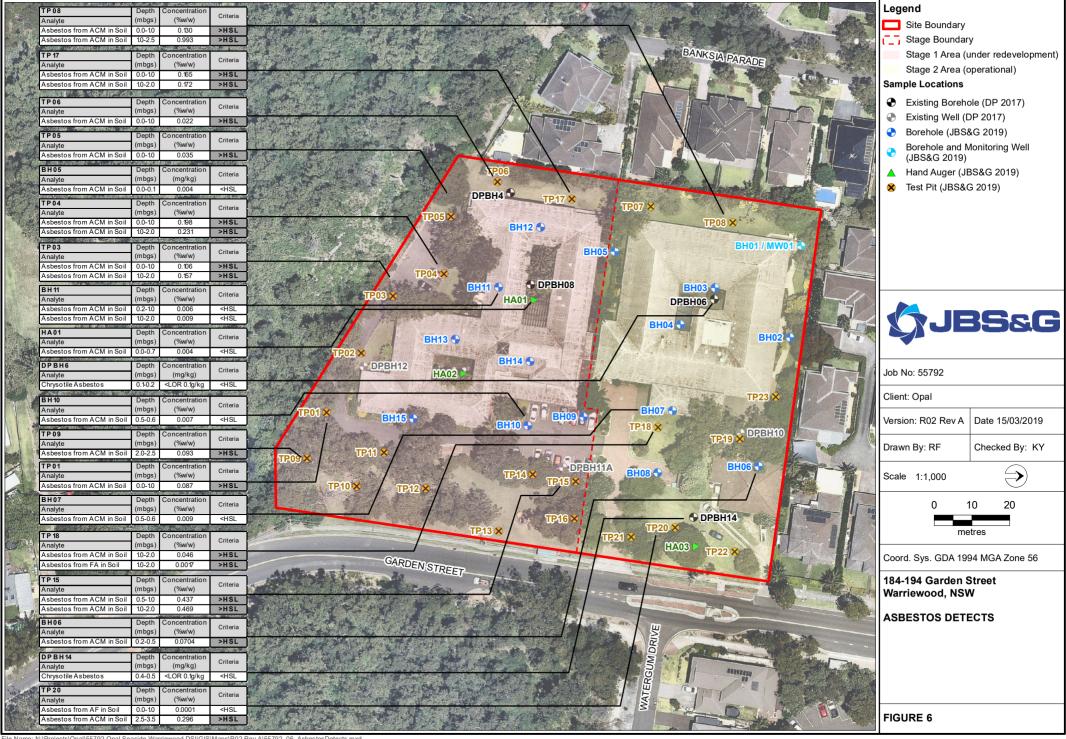


Coord. Sys. GDA 1994 MGA Zone 56

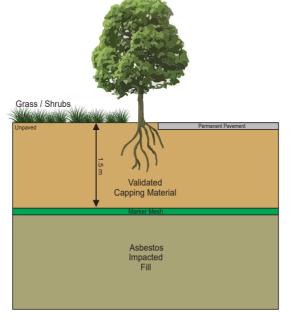
184-194 Garden Street Warriewood, NSW

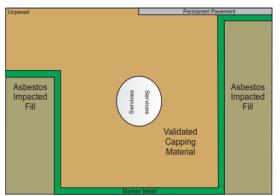
SITE LAYOUT

FIGURE 2



Checked By: KY


20



Job No: 55792

Client: Opal

Legend

Version: R02 Rev 0 Date 15/03/2019

Drawn By: RF Checked By: KY

184-194 Garden Street Warriewood, NSW

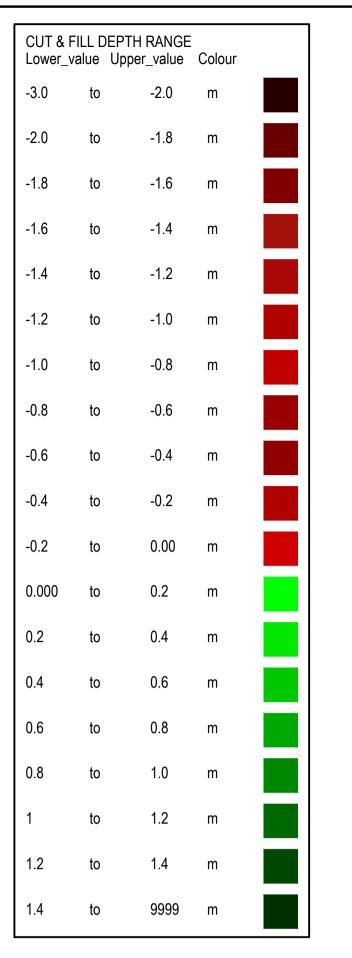
CONCEPTUAL CAPPING REQUIREMENTS

FIGURE 8

Validated

Capping Material


Asbestos


Impacted Fill

Grass / Shrubs

Appendix A Design Plans

STAGE 1 EARTHWORKS QUANTITIES TOTAL AREA (5418 m²) 1032 m³ 2509 m³ EXCESS OF FILL OVER CUT 1454 m³ ASSUMED DEPTH OF 100mm EXISTING STRIPPING. TOTAL VOLUME =542 m³

STAGE 2 EARTHWORKS QUANTITIES

TOTAL AREA (5279m²) 602 m³ EXCESS OF CUT OVER FILL | 288 m³ ASSUMED DEPTH OF 100mm EXISTING STRIPPING. TOTAL VOLUME = 528 m³

OVERALL **EARTHWORKS QUANTITIES TOTAL AREA (10697 m²)**

1922 m³ 3111 m³ EXCESS OF FILL OVER CUT 1166 m³ ASSUMED DEPTH OF 100mm EXISTING STRIPPING. TOTAL VOLUME = 1,070 m³

LEGEND

— - - — - - — EXISTING BOUNDARY CONTOURS BE

COMPACTION REQUIREMENTS

- 1. PREPARATION FOR PAVEMENT:
- CLEAR SITE, STRIP TOP-SOIL, CUT AND FILL AND PREPARATIONS OF SUB-GRADE SHALL BE AS DESCRIBED IN "SUBGRADE PREPARATION".
- 2. SUB-GRADE SHALL BE COMPACTED TO 98% STANDARD DRY DENSITY RATIO AT OPTIMUM MOISTURE CONTENT ± 2% IN ACCORDANCE WITH AS 1289 5.1.1., TOP 300MM TO 100% SDD.
- 3. LOWER BASE COURSE SHALL BE CONSTRUCTED FROM CRUSHED SANDSTONE COMPACTED TO 100% STANDARD DRY DENSITY RATIO AT OPTIMUM MOISTURE CONTENT ± 2% IN ACCORDANCE WITH AS 1289 5.1.1. OF THICKNESS NOTED ON DRAWINGS.
- 4. BASE COURSE SHALL BE CONSTRUCTED FROM FINE CRUSHED ROCK COMPACTED TO 100% STANDARD DRY DENSITY RATIO AT OPTIMUM MOISTURE CONTENT ± 2% IN ACCORDANCE WITH AS 1289 5.1.1 OF THICKNESS NOTED ON DRAWINGS.
- 5. WEARING SURFACE SHALL BE ASPHALTIC CONCRETE TO STANDARD SPECIFICATION, MINIMUM THICKNESS = 30mm U.N.O.
- 6. TESTING OF THE SUBGRADE AND PAVEMENT LAYERS SHALL BE CARRIED OUT BY APPROVED N.A.T.A. REGISTERED LABORATORY.

BULK EARTHWORKS GENERAL NOTES

REFER TO GEOTECHNICAL INVESTIGATION REPORT PREPARED BY DOUGLAS PARTNERS (REF No. 85505.00.R.001.REV 0 - 29 JULY 2016). FOR INFORMATION RELATING TO EXISTING GROUND CONDITIONS, SITE TREATMENT AND SUPERVISION.

THE LOCATIONS OF UNDERGROUND SERVICES SHOWN ON THESE DRAWINGS HAVE BEEN PLOTTED FROM SURVEY AND AUTHORITY INFORMATION. THE SERVICE INFORMATION HAS BEEN PREPARED ONLY TO SHOW THE APPROXIMATE POSITIONS OF ANY KNOWN SERVICES AND MAY NOT BE AS CONSTRUCTED OR ACCURATE.

HENRY AND HYMAS PTY LTD CANNOT GUARANTEE THAT THE SERVICES INFORMATION SHOWN ON THESE DRAWINGS, ACCURATELY INDICATES THE PRESENCE OR ABSENCE OF SERVICES OR THEIR LOCATION AND WILL ACCEPT NO LIABILITY FOR INACCURACIES IN THE SERVICES INFORMATION SHOWN ARISING FROM ANY CAUSE WHATSOEVER.

CONTRACTORS ARE TO CONTACT THE RELEVANT SERVICE AUTHORITY PRIOR TO COMMENCEMENT OF EXCAVATION. FOR COMMENCEMENT OF WORKS ON SITE, SEARCH RESULTS ARE TO BE

KEPT ON SITE AT ALL TIMES. ALL SERVICES ARE TO BE LOCATED AND CUT OFF PRIOR TO THE

COMMENCEMENT OF EXCAVATION AND FILLING OPERATIONS.

ALL TOP SOIL, ORGANIC MATTER AND FILL MATERIAL SHALL BE REMOVED FROM ALL AREAS UNDER BUILDING AND CARPARK LOCATIONS TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER. AREAS TO BE FULLY STRIPPED OF EXISTING FILL AND DARK BROWN BLACK UPPER ORGANIC ALLUVIUM.

UPON COMPLETION OF STRIPPING AND PRIOR TO PLACEMENT OF FILL THE ENTIRE SITE SHALL BE PROOF ROLLED WITH A MINIMUM OF 6 PASSES OF A VIBRATOR PADFOOT ROLLER OF NOT LESS THEN 9 TONNE MINIMUM DEAD WEIGHT OR AS SPECIFIED IN THE GEOTECHNICAL REPORT. ANY SOFT OR HEAVING AREAS SHALL BE REMOVED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO A MINIMUM DEPTH OF 500mm AND THEN BACKFILLED WITH APPROVED MATERIAL IN 200mm THICK LOOSE LAYERS COMPACTED TO 98% OF STANDARD MAX. DRY DENSITY AND TO WITHIN +/-2% OF STANDARD OPTIMUM MOISTURE CONTENT. APPROVED BACKFILL MATERIAL MAY BE CRUSHED ROCK OR SANDY LOAM WITH A PLASTICITY INDEX LESS THAN 15%.

IMPORTED FILLING:

THE CONTRACTOR WILL IMPORT SUITABLE FILL FROM AN EXTERNAL SOURCE. EXCAVATION MATERIALS MEETING THE REQUIRED SPECIFICATION MAY BE USED AS FILL. THIS MAY INCLUDE RECYCLED MATERIALS IF THEY ARE SUITABLY BLENDED/CONDITIONED TO MEET MATERIALS SPECIFICATIONS.

NOTES:

- PAVEMENT THICKNESS ALLOWANCE
- BUILDING STRUCTURAL SLAB ON GROUND. REFER TO STRUCTURAL DRAWINGS FOR SLAB THICKNESS.
- CARPARK PAVEMENT. REFER TO 16940_CC_C500 FOR PAVEMENT THICKNESS.
- LANDSCAPE AREA 225mm SETDOWN

REFER TO DRAWING 16940_CC_BE02 FOR TEMPORARY CUT AND FILL PLAN.

NOTE:

THE EARTHWORKS QUANTITIES DO NOT INCLUDE REMOVAL OF CONTAMINATED MATERIALS.

FOR CC/TENDER

SURVEY **INFORMATION** ISSUED FOR CC/TENDER JK IA 26.02.2019 ISSUED FOR CC/TENDER IA 08.02.2019 SURVEYED BY ISSUED FOR CC/TENDER IA 19.06.2018 Bee & Lethbridge Pty Ltd IA 28.02.2018 ISSUED FOR CC/TENDER DATUM: A.H.D. 01 ISSUED FOR DA RP 21.02.2017 ORIGIN OF LEVELS: S.S.M. 43671 RL 3.493 This drawing and design remains the property of Henry & Hymas and may not be copied in whole or in part without the prior written approval of Henry & Hymas. AMENDMENT DRAWN DESIGNED DATE REVISION AMENDMENT DRAWN DESIGNED DATE

OPAL AGED CARE

GROUP GSA PTY LTD

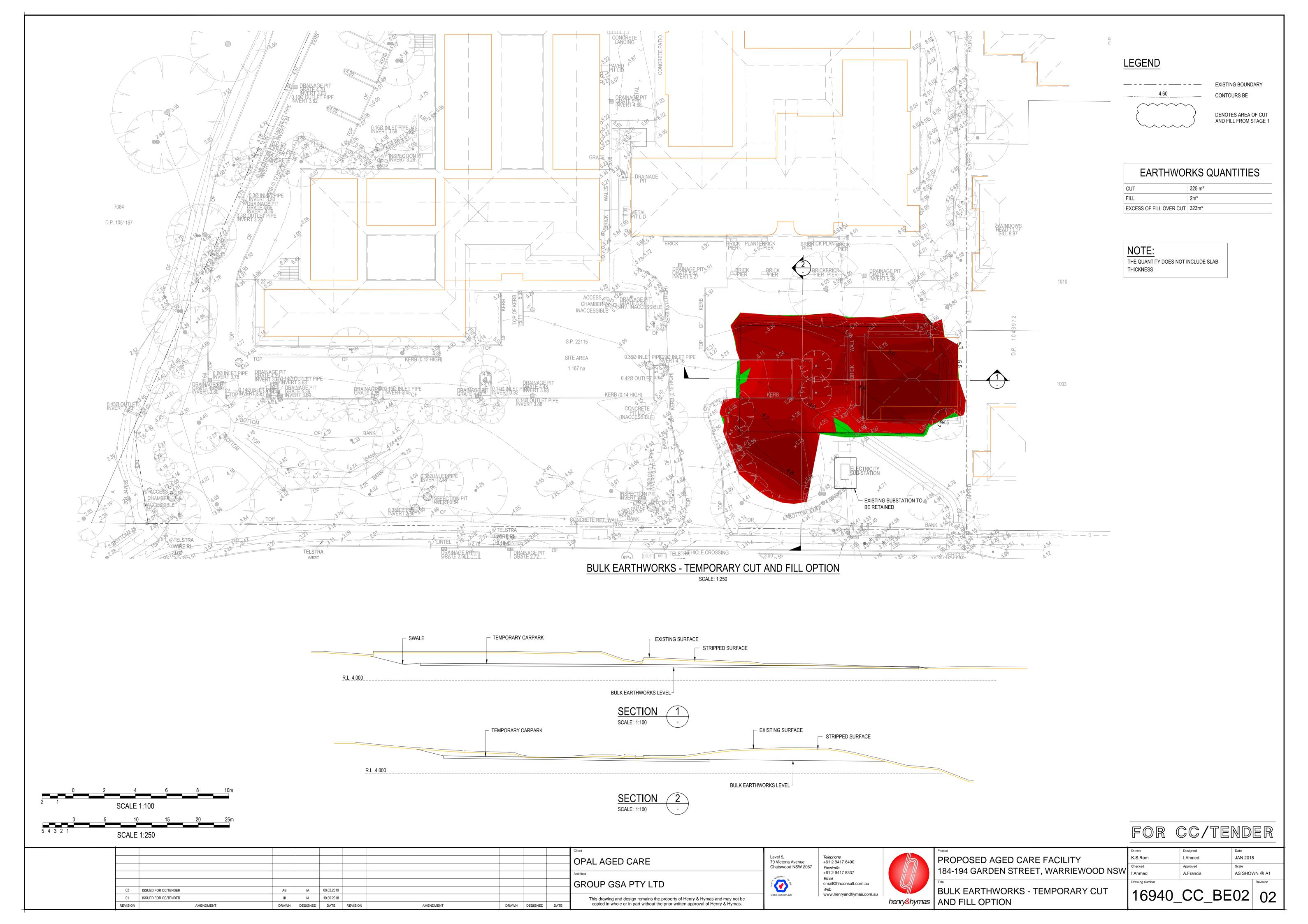
Chatswood NSW 2067 Omail (S)

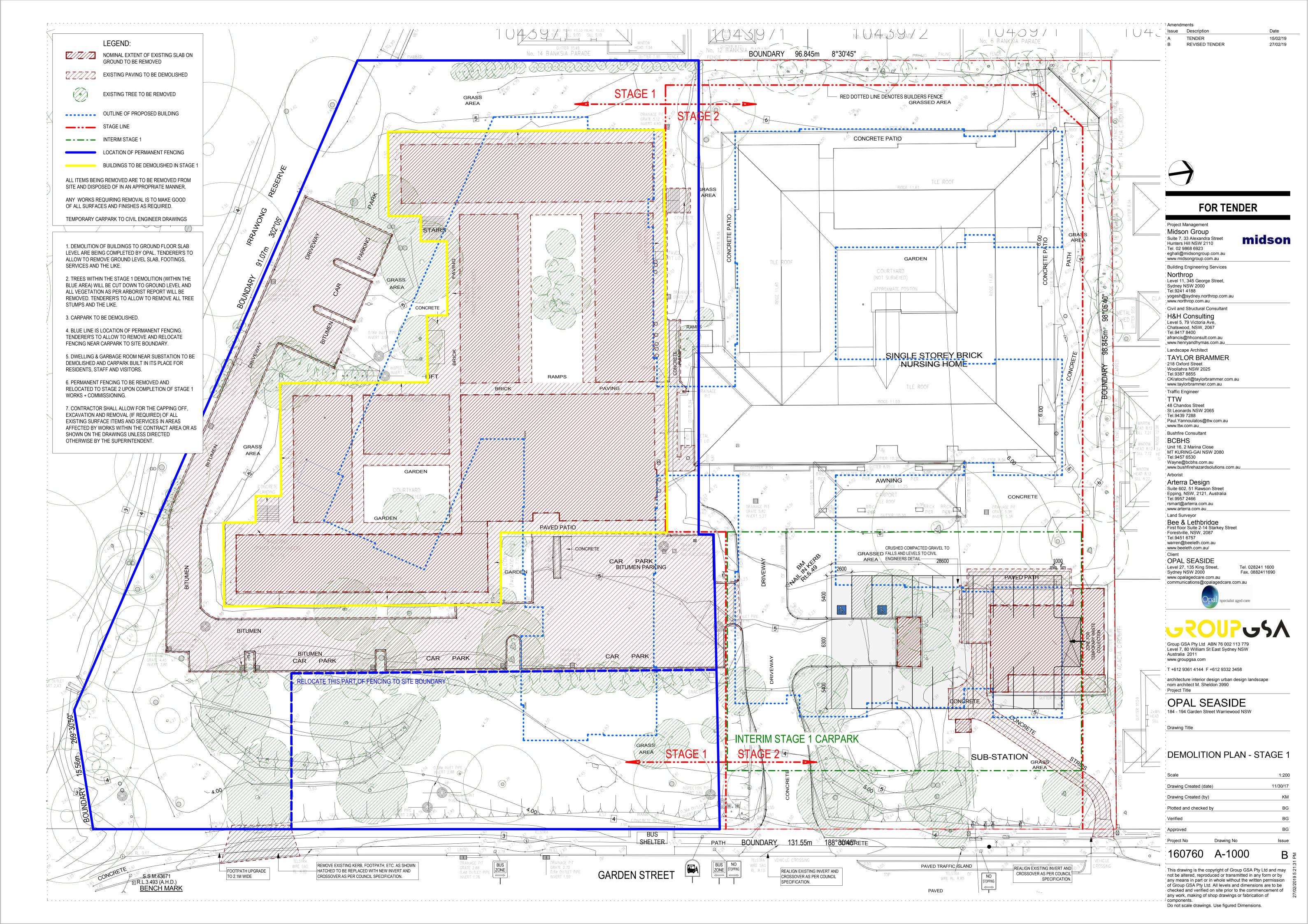
Level 5, 79 Victoria Avenue

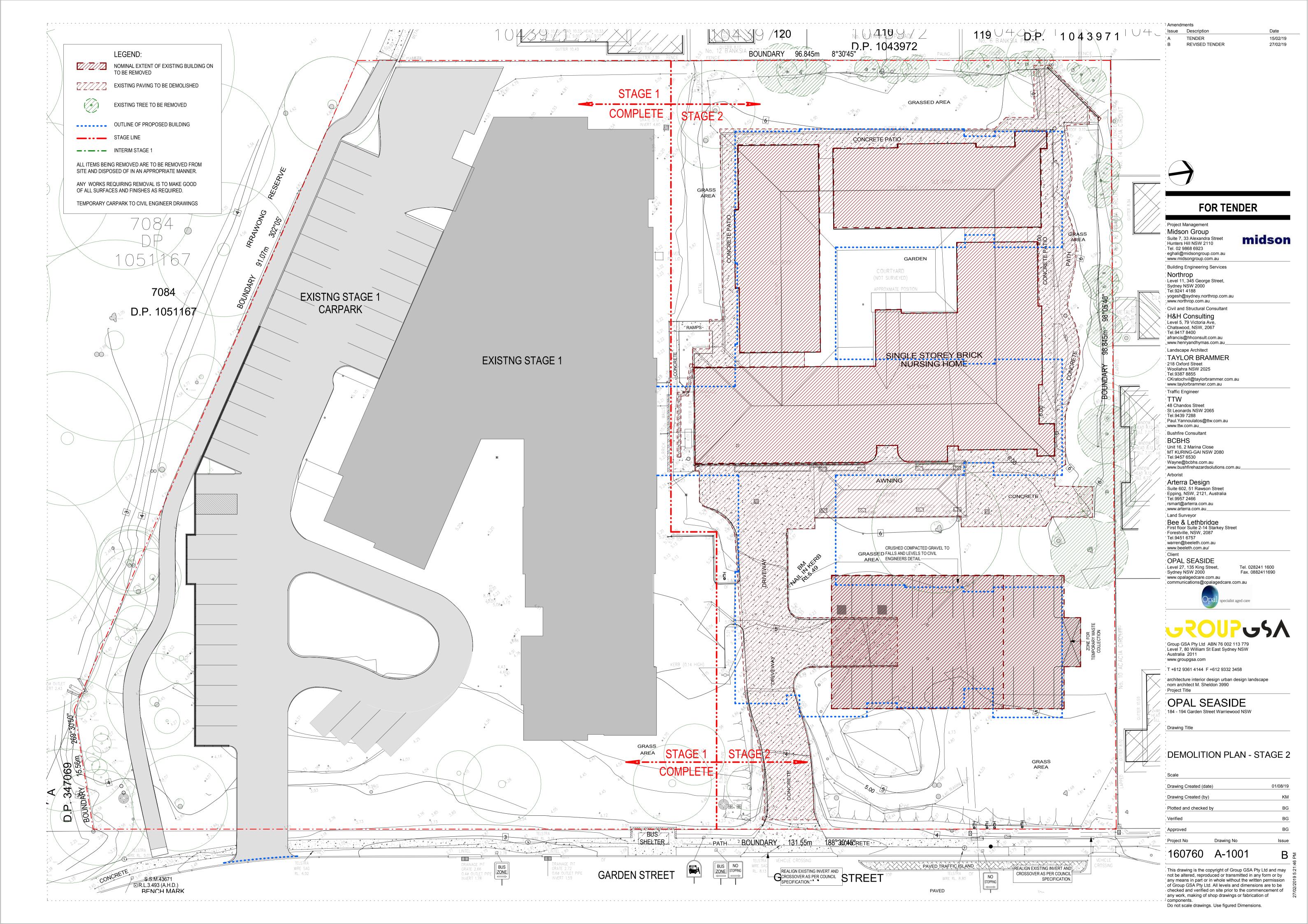
Telephone +61 2 9417 8400 Facsimile +61 2 9417 8337 email@hhconsult.com.au www.henryandhymas.com.au

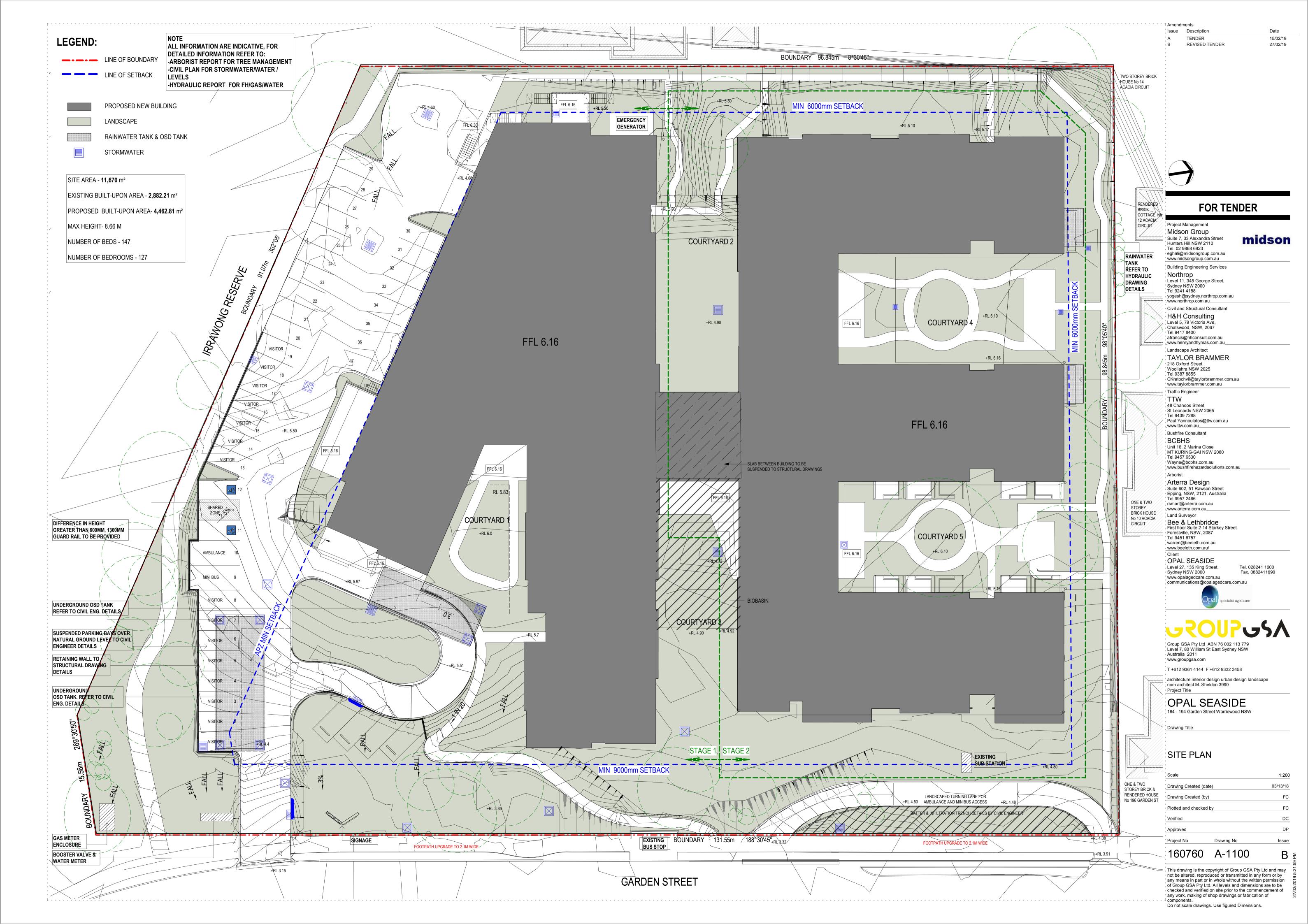
PROPOSED AGED CARE FACILITY 184-194 GARDEN STREET, WARRIEWOOD NSW

BULK EARTHWORKS - CUT AND FILL PLAN


I.Ahmed


A.Francis


16940_CC_BE01 05


JAN 2018

1:250 @ A1

Appendix B Summary Tables

Job number: 55792

Client: Opal Aged Care

Name: Opal Seaside Warriewood DSI/RAP

Health Screening Lev	vel Asbestos Concentration in Soil (% w/w)
Category	HSL A ⁽¹⁾
Bonded ACM in soils	0.01
FA and AF in soils	0.001

	Sample Information			Field <i>F</i>	Asbestos Qua	antification							Laboratory An	alysis								
Sample ID	Date	Lab Report Number	Approx. Volume of Soil (L)	Soil Mass (g)	Mass ACM (g)	Mass Asbestos ir ACM (g)*	Asbestos from ACM in soil (%w/w)	Sample Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	Asbestos from ACM in soil (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)	Asbestos from FA in soil (%w/w)	Mass AF (g)	Mass Asbestos in AF (g)	Asbestos from AF in soil (%w/w)	Asbestos from FA & AF in soil (%w/w)				
•	SI Asbestos Quantification Table																					
DP (2017) PSI DPBH4 1.9-2	6/06/2016		T T		N/A								No Asbestos Dete	ected								
DPBH6_0.1-0.2	15/06/2016				N/A						Chryo	stile Asbesto	s Detected, below		R of 0.1g/kg			,				
DPBH10_0.4-0.5	15/06/2016		N/A										No Asbestos Dete									
DPBH10_1.9-2.0	15/06/2016		N/A										No Asbestos Dete									
DPBH11A_1.9-2.0 DPBH12 0.9-1.0	15/06/2016 6/06/2016				N/A N/A								No Asbestos Dete									
DPBH12_1.9-2.0	6/06/2016				N/A			-	-	-	-	-	-	-	-	-	-	-				
DPBH14_0.4-0.5	6/06/2016				N/A						Chryo	stile Asbesto	s Detected, below	laboratory LO	R of 0.1g/kg			•				
DPBH14_1.0-1.45	6/06/2016				N/A			No Asbestos Detected														
JBS&G (2019) DSI	44 /02 /2040		10	16200		0.0	0.000	824 0 0 0 0 0 0 0 0 0 0														
BH01 0-1.0 BH01 1.0-2.0	11/02/2019 11/02/2019		10 10	16200 16200	0	0.0	0.000 0.000	824	-	-	-	-	-	-	-	-	-	-				
BH01 2.0-3.0	11/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH01 3.0-3.5	11/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH02 0-1.0	11/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	•	-	-				
BH02 1.0-2.0	11/02/2019		10	16200	0	0.0	0.000	735	0	0	0	0	0	0	0	0	0	0				
BH02 2.0-3.0 BH03 0-1.0	11/02/2019 11/02/2019		10 10	16200 16200	0	0.0	0.000 0.000	598	0	0	0	0	0	0	0	0	0	- 0				
BH03 1.0-2.0	11/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH03 2.0-3.0	11/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH04 0-1.0	11/02/2019		10	16200	0	0.0	0.000	619	0	0	0	0	0	0	0	0	0	0				
BH04 1.0-2.0	11/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH05 0-1.0 BH05 1.0-2.0	11/02/2019 11/02/2019		10	16200 16200	0	0.6 0.0	0.004 0.000	-	-	-	-	-	-	-	-	-	-	-				
BH06 0.2-0.5	11/02/2019		10	16200	22	3.3	0.020	699	6.155	0	0.0704	0	0	0	0	0	0	0				
BH07 0.2-1.0 (0.5- 0.6)	11/02/2019		10	16200	10.0	1.5	0.009	578	0	0	0	0	0	0	0	0	0	0				
BH08 0.2-1.0 (0.5- 0.6)	12/02/2019		10	16200	0	0.0	0.000	658	0	0	0	0	0	0	0	0	0	0				
BH08 1.0-1.5 (1.4- 1.5)	12/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH09 0.1-1.0	12/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH09 1.5-1.6 (1.0- 2.0)	12/02/2019		10	16200	0	0.0	0.000	582	0	0	0	0	0	0	0	0	0	0				
BH09 3.0-4.0	12/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH09 2.0-3.0 BH10 0.1-1.0 (0.5-	12/02/2019 12/02/2019		10	16200 16200	0 8	0.0 1.2	0.000 0.007	584	0	0	0	0	0	0	0	0	0	0				
0.6) BH10 1.0-1.8	12/02/2019		10	16200	0	0.0	0.000	644	0	0	0	0	0	0	0	0	0	0				
BH11 0.2-1.0	12/02/2019		10	16200	6.0	0.9	0.006	800	0	0	0	0	0	0	0	0	0	0				
BH11 1.0-2.0	12/02/2019		10	16200	10	1.5	0.009	-	-	-	-	-	-	-	-	-	-	-				
BH12 0.2-0.5	12/02/2019		10	16200	0	0.0	0.000	617	0	0	0	0	0	0	0	0	0	0				
BH13 0-1.0	12/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH13 1.0-2.0 BH13 1.5-1.6	12/02/2019 12/02/2019		10	16200 -	- 0	0.0	0.000	608	0	- 0	0	0	0	0	0	0	0	- 0				
BH13 2.0-3.0	12/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH15 0.2-1.0	12/02/2019		10	16200	0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
BH15_0.5-0.6	12/02/2019		-	-	-	-	-	632	0	0	0	0	0	0	0	0	0	0				
BH15 1.0-2.0 BH15_1.5-1.6	12/02/2019 12/02/2019	+	10	16200	0 -	0.0	0.000	- 681	- 0	- 0	-	- 0	- 0	- 0	- 0	- 0	- 0	- 0				
BH15_1.5-1.6 BH15_2.0-3.0	12/02/2019	+	10	16200	0	0.0	0.000	- 681	-	-	-	-	-	-	-	-	-	-				
TP01 0.0-1.0	12/02/2019		10	16200	94.0	14.1	0.087	892	0	0	0	0	0	0	0	0	0	0				
TP01 1.0-2.0	12/02/2019		10	16200	0.0	0.0	0.000	712	0	0	0	0	0	0	0	0	0	0				
TP01 2.0-3.0	12/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
TP02 0.0-1.0 TP02 1.0-2.0	12/02/2019 12/02/2019	+	10 10	16200 16200	0.0	0.0	0.000 0.000	712	0	- 0	0	0	0	0	- 0	0	0	0 -				
TP02 1.0-2.0	12/02/2019	+	10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-				
TP02 3.0-4.0	12/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-		-	-	-	-	-	-				
TP03 0.0-1.0	12/02/2019		10	16200	114.0	17.1	0.106	-	-	-	-	-	-	-	-	-	-	-				
TP03 1.0-2.0	12/02/2019		10	16200	170.0	25.5	0.157	726	0	0	0	0	0	0	0	0	0	0				
TP03 2.0-3.0 TP04 0.0-1.0	12/02/2019 12/02/2019	+	10 10	16200 16200	0.0 214.0	0.0 32.1	0.000 0.198	915	- 0	- 0	-	- 0	- 0	- 0	0	- 0	- 0	- 0				
11.04.0.0-1.0	12/02/2013		1 10	10200	214.0	32.1	0.130	313		U		. ·				U	U					

Table A: Asbestos Quantification/Identification Summary Table

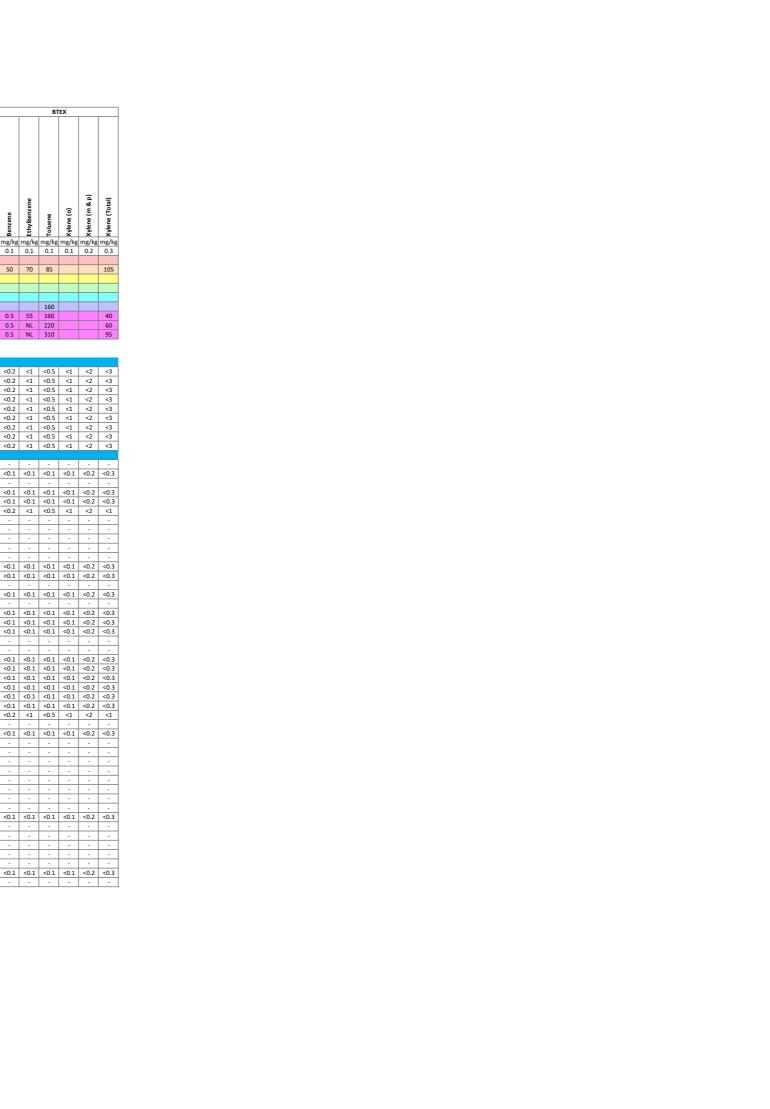
Job number: 55792

Client: Opal Aged Care

Name: Opal Seaside Warriewood DSI/RAP

e	Wallewood DSI/NAP											
Health Screening Level Asbestos Concentration in Soil (% w/w)												
	Category	HSL A (1)										
	Bonded ACM in soils	0.01										
	FA and AF in soils	0.001										

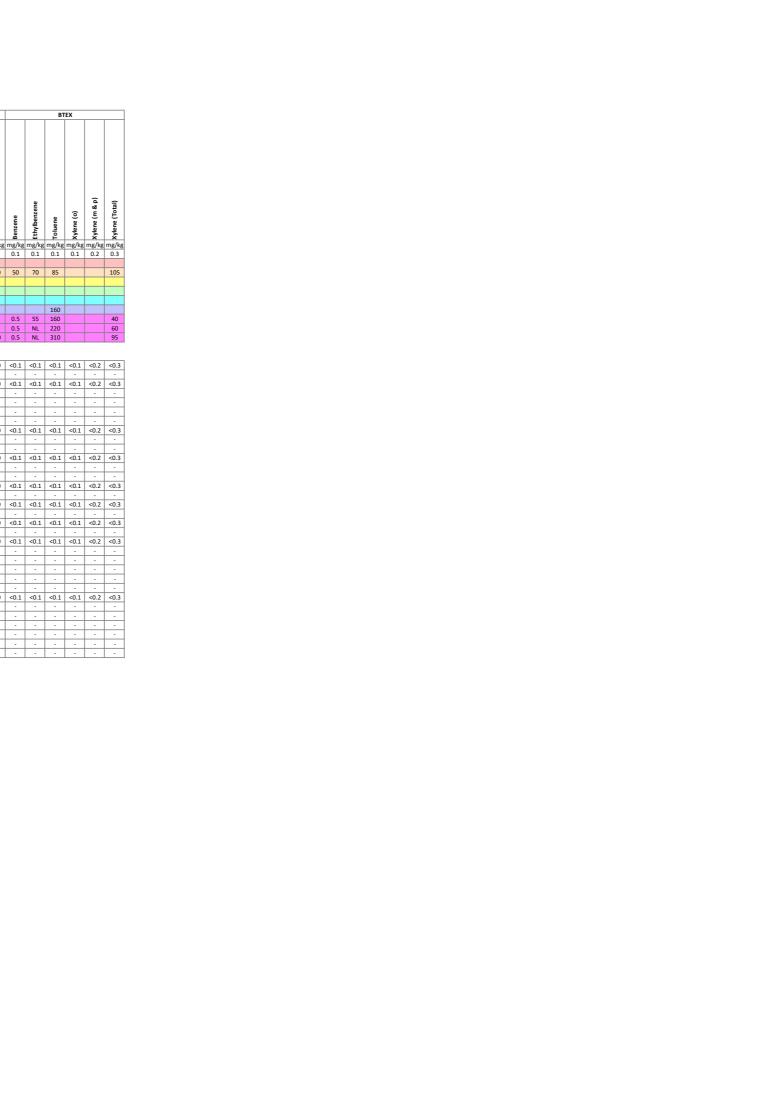
	Sample Information			Field <i>F</i>	Asbestos Qua	antification		<u>Laboratory Analysis</u>													
Sample ID	Date	Lab Report Number	r Approx. Volume of Soil (L)	Soil Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)*	Asbestos from ACM in soil (%w/w)	Sample Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	Asbestos from ACM in soil (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)	Asbestos from FA in soil (%w/w)	Mass AF (g)	Mass Asbestos in AF (g)	Asbestos from AF in soil (%w/w)	Asbestos from FA & AF in soil (%w/w)			
TP04 1.0-2.0	12/02/2019		10	16200	250.0	37.5	0.231	-	-	-	-	-	-	-	-	-	-	-			
TP05 0.0-1.0	12/02/2019		10	16200	38.0	5.7	0.035	•	-	-	-	-	-	-	-	-	-	-			
TP05 1.0-2.2	12/02/2019		10	16200	0.0	0.0	0.000	727	0	0	0	0	0	0	0	0	0	0			
TP06 0.0-1.0	12/02/2019		10	16200	24.0	3.6	0.022	-	-	-	-	-	-	-	-	-	-	-			
TP06 0.0-0.3	12/02/2019		- 10	- 16200	-	-	0.000	701	0	0	0	0	0	0	0	0	0	0			
TP06 1.0-1.9 TP07 0.0-1.0	12/02/2019 12/02/2019		10 10	16200	0.0	0.0	0.000	786	-	0	-	- 0	0	-	0	0	0	0			
TP07 1.0-2.0	12/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP07 2.0-3.0	12/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP07 3.0-4.0	12/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP08 0.0-1.0	12/02/2019		10	16200	140.0	21.0	0.130	-	-	-	-	-	-	-	-	-	-	-			
TP08 1.0-2.5	12/02/2019		10	16200	1072	160.8	0.993	714	0	0	0	0	0	0	0	0	0	0			
TP09 0.0-1.0	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP09 1.0-2.0	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP09 2.0-2.5	13/02/2019		10	16200	100.0	15.0	0.093	743	0	0	0	0	0	0	0	0	0	0			
TP10 0.0-1.0 TP10 1.0-2.0	13/02/2019 13/02/2019		10 10	16200 16200	0.0	0.0	0.000 0.000	696	-	-	-	-	-	-	0 -	-	- 0	-			
TP10 2.0-2.5	13/02/2019		10	16200	0.0	0.0	0.000		-	_	-	-	-	-	-	-	-	-			
TP11 0.0-1.4	13/02/2019		10	16200	0.0	0.0	0.000	700	0	0	0	0	0	0	0	0	0	0			
TP12 0.0-0.5	13/02/2019		10	16200	0.0	0.0	0.000	860	0	0	0	0	0	0	0	0	0	0			
TP12 0.5-1.0	13/02/2019		10	16200	0.0	0.0	0.000	•	-	-	-	-	-	-	-	-	-	-			
TP12 1.0-2.0	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP13 0.0-0.5	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP13 0.5-1.0	13/02/2019		10	16200	0.0	0.0	0.000	846	0	0	0	0	0	0	0	0	0	0			
TP13 1.0-2.0 TP14 0.0-0.5	13/02/2019		10 10	16200 16200	0.0	0.0	0.000 0.000	-	-	-	-	-	-	-	-	-	-	-			
TP14 0.0-0.5	13/02/2019 13/02/2019		10	16200	0.0	0.0	0.000	- 757	0	0	0	0	- 0	0	0	- 0	0	0			
TP14 1.0-2.1	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP14 2.1-3.0	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP14 3.0-4.3	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP15 0-0.3	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP15 0.3-0.5	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP15 0.5-1.0	13/02/2019		10	16200	472	70.8	0.437	-	-	-	-	-	-	-	-	-	-	-			
TP15 1.0-2.0 TP15 2.0-3.0	13/02/2019 13/02/2019		10 10	16200 16200	506.0 0.0	75.9 0.0	0.469 0.000	685	0	0	0	0	0	0	0	0	0	0			
TP16 0.0-1.0	13/02/2019		10	16200	0.0	0.0	0.000	743	0	0	0	0	0	- 0	0	0	0	0			
TP16 1.0-2.0	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP16 2.0-2.5	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP17 0.0-1.0	13/02/2019		10	16200	178.0	26.7	0.165	798	0	0	0	0	0	0	0	0	0	0			
TP17 1.0-2.0	13/02/2019		10	16200	186	27.9	0.172	-	-	-	-	-	-	-	-	-	-	-			
TP17 2.0-3.0	13/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP18 0.0-0.8	14/02/2019		10	16200	0.0	0.0	0.000	- 757	-	-	-	- 0.0422	- 0.0120	0.0017	-	-	-	- 0.0017			
TP18 0.8-2.0 TP18 2.0-2.5	14/02/2019 14/02/2019		10 10	16200 16200	50	7.5 0.0	0.046 0.000	757 -		0	- U	0.0433	0.0130	0.0017	0 -	0	0	0.0017			
TP19 0.0-1.0	14/02/2019		10	16200	0.0	0.0	0.000	789	0	0	0	0	0	0	0	0	0	0			
TP19 1.0-2.0	14/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP19 2.0-2.5	14/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP20 0.0-1.1	14/02/2019		10	16200	0.0	0.0	0.000	760	0	0	0	0	0	0	0.0137	0.0011	0.0001	0.0001			
TP20 1.1-2.0	14/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
TP20 2.0-2.5	14/02/2019		10	16200	0.0	0.0	0.000	789	0	0	0	0	0	0	0	0	0	0			
TP20 2.5-3.5	14/02/2019		10	16200	320.0	48.0	0.296	705	-	-	-	-	-	-	-	-	-	-			
TP21 0.0-0.5 TP21 0.5-0.8	14/02/2019 14/02/2019		10 10	16200 16200	0.0	0.0	0.000 0.000	705	0	0	U	U	0	0	0	0	0	0			
TP21 0.5-0.8	14/02/2019		10	16200	0.0	0.0	0.000	-	-		+ -	 	-	-	-	-	-	-			
TP22 0.0-1	14/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	 -	-	-	-	_	-	-			
TP23 0-0.5	14/02/2019		10	16200	0.0	0.0	0.000	-	-	-	-	-	-	-	-	-	-	-			
HA01 0-0.7	12/02/2019		10	16200	4.0	0.6	0.004	523	0	0	0	0	0	0	0	0	0	0			
HA02 0.2-1	15/02/2019		10	16200	0.0	0.0	0.000	516	0	0	0	0	0	0	0	0	0	0			


Note: **Bold** = positive detection / observation of ACM, AF/FA. (1) = HSL A criteria exceedance.

^{*} assumes a concentration of 15% asbestos in fragments of identified ACM (NEPC 2013)

		Me	etals &	Metallo	oids				TPHs	(NEPC	1999)				TRHs	(NEPC	2013)					ВТ	BTEX			
Arsenic (Total)	Cadmium	Chromium (Total)	Copper	read	Mercury (Inorganic)	Nickel	Zinc	C6-C9 Fraction	C10-C14 Fraction	5-C28 Fraction	229-C36 Fraction	C10-C36 Fraction (Total)	C10-C16 Fraction	C16-C34 Fraction	C34-C40 Fraction	C10-C40 Fraction (Total)	C10-C16 less Naphthalene (F2)	26-C10 Fraction	C6-C10 less BTEX (F1)	Benzene	Ethylbenzene	Toluene	Xylene (o)	Kylene (m & p)	Kylene (Total)	
¥	Š	ಕ	ಿ ವಿ	Ē	Š	ž	Zi	8	_ 5	C15	_ 2	5	Ň	Ň	Ň	Ň	Ň	9	9	a a	표	유	×	×	- -	
								mg/kg					^	Ā	Ā	Ā	Ā									
													^	Ā	Ā	Ā	Ā									
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
mg/kg 2	mg/kg	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg	mg/kg 1	mg/kg 1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
mg/kg 2	mg/kg	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg	mg/kg 1	mg/kg 1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 100	mg/kg 100	mg/kg	mg/kg 50	mg/kg	mg/kg 20	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg	mg/kg	mg/kg 0.3	
mg/kg 2	mg/kg	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg	mg/kg 1	mg/kg 1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 100	mg/kg 100	mg/kg	mg/kg 50	mg/kg	mg/kg 20	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg	mg/kg	mg/kg 0.3	
mg/kg 2	mg/kg	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg	mg/kg 1	mg/kg 1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 100 300	mg/kg 100	mg/kg 50	mg/kg 50	mg/kg	mg/kg 20	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg	mg/kg	mg/kg 0.3	
mg/kg 2	mg/kg	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg	mg/kg 1	mg/kg 1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 50	mg/kg 100 300	mg/kg 100 2800	mg/kg 50	mg/kg 50 120	mg/kg 20	mg/kg 20 180	mg/kg 0.1 50	mg/kg 0.1 70	mg/kg 0.1 85	mg/kg	mg/kg	mg/kg 0.3	
mg/kg 2 100	mg/kg 0.4	mg/kg 1 320	mg/kg 1 190	mg/kg 1 1100	mg/kg 0.1	mg/kg 1 170	mg/kg 1 400	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 50	mg/kg 100 300	mg/kg 100 2800	mg/kg 50	mg/kg 50	mg/kg 20	mg/kg 20 180	mg/kg 0.1 50 0.5	mg/kg 0.1	mg/kg 0.1 85 160	mg/kg	mg/kg	mg/kg 0.3 105	
mg/kg 2 100	mg/kg 0.4	mg/kg 1 320	mg/kg 1 190	mg/kg 1 1100	mg/kg 0.1	mg/kg 1 170	mg/kg 1 400	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 50	mg/kg 100 300	mg/kg 100 2800	mg/kg 50	mg/kg 50 120	mg/kg 20	mg/kg 20 180	mg/kg 0.1 50	mg/kg 0.1 70	mg/kg 0.1 85	mg/kg	mg/kg	mg/kg 0.3 105	

						Ars	ğ	ਤ	8	Le ₈	ž	ž	Zin	9	25	5	Č	-25	Š	Š	Š	Š	Š	9	9	Be	ᇤ	ᄚ	- -	ž	. ₹
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg
EQL						2	0.4	1	1	1	0.1	_	1	20	20	50	50	50	50	100	100	50	50	20	20	0.1	0.1	0.1	0.1	0.2	0.3
NEPC 2013 EIL, EILs /						100		320	190	1100		170	400																		
NEPM 2013 ESL Urba																				300	2800		120		180	50	70	85			105
NEPM 2013 HSL Asb			ial - HSL A																												
NEPM 2013 HSL Asb																															
NEPM 2013 Mgnt Lir		arkland and Public	Open Space, Coa	arse															1000	2500	10000			700							
NEPM 2013 Soil HIL						100	20	100	6000	300	40	400	7400															160			
NEPM 2013 Soil HSL																							110		45	0.5	55	160			40
NEPM 2013 Soil HSL																							240		70	0.5	NL	220			60
NEPM 2013 Soil HSL	A & HSL B for Vapo	ur Intrusion - Sand	1 2 to <4m																				440		110	0.5	NL	310			95
Field ID DP (2017) PSI	Depth / Parent	FIII / Naturai	Date	SampleCode	Report Number																										
DPBH4_1.9-2	1.9-2	Fill	6/06/2016	148124-1	DP (2017)	<4	4.1	11	110	38	<0.1	3	210	<25	∠E0	<100	<100	-	∠ E0	<100	<100	-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	<3
DPBH6_0.1-0.2	0.1-0.2	Fill	15/06/2016	148474-3	DP (2017)	6	<0.4	12	23	60	<0.1	5	73	<25	<50	<100	<100	-	<50	<100	<100	-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	<3
DPBH10_0.4-0.5	0.4-0.5	Fill	15/06/2016	148474-6	DP (2017)	<4	<0.4	8	8	25	<0.1	4	34	<25	<50	<100	<100	-	<50	<100	<100	-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	3
DPBH10_1.9-2.0	1.9-2.0	Fill	15/06/2016	148474-7	DP (2017)	<4	<0.4	8	4	6	<0.1	2	6	<25	<50	<100	_	-	<50	<100	<100	-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	<3
DPBH11A_1.9-2.0	1.9-2.0	Fill	15/06/2016	148474-8	DP (2017)	4	<0.4	13	9	12	<0.1	5	17	<25	<50	<100		-	<50	<100	-	-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	<3
DPBH11A_1.9-2.0 DPBH12_0.9-1.0	0.9-1.0	Fill	6/06/2016	148124-3	DP (2017)	<4	<0.4	3	24	19	<0.1	1	22	<25	<50	<100		-	<50	<100		-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	3
DPBH12_0.9-1.0	1.9-2.0	Fill	6/06/2016	148124-3	DP (2017)	7	<0.4	11	9	11	<0.1	5	27	<25	<50	<100		-	<50	<100		-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	3
DPBH12_1.9-2.0 DPBH14 0.4-0.5	0.4-0.5	Fill	6/06/2016	148124-4	DP (2017) DP (2017)	<4	<0.4	13	17	19	<0.1		28	<25	<50	<100		-	<50	<100		-	<50	<25	<25	<0.2	<1	<0.5	<1	<2	3
DPBH14_0.4-0.5 DPBH14_1.0-1.45	1.0-1.45	Fill	6/06/2016	148124-5	DP (2017)	6	0.4	29	740	55	<0.1	_	96	<25	<50	<100		H	<50	120	<100	H	<50	<25	<25	<0.2	<1	<0.5	<1	<2	3
BS&G (2019) DSI	1.0-1.43	FIII	0/00/2010	140124-0	DF (2017)	U	0.4	23	740	33	\U.1	- 22	30	123	\JU	<100	130		\30	120	~100		\JU	123	\2J	~U.Z	~1	<0.3	1	~2	\3
BH01 0-1M	0-1.0	Fill	11/02/2019	S19-Fe14849	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02 0.1-0.2	0.1-0.2	Fill	11/02/2019	S19-Fe14850	640095	4.6	<0.4	9.6	15	170	<0.1	<5	170	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH02 1-2	1.0-2.0	Fill	11/02/2019	S19-Fe14851	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03 0-0.1	0-0.1	Fill	11/02/2019	S19-Fe14852	640095	4.3	<0.4	8.2	6.8	18	<0.1	<5	23	<20	<20	67	66	133	<50	120	<100	120	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
QC20181102	BH03 0-0.1	Fill	11/02/2019	S19-Fe14861	640095	4.3	<0.4	7.7	8.2	20	<0.1	<5	26	<20	<20	130	81	211	<50	190	<100	190	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
QA20181102	BH03 0-0.1	Fill	11/02/2019	211362-1	211362	7	<0.4	13	12	21	<0.1	4	47	<25	<50	<100		-	<50	<100	<100	<50	<50	<25	<25	<0.2	<1	<0.5	<1	<2	<1
BH03 0-1	0-1.0	Fill	11/02/2019	S19-Fe14854	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH03 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14868	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03 2.5-2.6	2.5-2.6	Sandy Clay	11/02/2019	S19-Fe14853	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04 0-1	0-1.0	Fill	11/02/2019	S19-Fe14855	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05 0-1.0	0-1.0	Fill	11/02/2019	S19-Fe14856	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH05 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14857	640095	4.8	<0.4	7.1	6.2	100	<0.1	<5	40	<20	<20	<50	56	56	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH05 1.5-1.6	1.5-1.6	Fill	11/02/2019	S19-Fe14858	640095	11	<0.4	8	15	35	<0.1	<5	96	<20	<20	51	63	114	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH06 0.2-0.5	0.2-0.5	Fill	11/02/2019	S19-Fe14860	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07 0.2-0.3	0.2-0.3	Fill	11/02/2019	S19-Fe14859	640095	4.2	<0.4	7.3	<5	22	<0.1	<5	21	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH07 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14896	640095	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	
BH08_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16941	640386	3.7	<0.4	24	19	38	<0.1	15	46	<20	130	460	<50	590	270	340	<100	610	270	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH09_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16942	640386	12	<0.4	21	7.4	14	<0.1	8.4	28	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH10_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16943	640386	6.7	<0.4	31	56	30	<0.1	23	49	<20	<20	110	120	230	<50	190	<100	190	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH10_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16944	640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10_1.9-2.0	1.9-2.0	Clayey Sand	12/02/2019	S19-Fe16945	640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH11_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16946	640386	6.7	0.9	19	28	100	<0.1	8.6	120	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	< 0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH12_0.2-0.5	0.2-0.5	Fill	12/02/2019	S19-Fe16947	640386	3.9	<0.4	11	17	66	<0.1	<5	66	<20	<20	<50	<50	<50	<50	<100	<100		<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH13_1.5-1.6	1.5-0.6	Fill	12/02/2019	S19-Fe16948	640386	7.4	<0.4	15	6.1	36	<0.1	<5	27	<20	<20	<50	<50	<50	<50	<100	<100		<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH15_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16951	640386	8.9	<0.4	15	6.2	25	<0.1	<5	54	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
BH15_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16952	642747	12	<0.4	14	7.6	15	<0.1	<5	70	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
QC20190212	BH15_1.5-1.6	Fill	12/02/2019	S19-Fe16949	640386	6	<0.4	16	12	28	<01	<5	37	<20	<20	<50	<50	<50	<50	<100			<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
QA20190212	BH15_1.5-1.6	Fill	12/02/2019	211475-1	211475	4	<0.4	13	110	28	<0.1	3	27	<25	<50	<100		-	<50	<100			<50	<25	<25	<0.2	<1	<0.5	<1	<2	<1
HA01_0.0-0.7	0-0.7	Fill	12/02/2019	S19-Fe16940	640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HA01_0.6-0.7	0.6-0.7	Fill	12/02/2019	S19-Fe16939	640386	2.9	0.6	25	23	810	<0.1	_	56	<20	<20	<50		<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1			<0.3
HA02 0.2-1AQ	0.2-1.0	Fill	15/02/2019	S19-Fe22270	641092	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HA02 0.5-0.6	0.5-0.6	Fill	15/02/2019	S19-Fe22268	641092	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HA03 0.1-0.2	0.1-0.2	Fill	15/02/2019	S19-Fe34162	642427		-	_	-		-	_	-	-	-		-	-	-		-	-	-	-	-		-		-		$\overline{}$
TP01 0-1	0-1.0	Fill	12/02/2019	S19-Fe16953	640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP01 1-2 AQ	1.0-2.0	Fill	12/02/2019	S19-Fe16954	640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP02 0-1 AQ	0-1.0	Fill	12/02/2019	S19-Fe16955	640386	-	-	<u> </u>	<u> </u>	-	-	-	-	<u> </u>	-	-	-	<u> </u>		-	HH		-		-	-		-	-	-	<u> </u>
TP03 1-2 AQ TP04	1.0-2.0	Fill	12/02/2019	S19-Fe16956 S19-Fe27877	640386 641755	<u> </u>	<u> </u>	<u> </u>	-	-	ļ.	-	-	H	<u> </u>	<u> </u>	-	ĿΉ	<u> </u>	-	ΗŤΗ	<u> </u>	-	-	-	-	ĿΉ	<u> </u>	-	<u> </u>	-
TP04 0.2-0.3	Fragment 0.2-0.3	Fill	21/02/2019	S19-Fe2/8// S19-Fe16957	641755	E 2	<0.4	14		110	<0.1	_	160	-20	<20	- 50	<50		<50	<100	<100	<100	<50	-20	$\overline{}$		<0.1	<0.1	<0.1	<0.2	<0.3
		Fill	12/02/2019			5.3	<0.4	14	35	110	<0.1	5.3	160	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP04 0-1 AQ TP05 1-2 AO	0-1.0	Fill	12/02/2019	S19-Fe16958	640386	-	<u> </u>	-	-	-	H-	-	-	H-	<u> </u>	-	-	-	H	-	-	H	-	-	-	-	<u> </u>	-	-	-	<u> </u>
TP05 1-2 AQ TP06 0.0-0.3	1.0-2.0 0-0.3	Fill	12/02/2019 12/02/2019	S19-Fe16959 S19-Fe17024	640386 640386	-	<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>	H	<u> </u>	-	<u> </u>	H	H	-	\vdash	H	-	-	-	-	H	-	-	-	
TP06 0.0-0.3	1.0-1.9	Fill	12/02/2019		640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP07 0-1 AQ	0-1.0	Fill	12/02/2019	S19-Fe17026 S19-Fe16961	640386	H	<u> </u>	-	-	-	H .	-	-		-	-	-		\vdash	-		-	-	-	-	-	\vdash	-	-	-	
TP07 0-1 AQ TP07 3.4-3.5	3.4-3.5	Fill	12/02/2019	S19-Fe16961 S19-Fe16962	640386	7.6	<0.4	8.1	10	36	<0.1	6.2	180	<20	<20	<50	<50	<50	<50	<100		<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP08	5.4-3.5 Fragment	Fill	21/02/2019	S19-Fe16962 S19-Fe27878	641755	7.0	\U.4	0.1	- 10	30	\U.1	0.2	190	-20	-20	- >30	-30	-30	-30	-100	-100	×100	-30	-20	\2U	~U.1	~U.1	~U.1	~U.1	\U.Z	-0.3
11'00	rraginent	rIII	51/05/5019	212-167/0/8	041/33								_							-			-		-	-				_	


Table B : Summary of Soil Analytical ResultsProject Number: 55792 Project Name: Opal Seaside Warriewood DSI

EQL
NEPC 2013 EIL, EILs Aged Sediment
NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil
NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL
NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL
NEPM 2013 Mgnt Limits - Residential, Parkland and Public Open Space, Coarse
NEPM 2013 Soil HIL A
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 1 to <2m
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 2 to <4m

		Me	tals &	Metallo	ids				TPHs	(NEPC	1999)				TRHs	(NEPC	2013)					ВТ	EX		
Arsenic (Total)	Cadmium	Chromium (Total)	Copper	read	Mercury (Inorganic)	Nickel	Zinc	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Total)	>C10-C16 Fraction	>C16-C34 Fraction	>C34-C40 Fraction	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	C6-C10 less BTEX (F1)	Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene (Total)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2	0.4	1	1	1	0.1	1	1	20	20	50	50	50	50	100	100	50	50	20	20	0.1	0.1	0.1	0.1	0.2	0.3
100		320	190	1100		170	400																		
														300	2800		120		180	50	70	85			105
													1000	2500	10000			700							
100	20	100	6000	300	40	400	7400															160			
																	110		45 70	0.5	55	160			40
																	240 440		110	0.5	NL NL	220 310			60 95
																	440		110	υ.5	INL	210			35

Field ID	Depth / Parent	Fill / Natural	Date	SampleCode	Report Number																										
TP08 0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16963	640386	6.9	<0.4	6.2	<5	7.6	<0.1	<5	5.5	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP08 1-2.5 AQ	1.0-2.5	Fill	12/02/2019	S19-Fe16964	640386	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP09 1-1.1	1.0-1.1	Fill	13/02/2019	S19-Fe17979	640517	13	<0.4	15	12	17	0.2	<5	31	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP09 2_2.5AQ	2.0-2.5	Fill	13/02/2019	S19-Fe17984	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP10 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe17990	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP11 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe17994	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP12 0_0.1	0-0.1	Fill	13/02/2019	S19-Fe17995	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP12 0.6_0.7	0.6-0.7	Fill	13/02/2019	S19-Fe17996	640517	12	<0.4	10	<5	5.5	0.1	<5	12	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP12 0_0.5AQ	0-0.5	Fill	13/02/2019	S19-Fe17999	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP13 0.5_1AQ	0.5-1.0	Fill	13/02/2019	S19-Fe18006	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP14 0.5_0.6	0.5-0.6	Fill	13/02/2019	S19-Fe18009	640517	7.2	<0.4	11	8.2	39	0.1	<5	48	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP14 0.5_1AQ	0.5-1	Fill	13/02/2019	S19-Fe18015	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP15 1_2AQ	1.0-2.0	Fill	13/02/2019	S19-Fe18028	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP16 0.1_0.2	0.1-0.2	Fill	13/02/2019	S19-Fe18030	640517	14	<0.4	12	5.6	5.5	<0.1	<5	16	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP16 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe18033	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP16 2.3_2.4	2.3-2.4	Fill	13/02/2019	S19-Fe18032	640517	19	2.5	20	21	320	0.1	6.8	1600	<20	<20	<50	<50	<50	<50	10	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP17 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe18040	640517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- I
TP17 1_1.1	1.0-1.1	Fill	13/02/2019	S19-Fe18037	640517	3.4	<0.4	9.7	11	45	<0.1	5.3	100	<20	<20	160	<50	160	<50	210	<100	210	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP18	Fragment	Fill	21/02/2019	S19-Fe27879	641755	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
TP18 1.2-1.3	1.2-1.3	Fill	14/02/2019	S19-Fe18842	640636	3.9	<0.4	11	8.4	71	<0.1	<5	74	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP18 1-2 AQ	1.0-2.0	Fill	14/02/2019	S19-Fe18843	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
TP19 0-1 AQ	0-1.0	Fill	14/02/2019	S19-Fe18844	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP20 0-1 AQ	0-1.0	Fill	14/02/2019	S19-Fe18845	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
TP20 2-2.5 AQ	2.0-2.5	Fill	14/02/2019	S19-Fe18846	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP21 0-0.5 AQ	0-0.5	Fill	14/02/2019	S19-Fe18847	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP22 0.1-0.2	0.1-0.2	Fill	14/02/2019	S19-Fe18848	640636	5.6	<0.4	<5	<5	8.3	<0.1	<5	12	<20	<20	<50	<50	<50	<50	<100	<100	<100	<50	<20	<20	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3
TP22 0.4-1 AQ	0.4-1.0	Fill	14/02/2019	S19-Fe18849	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QA1402	TP22 0.4-1 AQ	Fill	TP22 0.4-1 AQ	S19-Fe18852	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC1402	TP22 0.4-1 AQ	Fill	TP22 0.4-1 AQ	211532-1	211532	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP22 1.2-1.3	1.2-1.3	Clayey Sand	14/02/2019	M19-Ma00602	643150	<2	<0.4	5.1	<5	<5	<0.1	<5	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP23 0.6-0.7	0.6-0.7	Fill	14/02/2019	S19-Fe18851	640636	2.2	<0.4	<5	8.6	7.9	<0.1	<5	28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP23 0-0.3 AQ	0-0.3	Fill	14/02/2019	S19-Fe18850	640636	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

											Polyc	cyclic /	Aroma	tic Hy	droca	arbons																										Org	ganoch	lorine P	esticide	s													
Acenaphthene	Acenaphthylene	Acenaphunylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ (lower bound)*	Benzo(a)pyrene TEQ (medium bound)*	Benzo(a)pyrene TEQ (upper bound)*		Benzo(b,j)fluoranthene	Benzo(b,j+k)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene		Chrysene	Dibenz(a, h)anthracene	Carcinogenic PAHs as B(a)P TEQ	Fluoranthene	Fluorene	Naphthalene			Phenanthrene	PAHs (Total)	Pyrene	Total Positive PAHs	4 A P. P.	4,4-00	Aldrin	Aldrin + Dieldrin (Sum of Total)		alpha-BHC	alpha-Chlordane	,	Deta-BHC	Chlordane	aaa		DDT	Dieldrin	DDT+DDE+DDD (Sum of Total)		delta-BHC	Endosulfan alpha	Endosulfan beta		Endosulfan sulphate	Endrin		gamma-Chlordane	Endrin aldehyde	Endrin ketone		Heptachlor	Heptachlor Epoxide	Lindane	Methoxychlor	Wetnoxychor	нсв
mg/kg	g mg/l	/kg mg	/kg m	g/kg n	ng/kg	mg/kg	mg/k	g mg/	/kg m	g/kg m	ng/kg		kg mg/				mg/kg	mg/k	g mg/l	g mg	/kg mg	/kg m	g/kg n	ng/kg	mg/kg	mg/k			mg/kg	mg/	kg r		mg/k			mg/kg		g m	g/kg	mg/kg	mg/kg	mg	g/kg		mg/	kg	mg/kg	mg/k	g m	g/kg	mg/kg	mg/	kg mg	g/kg	mg/kg	mg/kg	mg/	/kg n	ng/kg
0.1	0.1	.1 0	.1	0.1	0.05	0.5	0.5	0.5	5 (0.5		0.1	0.5	5 0).1	0.1	0.1	0.1	0.1	0.	1 0	.1 (0.1	0.5	0.1		0.	05	0.05	0.0	5	0.05		0.	.05	0.1	0.05	0	.05	0.05	0.05	0.	.05	0.05	0.0	5	0.05	0.05	5		0.05	0.0	5 0	0.05	0.05	0.05	0.0	05	0.1
																				17	0																	1	.80																				
					0.7			Т											Т	Т							Т							Т																									
						3	3	3									3							300						6						50					240							10						6			30	00	
							-													3										-						-																							
			_												_					N			_								_															_				_								_	
																					_																																						

						Y Y	¥	Be Be	Be B	B B	- B	B B	ੂ ਤੌ	<u> </u>	<u> </u>	2	ž ž	Ě	<u> </u>	1 5	4,	퐡	죝	윤	윤	<u>ਤ</u> <u>ਦ</u>	8	8	1 2	8 :	i de	<u>i</u>				Ĕ	E E	<u> </u>	<u>₹</u> '	5'	ž	유
EOI								ng/kg mg/kg mg/ 0.1 0.05 0.5										kg mg/kg mg				mg/kg 0.05			mg/kg i	mg/kg mg/l 0.05 0.1	rg mg/kg		mg/kg		/kg mg 05 0.0			/kg mg/kg 05 0.05		mg/kg		mg/kg 0.05			0.05 mg/kg r	mg/kg mg/kg
NEPC 2013 EIL, EILs /	Aged Sediment					0.1 0.1 0	0.1	0.1 0.05 0.5	0.5	0.5 0.5	1	0.1 0.3	0.1	0.1 0).1 0.1		170	0.1	J.5 U.1		0.05	0.05	0.05	0.05		0.05 0.1	0.03	180	0.05	0.05 0.	05 0.0	5 0.0	J5 U.	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.1
NEPM 2013 ESL Urba	•	Public Open Spa	ice. Coarse Soil					0.7								_	170											100														
NEPM 2013 HSL Asb																																										
NEPM 2013 HSL Asb	estos in Soil - FA &	AF - HSL																																								
NEPM 2013 Mgnt Lir		Parkland and Pul	blic Open Space, Co	arse																																						
NEPM 2013 Soil HIL								3	3	3					3			3	00				6			50				240				10	4			6			300	20
NEPM 2013 Soil HSL							_						+				3	+		+	\rightarrow	\rightarrow													4							
NEPM 2013 Soil HSL NEPM 2013 Soil HSL							-		_		+		+				NL	+	_	+	\rightarrow	\rightarrow			-								_		4	-			+	-	\vdash	
INEPINI 2013 SOII HSL	A & HOL B IOI VAPO	our micrusion - 3	anu 2 to <4m														NL																		4							
Field ID	Depth / Parent	Fill / Natura	I Date	SampleCode	Report Number	7																																				
DP (2017) PSI	, ,	,																																								
DPBH4_1.9-2	1.9-2	Fill	6/06/2016	148124-1	DP (2017)	<0.1 <0.1 <	<0.1	<0.1 <0.05 <0.	5 <0.5	<0.5 -	<0.2	<0.1 -	<0.1	<0.1 <1	.21 <0.1	<0.1	<1 <0.	1 <0.1	- <0.1	1 0	<0.1	<0.1	-	<0.1	<0.1	<0.1 -	<0.1	<0.1	<0.1	- <	0.1 <0	1 <0	.1 <	0.1 <0.1	<0.1	<0.1	-	<0.1	<0.1	- '	<0.1	<0.1 -
DPBH6_0.1-0.2	0.1-0.2	Fill	15/06/2016	148474-3	DP (2017)			0.2 0.3 <0.				0.2 -									<0.1	<0.1	-			<0.1 -	<0.1	<0.1			0.1 <0			0.1 <0.1			-	<0.1		- '		<0.1 -
DPBH10_0.4-0.5	0.4-0.5	Fill	15/06/2016	148474-6	DP (2017)			<0.1 0.06 <0.			_	<0.1 -		<0.1 <1					- 0.1		<0.1	<0.1	-	<0.1	<0.1	<0.1 -	<0.1	<0.1	<0.1	- <	0.1 <0	_	_	0.1 <0.1	<0.1	<0.1	-	<0.1	<0.1	<u></u> '	+ +	<0.1 -
DPBH10_1.9-2.0	1.9-2.0	Fill	15/06/2016	148474-7	DP (2017)		-	<0.1 <0.05 <0.	-	-		<0.1 -	\rightarrow	<0.1 <1			-		_	0	-	-	-	-	-		-	-	-	-	- -	<u> </u>			-	-	-	-	<u> - /</u>	<u> </u>		
DPBH11A_1.9-2.0 DPBH12_0.9-1.0	1.9-2.0 0.9-1.0	Fill	15/06/2016 6/06/2016	148474-8 148124-3	DP (2017) DP (2017)		-	<0.1 <0.05 <0. <0.1 <0.05 <0.	-		_	<0.1 -	-	<0.1 <1				1 <0.1	- <0.1			<0.1	-		-0.1		<0.1			-	21 -0	1 -0	1 4			<0.1	- 1		<0.1	+	<0.1	
DPBH12_0.9-1.0 DPBH12_1.9-2.0	1.9-2.0	Fill	6/06/2016	148124-3	DP (2017)			<0.1 0.05 0.				0.1 -		<0.1 <1			<1 <0.			0	<0.1	<0.1		<0.1		<0.1 -	- <0.1	<0.1			0.1 <0			0.1 <0.1	<0.1	<0.1		<0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ $=$ $ =$	- 40.1	(0.1
DPBH12_1.9-2.0 DPBH14 0.4-0.5	0.4-0.5	Fill	6/06/2016	148124-4	DP (2017)			<0.1 0.1 <0.				<0.1 -		<0.1 <1				1 <0.1			<0.1	<0.1	-		_	<0.1 -	<0.1				0.1 <0	_	_	0.1 <0.1	<0.1	<0.1	-	<0.1	<0.1	T-		<0.1
DPBH14_1.0-1.45	1.0-1.45	Fill	6/06/2016	148124-6	DP (2017)			<0.1 <0.05 <0.				<0.1 -		<0.1 <1					_	0	- 1	-	- 1	-	- 1		-	-		- "	- 1	<u> </u>			+	1 -	-	T -	T-	Τ-	-	
JBS&G (2019) DSI																																										
BH01 0-1M	0-1.0	Fill	11/02/2019	S19-Fe14849	640095		-	- - -	-		-		-	-		-		-		-	-	-	-	-	-		-	-	- 1	-	-	-			-	-	-	-	- '	- '		-
BH02 0.1-0.2	0.1-0.2	Fill	11/02/2019	S19-Fe14850	640095	<0.5 <0.5 <	<0.5	<0.5 <0.5 <0.	5 0.6	1.2 <0.5	5 -	<0.5 <0.	5 <0.5	<0.5 <1.2	21#10 <0.5	<0.5 ·	<0.5 <0.	5 <0.5 <	0.5 <0.5	<u> </u>	-	-	-	-	-		-	-	-	-	- -		-		<u> </u>	-	-	-	<u> - '</u>	<u> </u>		-
BH02 1-2	1.0-2.0	Fill	11/02/2019	S19-Fe14851	640095		-				-			-	#10 -					-	-	-	-	-	-		-	-	-	-			-			-	-	-	<u> </u>	<u> </u>		
BH03 0-0.1 QC20181102	0-0.1 BH03 0-0.1	Fill	11/02/2019 11/02/2019	S19-Fe14852 S19-Fe14861	640095 640095			<0.5 <0.5 <0. 2.1 2 2.8										5 <0.5 <					<0.05	<0.05		<0.05 <0.1 <0.05 <0.1		<0.05 <0.05				05 <0. 05 <0.		.05 <0.05 .05 <0.05			<0.05 <0.05					<1
QC20181102 QA20181102	BH03 0-0.1	Fill	11/02/2019	211362-1	211362			<0.1 0.06 <0.												0.06			<0.05					<0.03				1 <0			<0.1			<0.05		<0.03		<1
BH03 0-1	0-1.0	Fill	11/02/2019	S19-Fe14854	640095																-	-	-	-	-		- 40.1	-	- 1	- 1		- 10	-		- 10.1		-		- 10.1	- 10.1		-
BH03 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14868	640095			<0.5 <0.5 <0.							21#10 <0.5	<0.5	- <0.	5 <0.5 <	0.5 <0.5	- 	- 1	-	- 1	- 1	-		-	-	- 1	-			-		-	-	- 1	-	T-	<u> </u>	<u> </u>	
BH03 2.5-2.6	2.5-2.6	Sandy Clay	11/02/2019	S19-Fe14853	640095		-		-		-		- 1	-		- 1				- 1	-	-	- 1	-	-		-	-	-	-		٠.			-	-	- 1	-	1 -	T- 7	-	-
BH04 0-1	0-1.0	Fill	11/02/2019	S19-Fe14855	640095		-		-		-		-	-		-		-		-	-	-	-	-	-		-	-	-	-	- -	-			-	-	-	-	- /	- /	-	-
BH05 0-1.0	0-1.0	Fill	11/02/2019	S19-Fe14856	640095		-		-		-		-	-		-		-		-	<0.05	<0.05	0.07	<0.05	-	<0.05 <0.1	1 <0.05	<0.05	0.07	<0.05 <0	.05 <0.)5 <0.	05 <0	.05 <0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1
BH05 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14857	640095		-		-		ļ -		-	-			<0.5 -		- -		-	-	-	-	-	- -	<u> </u>	-	-	-	- -	-			 -	-	-	-	<u> - '</u>	<u></u> '		
BH05 1.5-1.6	1.5-1.6	Fill	11/02/2019	S19-Fe14858	640095 640095	<0.5 <0.5 <	<0.5	<0.5 <0.5 <0.	5 0.6	1.2 <0.5	5 -	<0.5 <0.	5 <0.5	<0.5 <1.2	21"10 <0.5	<0.5	<0.5 <0.	5 <0.5 <	0.5 <0.5	-	-	-	-	-	-		-	-		-	- -	-			+-	-	-	-	<u> </u>	<u> </u>	+-+	
BH06 0.2-0.5 BH07 0.2-0.3	0.2-0.5	Fill	11/02/2019	S19-Fe14860 S19-Fe14859	640095	-05 -05 -1	-0.5	<0.5 <0.5 <0.	- 06	12 <0.0		-05 -0	0 -	-0 E .4.	24#10 <0.5	-0.5	-05 -0	5 <0.5 <	0 5 0 5	+ - +	-	-	-	-	-		+ -	-	-	-	-	—	_	-	+-	 	-	-	+-	<u> </u>	+	
BH07 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14896	640095						_			- <1.				- 0.5		-	-	-			-		+ -	-		-					+-	<u> </u>	-		+-	+-	+ - +	
BH08_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16941	640386	<0.5 <0.5 <	<0.5 <	<0.5 <0.5 <0.	5 0.6	1.2 <0.5	5 -	<0.5 <0.	5 <0.5	<0.5 <1.3	21#10 0.6	<0.5	<0.5 <0.	5 <0.5 1	1.3 0.7	1 - 1	<0.05	<0.05	<0.05	<0.05		<0.05 <0.1	1 <0.05	<0.05	<0.05	<0.05 <0	.05 <0.	05 <0.	05 <0	.05 <0.05	, + -	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1
BH09_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16942	640386		-	<0.5 <0.5 <0.	-		-	<0.5 <0.					<0.5 <0.		0.5 <0.5		-	-	-	-	-		-	-	- 1	-		<u> </u>			T -	-	- 1	-	1 -	T-	- 1	-
BH10_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16943	640386	<0.5 <0.5 <	<0.5	1.2 1.6 2.2	2 2.4	2.7 1	-			<0.5 2.4			<0.5 1.5	<0.5	15 3	-	-	-	-	-	-		-	-	-	-	- -	-			-	-	-	-	- 7	- 7	-	-
BH10_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16944	640386		-		-		-		-	-		-		-		-	-	-	-	-	-		-	-	-	-						-	-	-	- '	- '	-	-
BH10_1.9-2.0	1.9-2.0	Clayey Sand		S19-Fe16945	640386		-		-		ļ-		-	-	- -		- -				-	-	-	-	-	- -	<u> </u>	-	-	-	- -				 -	-	-	-	<u> - '</u>	<u></u> '		
BH11_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16946	640386		-		-		+-		-	-			<0.5 -				-	-	-	-	-		-	-	-	-	- -				-	-	-	-	<u> - /</u>	<u> </u>		<u> </u>
BH12_0.2-0.5 BH13 1.5-1.6	0.2-0.5 1.5-0.6	Fill	12/02/2019	S19-Fe16947 S19-Fe16948	640386 640386	- -	-	- - -	+-		+ -		+ -	-	- -		<0.5 -	+ - +	- -	+ - +	-	-	-	-	-	- -	+ -	-		-	- -	-			+-	<u> </u>	 -	-	+	-	+-+	
BH15_1.5-1.6 BH15_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16948	640386	05 05 0	-0.5	<0.5 <0.5 <0.	5 06	12 (0)	+ -	<0.5	5 <0.5	<0.5 <1.	21#10 <0.5			5 <0.5 <	05 <05	+ - +	-	-		-	-		+ -	-	-	-					+-	-		H :	$+$ \pm \pm	$+$ \pm $ \pm$ $ -$	+ - +	<u> </u>
BH15 1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16952	642747		-		- 0.0		-		- 10.3	- 1		- 10.5		- 1		1 -	-	-	-	-	-		-	-	-	-	. -			. -	+-	-	-	-	+-	T-	-	
QC20190212	BH15_1.5-1.6	Fill	12/02/2019	S19-Fe16949	640386	1 - 1 - 1	-	- - -	1 -		1 -	- -	- 1	-	- -	1-1	- -	1 - 1		1 - 1	-	-	-	-	-		-	-	- 1	-	- -	٠.		- -	1 -	-	- 1	-	T-	Η-	-	-
QA20190212	BH15_1.5-1.6	Fill	12/02/2019	211475-1	211475		-		-		-	- -	1 - 1	-	- -	1 - 1	- -		- -	1 - 1	-	-	- 1	-	-	- -	1 -	-	- 1	-	- -				1-	-	<u> </u>	<u> </u>	<u> </u>			
HA01_0.0-0.7	0-0.7	Fill	12/02/2019	S19-Fe16940	640386		-		-		-		-	-		-		-		-	-	-	-	-	-		-	-	-	-						-	-	-			-	-
HA01_0.6-0.7	0.6-0.7	Fill	12/02/2019	S19-Fe16939	640386		-		-		-		- 1	-		- 1	<0.5 -			- T	-]	-	- T	- [-		-	-	- T	-	- -					-	-	-	<u> </u>	<u> </u>	<u> </u>	
HA02 0.2-1AQ	0.2-1.0	Fill	15/02/2019	S19-Fe22270	641092	- -	-	- - -	-	1 - 1 -	-		-	-	- -	1 - 1	- -	1 - 1	- -	1 - 1	-	-	-	-	-	- -	+ -	-	-	-	- -	-	\perp	- -	+-	-	-	-	<u>'</u>	<u>'</u>	+	-
HA02 0.5-0.6	0.5-0.6	Fill	15/02/2019	S19-Fe22268	641092	+ - + - +	-	- - -	+-	+ - -	+-		+ -	-	- -	+-+	- -	+ -	- -	+ - +	-	-		-	-	- -	+ -	-	-	-	- -		-	- -	+-	-	-	 -	+	- '	+-+	-
HA03 0.1-0.2 TP01 0-1	0.1-0.2 0-1.0	Fill	15/02/2019 12/02/2019	S19-Fe34162 S19-Fe16953	642427 640386	+ + + +	-	- - -	+-	1 - 1 -	+-		+ -	-	- -	+ +	- -	+ - +	- -	+ - +	-	-	-	-	- -	- -	+ -	-	 	-	- -	+		- -	+-	 	+ -	 -	+	+	+-+	- + -
TP01 1-2 AQ	1.0-2.0	Fill	12/02/2019	S19-Fe16953 S19-Fe16954	640386	+ - + - + -	-		+ -	+ - + -	+ -		+ - 1	-	- -	+ - +		+ - +		+ - +	-	-	-	-	-		+ -	-	+ - +	-	-	+	-		+-	+ -	+ - 1	+ -	+	+-	+	+
TP02 0-1 AQ	0-1.0	Fill	12/02/2019	S19-Fe16955	640386		- +		1 -	1.1.	+ -	 	-	-	. -	1 - 1	- -	1 - 1	- -	+ - +	- +	- +	- 1	- +	-	. .	-	-	-	-	.				+-	-	-	-	+-	-	-	1
TP03 1-2 AQ	1.0-2.0	Fill	1.7.	S19-Fe16956	640386	1 - 1 - 1	-	- - -	-		1 -	- -	- 1	-	- -	1 - 1	- -	1 - 1	- -	1 - 1	-	-	- 1	-	-	- -	1 -	-	-	-	- -	٠.			1 -	-	- 1	-	T-	Γ-		-
TP04	Fragment	Fill	21/02/2019	S19-Fe27877	641755		-				-	- -	1 - 1	- 1	- -	1 - 1	- 1 -		- -		- 1	-	- 1	- 1	-	- -	1 -	-		- 1	-				1 -	-		<u> </u>				
TP04 0.2-0.3	0.2-0.3	Fill	12/02/2019	S19-Fe16957	640386	<0.5 <0.5 <	<0.5	<0.5 <0.5 <0.	5 0.6	1.2 <0.5	5 -	<0.5 <0.	5 0.5	<0.5 0.60	0.8	<0.5	<0.5 <0.	5 <0.5 2	2.3 1	-	<0.05	<0.05	<0.05	<0.05	-	<0.05 <0.1	1 <0.05	<0.05	<0.05	<0.05 <0	.05 <0.	05 <0.	05 <0	.05 <0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1
TP04 0-1 AQ	0-1.0	Fill	12/02/2019	S19-Fe16958	640386		-		-		-		-	-							-	-	-	-	-		-	-	- 1	-	-			- -	-	-	- 1	-				-
TP05 1-2 AQ	1.0-2.0	Fill	12/02/2019	S19-Fe16959	640386	- -	-	- - -	<u> </u>	- -	<u> </u>		-	-	- -	1-1	- -	-	- -	1 - 1	-	-	-	-	-	- -	<u> </u>	-	-	-	- -		\perp	- -	-	-	-	-	<u> </u>	<u> - '</u>	+	
TP06 0.0-0.3	0-0.3	Fill	12/02/2019	S19-Fe17024	640386	- -	-	- - -	+-		+-		+ -	-	- -	+-+	- -	+ - +	- -	+ - +	-	-	-	-	-	- -	+ -	-	-	-	- -	-		- -	+-	-	-	-	 -	<u> - '</u>	+-+	-
TP06 1-1.9 AQ TP07 0-1 AQ	1.0-1.9 0-1.0	Fill	12/02/2019 12/02/2019	S19-Fe17026 S19-Fe16961	640386 640386	+ - + - +	-		+-	+ - + -	+-		+ -	-	- -	+ - +	- -	+ - +	- -	+ - +	- +	- +		-	-	- -	+ -	-	+ - +	-	- -	+		- -	+-	 -	-	-	+	-	+-+	-
TP07 0-1 AQ TP07 3.4-3.5	3.4-3.5	Fill	12/02/2019	S19-Fe16961 S19-Fe16962	640386	<0.5 <0.5	<0.5	<0.5 <0.5 <0.	5 0.6	12 -05	5 -	<0.5 <0	5 <0.5	<0.5	21#10 <0 5	<0.5	<0.5	5 <0.5	0.5 <0.5	+ - +	- +	- +	- +	- +	-		+ -	<u> </u>	 	-	_				+-	 	+ -	+	+		+ + +	-
TP08	Fragment	Fill	21/02/2019		641755													- 10.5		7 -	-	-	-	-	-		-	-	-	-	.			. -	+-	-	-	-	+-	-	+	
											_		_						_																							

							Р	Polycyclic	Δromati	c Hydrocarbo	nns							1									Or	ganochlorine	Pesticide	•									
							т.		7.1.0		J5													1				Barrociniorinic			1	\top					\Box		
\$JBS&G	Acenaphthene	Acenaphthylene Anthracene	Benz(a) anthracene	Benzo(a)pyrene Benzo(a)pyrene TEQ (lower bound)*	Benzo(a)pyrene TEQ (medium bound)*	Benzo(a)pyrene TEQ (upper bound)*	Benzo(b,j)fluoranthene	Benzo(b,j+k)fluoranthene Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene Dibenz(a,h)anthracene	Carcinogenic PAHs as B(a)P TEQ	Fluoranthene	Fluorene	Naphthalene	indenola, x, s -c, ujp yr ene Phenanthrene	PAHs (Total)	Pyrene Total Positive PAHs	4,4-DDE	Aldrin	Aldrin + Dieldrin (Sum of Total)	alpha-BHC	alpha-Chlordane hota-RHC	Chlordane	aaa	DDT	Dieldrin	DDT+DDE+DDD (Sum of Total)	delta-BHC Endosulfan alpha	Endosulfan beta	Endosulfan sulphate	Endrin	gamma-Chlordane	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor Epoxide	Lindane	Methoxychlor	Toxaphene
	mg/kg m	ng/kg mg/	/kg mg/kg m	ng/kg mg/	kg mg/kg	mg/kg m	ng/kg mg	g/kg mg/l	kg mg/kg	mg/kg mg/	kg mg/k	g mg/kg	mg/kg r	ng/kg mg	/kg mg/kg	mg/kg r	mg/kg mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg n	ig/kg mg	/kg mg/k	mg/kg	mg/kg	mg/kg	mg/kg m	g/kg mg/	g mg/	kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg mg	/kg mg/kg
EQL	0.1	0.1 0.:	.1 0.1 0	0.05 0.5	0.5	0.5	0.5	0.1	0.5	0.1 0.1	0.1	0.1	-	-	.1 0.1	0.5	0.1	0.05	0.05	0.05	0.05	0.0	0.1	0.05		0.05	0.05	.05 0.0	0.0	5 0.05	0.05	\perp	0.05	0.05	0.05	0.05	0.05	0.05 0	1 1
NEPC 2013 EIL, EILs Aged Sediment				0.7										170											180														
NEPM 2013 ESL Urban Residential and Public Open Space, Coarse Soil NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Residential - HSL A				0.7																																			
NEPM 2013 HSL Asbestos in Soil - Bonded ACM - Residential - HSL A NEPM 2013 HSL Asbestos in Soil - FA & AF - HSL																																							
NEPM 2013 Mgnt Limits - Residential, Parkland and Public Open Space, Coarse																																							
NEPM 2013 Soil HIL A				2	3	3					3					300				6			50				240				10				6			300	20
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 0 to <1m				3	3	3					3			3		300				U			30				240				10				U			300	20
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 1 to <2m														NL NL																									
NEPM 2013 Soil HSL A & HSL B for Vapour Intrusion - Sand 2 to <4m	+	_	_		_	 	-	_	+		+	+		NL	_	 		+				_		+					_		+								
TELLIN EGES SON NOET OF TOPOGE INCOME. SOLIDE E OF THE														IVE																									
Field ID Depth / Parent Fill / Natural Date SampleCode Report Number	r																																						
TP08 0.5-0.6 0.5-0.6 Fill 12/02/2019 S19-Fe16963 640386	- 1				T -	Ι. Ι	-		Τ.		Τ.	T -	-	<0.5		I - I		Τ.	- 1	- 1	- 1			Τ.	T - T	- 1	- 1		Т.	Τ.	Τ.	Τ.Τ		- T	T			- 1	
TP08 1-2.5 AQ 1.0-2.5 Fill 12/02/2019 S19-Fe16964 640386	 -	- -			-	 - 	-		+ -	l . l .	+ -	+-	-			- 1		+ -	-	- 1	- +			<u> </u>	- 1	- 1	-		-	-	-	+-+	- 1	- 1	- 1	- 1	- 1	-	-
TP09 1-1.1 1.0-1.1 Fill 13/02/2019 S19-Fe17979 640517	-				-	 . 	-		+ -		+ -	_	-	<0.5		- 1		+ -	-	-	-			.	- 1	-	-		-	-	<u> </u>	+ - +	-	- 1	-	- 1		-	-
TP09 2_2.5AQ 2.0-2.5 Fill 13/02/2019 S19-Fe17984 640517	1 - 1	- -			-	 - 	-		+ -	l . l .	+ -	+-	- 1			- 1		+ -	-	- 1	- 1			<u> </u>	- 1	- 1	-		-	—	-	+-+	- 1	- 1	- 1	- 1			-
TP10 0_1AQ	 -	- -			-	 - 	-		+ -		+ -	 -	- 1	-		- 1		<u> </u>	-	- 1	- 1		-	<u> </u>	- 1	-	-		-	-	-		- 1	- 1	- 1			-	-
TP11 0_1AQ	-				-	 . 	-		+ -		+ -	+ -	- 1			- 1		—		-	-			.	- 1		-		-	-	<u> </u>	+ - +	-	- 1	-			-	-
TP12 0 0.1 0-0.1 Fill 13/02/2019 S19-Fe17995 640517	 -	- -			-	 - 	-		+ -		+ -	 -	- 1	-	. .	- 1		<0.05	<0.05	<0.05	<0.05	- <0.	05 <0.1	<0.05	<0.05	<0.05	<0.05 <	0.05 <0.0	5 <0.0	05 <0.05	<0.05	+	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<1
TP12 0.6 0.7 0.6-0.7 Fill 13/02/2019 S19-Fe17996 640517					-	- 1	-		T -		T -	-	- 1	<0.5		- 1		-	-	-	-		-	-	-	-	-		-	-	-	+	-	-	-		-	-	-
TP12 0_0.5AQ	+ - +	- -			-	 - 	-		+ -	l . l .	+ -		- 1			- 1		+ -	-	- 1	- +			<u> </u>	- 1	- 1	-		-	-	-	+-+	- 1	- 1	- 1	- 1	- 1	-	-
TP13 0.5_1AQ					-	- 1	-		+ -		+ -	T -	- 1	-		- 1		<u> </u>	-	- 1	-		-	<u> </u>	- 1	-	-		-	-	-	T-	-	- 1	-	- 1	- 1	-	-
TP14 0.5_0.6	1 - 1	- -			-	 - 	-		+ -	l . l .	+ -	+-	- 1	<0.5		- 1		+ -	-	- 1	- 1			<u> </u>	- 1	- 1	-		-	—	-	+-+	- 1	- 1	- 1			-	-
TP14 0.5_1AQ 0.5-1 Fill 13/02/2019 S19-Fe18015 640517	 -	- -			-	1 - 1	-		+ -		+ -	 -	- 1			- 1		<u> </u>	-	- 1	- 1		-	<u> </u>	- 1	-	-		-	-	-	+	- 1	- 1	-	- 1		-	-
TP15 1_2AQ 1.0-2.0 Fill 13/02/2019 S19-Fe18028 640517					-		-		-		-	-	- 1	-		-		-	-	-	-		-	-	-	-	-		-	-	-	T-	-	-	-	-		-	-
TP16 0.1 0.2 0.1-0.2 Fill 13/02/2019 S19-Fe18030 640517	 -	- -			-	 - 	-		+ -		+ -	 -	- 1	<0.5	. .	- 1		 -	-	- 1	- 1		-	<u> </u>	- 1	-	-		-	-	-	+	- 1	- 1	-	- 1		-	-
TP16 0 1AQ					-	- 1	-		T -		T -	-	- 1			- 1		<u> </u>	-	- 1	-		-	-	- 1	-	-		-	-	-	+	-	- 1	-			-	-
TP16 2.3_2.4 2.3-2.4 Fill 13/02/2019 S19-Fe18032 640517	1 - 1		. .		-	- 1	-		T -		-	-	- 1	<0.5		- 1		-	-	-	-		-	-	-	-	-		-	-	-	T-	-	-	-	- 1	- 1	-	-
TP17 0_1AQ	- 1		. .	- -	-	- 1	-		-		-	-	- 1		. .	- 1		-	-	-	- 1		-	-	- 1	- 1	-		-	-	-	1-1	-	- 1	-	- 1	- 1	-	-
TP17 1_1.1 1.0-1.1 Fill 13/02/2019 S19-Fe18037 640517	1 - 1			- -	-	1 - 1	-		T -	1 - 1 -	T -	1 -	1 - 1	<0.5	. .	1 - 1		1 -	-	-	- 1		-	T -	- 1	- 1	-		T -	T -	-	1.1	- 1	- 1	- 1		- 1	-	-
TP18 Fragment Fill 21/02/2019 S19-Fe27879 641755	- 1				-	- 1	-		-		-	-	- 1	-		- 1		-	-	-	-			-	- 1	-	-		-	-	-	-	-	- 1	-	- 1	- 1	-	-
TP18 1.2-1.3 1.2-1.3 Fill 14/02/2019 S19-Fe18842 640636	<0.5 <	<0.5 <0.	0.5 < 0.5 <	<0.5 <0.	5 0.6	1.2	<0.5	- <0.5	5 <0.5	<0.5 <0.	5 <1.21	10 <0.5	<0.5	<0.5 <0	0.5 <0.5	<0.5	<0.5 -	-	-	-	-			-	- 1	-	-		-	-	-	1 - 1	- 1	- 1	-	- 1	- 1	-	-
TP18 1-2 AQ 1.0-2.0 Fill 14/02/2019 S19-Fe18843 640636	-			- -	-	-	-		-		-		-	-		- 1		-	-	-	-		-	-	- 1	-	-		-	-	-	1 - 1	-	-	-	- 1	-	-	-
TP19 0-1 AQ 0-1.0 Fill 14/02/2019 S19-Fe18844 640636	-				-	-	-		-		-	-	-			-		-	-	-	-		-	-	- 1	-	-		-	-	-	1 - 1	-	-	-	- 1		-	-
TP20 0-1 AQ 0-1.0 Fill 14/02/2019 S19-Fe18845 640636	- 1	- -	- -	- -	-	-	-		-		-	-	- 1	-	. -	- 1	- -	-	-	-	-			-	- 1	-	-		-	-	-	- 1	- 1	- 1	- 1	- 1	-	-	-
TP20 2-2.5 AQ 2.0-2.5 Fill 14/02/2019 S19-Fe18846 640636	- 1		- -		-	-	-		-		-	-	-			-		-	-	-	-		-	-	- 1	-	-		-	-	-	T - T	-	- 1	-	- 1		-	-
TP21 0-0.5 AQ 0-0.5 Fill 14/02/2019 S19-Fe18847 640636	-				-	-	-		-		-	-	-	-		- 1		-	-	-	-		-	-	- 1	-	-		-	-	-	-	-	-	-	-	-	-	-
TP22 0.1-0.2 0.1-0.2 Fill 14/02/2019 S19-Fe18848 640636	-			- [-	-	-	-		-		-	-	-	<0.5	. -	-		<0.05	<0.05	<0.05	<0.05	- <0.	05 <0.1	<0.05	<0.05	<0.05	<0.05 <	0.05 <0.0	5 <0.0	0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1
TP22 0.4-1 AQ 0.4-1.0 Fill 14/02/2019 S19-Fe18849 640636	-				-	-	-		-		-	-	-	-		- 1		-	-	-	-		-	-	- 1	-	-		-	-	-	-	-	- 1	-	-	- 1	-	-
QA1402 TP22 0.4-1 AQ Fill TP22 0.4-1 AQ S19-Fe18852 640636	-				-	-	-		-		-	-		-				-	-	-	-		-	-		-	-		-	-	I -	-					- 1	-	-
QC1402 TP22 0.4-1 AQ Fill TP22 0.4-1 AQ 211532-1 211532	-				-	-	-		-		-	-	- 1	-	. -	- 1		-	-	-	-		-	-	- 1	-	-		-	-	-	-	-	- 1	-	- 1	- 1	-	-
TP22 1.2-1.3 1.2-1.3 Clayey Sand 14/02/2019 M19-Ma00602 643150	-				-	-	-		-		-	-	- 1	-				-	-	-	-		-	-	- 1	-	-		-	-	-	-		-		-	-		
TP23 0.6-0.7 0.6-0.7 Fill 14/02/2019 S19-Fe18851 640636	-		- -	- -	-	-	-		-		-	-	- 1	-	. -	- 1		-	-	-	- 1		-	-	- 1	-	-		-	-	-	-	-	- 1	-	- 1	-	-	-
TP23 0-0.3 AQ 0-0.3 Fill 14/02/2019 S19-Fe18850 640636	-				-	-	-		-		-	-	-	-		- 1		-	-	-	-		-	-	- 1	-	-		-	-	-	-	-	-	-	-	-	-	-

EPA VIC -	IWRG621	Phenols	OPPs			Poly	chlorin	nated B	Bipheny	yls		(Chlorinated Benzenes								A	sbesto	s						- 1	Asbestos - T	race Analys	is			(ther		
Organochlorine Pesticides EPAVIc	Other Organochlorine Pesticides EPAVic	Total Phenolics (as Phenol)	Total OPPs	Arodor 1016	Arodor 1221	Aroclor 1232	Arodor 124	Aroclor 124		Aroclor	Aroclor 126	PCBs (Total)	Нехаchlorobenzene	Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Mass ACM	Mass Asbestos in ACM	Mass FA	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Asbestos ID in Soil	Asbestos Reported Result	Asbestos Sample Dimensions	Total Asbestos g/kg*	ACM - Comment	AF - Comment	FA - Comment	Organic Fibres - Comment	Respirable Fibres - Comment	Synthetic Fibres - Comment	Cation Exchange Capacity	EC 1.5 soil:water	pH 1:5 soil:water	% Clay	% Moieture 103oC
mg/kg	mg/kg	mg/kg											mg/kg	g	%w/v	/ %w/w	g	g	g	g	g	g	g	Comment	Comment	Comment	g/kg	Comment	Comment	Comment	Comment	Comment	Comment		μS/cm	ph Units	%	9
0.1	0.1	5	0.1	0.1	0.1	0.1	0.1	1 0.	.1 0).1	0.1 (0.1	0.05																					0.05	10	0.1	1	1
															0.01																							
																0.001																						
												1	10																									

						ő	ਰ	è			ž ž			Ā	ž S	· ·	4 8	- S	Σ̈	ž	ΣΣ		Σ̈́	ž	2	As		¥CI.		₹.	, ě	2	Syr	Š	E	_ <u>=</u>		%
FOI						mg/kg									ng/kg mg/l		g %w/	/w %w/\	w g	g	g g	g	g	g Com	ment Comr	ent Comm	ent g/kg	Comme	nt Commer	nt Comme	nt Commen	t Comme	nt Commen		LOOg μS/cm		s %	
NEPC 2013 EIL, EILs	Agod Sodimont					0.1	0.1	5	0.1	0.1 0	.1 0.1	0.1	0.1	0.1	0.1 0.1	0.05																_		0.05	5 10	0.1	1	1
NEPM 2013 ESL Urb		Bublic Open Space	Coarso Soil						_					_									+									+			_	+	+	
NEPM 2013 HSL Ash									_					_			0.0	1			_	_	+					_				-		_		+	+	
NEPM 2013 HSL Asb																	0.0.	0.00	1																		_	
NEPM 2013 Mgnt Li			Open Space, Coa	arse															_																			
NEPM 2013 Soil HIL	A														1	10																						
NEPM 2013 Soil HSL																																						
NEPM 2013 Soil HSL																																4					4	
NEPM 2013 Soil HSL	A & HSL B for Vap	our Intrusion - Sand	d 2 to <4m																																			
Field ID	Denth / Parent	Fill / Natural	Date	SampleCode	Report Number	7																																
DP (2017) PSI	Deptil / Tarelle	Till / Natural	Date	Samplecode	Report Humber																																	
DPBH4_1.9-2	1.9-2	Fill	6/06/2016	148124-1	DP (2017)	- 1	-	<5	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.:	1 -	40					No.	Asbestos (Detected										-	-	T -	T - T	20
DPBH6_0.1-0.2	0.1-0.2	Fill	15/06/2016	148474-3	DP (2017)	-	-	<5							<0.1 <0.:		40.99				Ch			Detected (<	OR)									-	-	-	-	-
DPBH10_0.4-0.5	0.4-0.5	Fill	15/06/2016	148474-6	DP (2017)	-	-	<5	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 -	40						Asbestos (-	-	-		11
DPBH10_1.9-2.0	1.9-2.0	Fill	15/06/2016	148474-7	DP (2017)	-	-	-	-	- -		-	-	-		-	45						Asbestos (Asbestos (_				+		+ -	-	-		15
DPBH11A_1.9-2.0 DPBH12_0.9-1.0	1.9-2.0 0.9-1.0	Fill Fill	15/06/2016 6/06/2016	148474-8 148124-3	DP (2017) DP (2017)	-	-	- <5	<0.1	_		-01	-01	-01	<0.1 <0.		35 35						Asbestos (+		+ -	-	+		20 11
DPBH12 1.9-2.0	1.9-2.0	Fill	6/06/2016	148124-4	DP (2017)	-	-	-	-	_		- 10.1	-	-			33	Τ.	-	- 1		- 1	1	-		Τ.	Τ.	+ -	+ -	+ -	+ -	+	+ -	+ -	+	+ -		16
DPBH14 0.4-0.5	0.4-0.5	Fill	6/06/2016	148124-5	DP (2017)	-	-	<5			_	_	-	_	<0.1 <0.	1 -	32.49				Chi			Detected (<	OR)			1	1			+-		 -	-	-		12
DPBH14_1.0-1.45		Fill	6/06/2016	148124-6	DP (2017)			-	-	-	_	_	-	-		-	45						Asbestos (-	-	-		13
JBS&G (2019) DSI																																			السبا	المستبد		
BH01 0-1M	0-1.0	Fill	11/02/2019	S19-Fe14849	640095	-	-	-	-	-		-	-	-		-	824 0	0	0	0	0 0	0	0	0		-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-			-
BH02 0.1-0.2 BH02 1-2	0.1-0.2	Fill	11/02/2019 11/02/2019	S19-Fe14850 S19-Fe14851	640095 640095	-		-	-	- -		-	-	-	- -	-	735 0	-	-		- -	-	- 0	-	· -	-	+	1#14	1#14	1#14	1#9	1#8	1#14	+	-	-	+-+	9.5
BH02 1-2 BH03 0-0.1	1.0-2.0 0-0.1	Fill	11/02/2019	S19-Fe14851 S19-Fe14852	640095	<0.1	<0.1			01 0	11 (01	<0.1	-01	-01	<0.1 <0.	1 <0.05	/35 0	- 0	0	U	0 0	0	1 0	-		+	+ -	1""	1 1 1	1 1 1	1"	+ 1"	1 1 1	+	+-	+ -	+	14
QC20181102	BH03 0-0.1	Fill	11/02/2019	S19-Fe14861	640095	<0.1	<0.1	-							<0.1 <0.		+ - + -	+ :	+ -			+-	+ - +	-			+	+ -	+ -	+ -	+ -	+-	+ -	+	+ -	+		16
QA20181102	BH03 0-0.1	Fill	11/02/2019	211362-1	211362	-	-	-							<0.1 <0.			T -	-	-		-	1 - 1	-		-	-	-	T -	-	-	+	T -	-	+-	-		14
BH03 0-1	0-1.0	Fill	11/02/2019	S19-Fe14854	640095	-	-	-	-		- -	-	- 1	-		-	598 0	0	0	0	0 0	0	0	0		-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	1-1	-
BH03 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14868	640095	-	-	-	-		- -	-	-	-		-		-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-		13
BH03 2.5-2.6	2.5-2.6	Sandy Clay	11/02/2019	S19-Fe14853	640095	-	-	-	-	- -	- -	-	-	-		-		-	-	-	- -	-	<u> </u>	-	-	_	-	-	-	-	-	-	-	7.3				14
BH04 0-1	0-1.0	Fill	11/02/2019	S19-Fe14855	640095	-	-	-	-		_	-	-	-		-	619 0	_		_	0 0	_		0		_	-	1#14	1#14	1#14	1"9	1#8	1#14	-	-	-		-
BH05 0-1.0 BH05 0.5-0.6	0-1.0 0.5-0.6	Fill	11/02/2019 11/02/2019	S19-Fe14856 S19-Fe14857	640095 640095	<0.1	<0.1	-	-	- -		-		-		<0.05	620 0	_		-		_		0		-	-	1#14	1#14	1#14	1#9	1#8	1#14	+ -	+-	-		7.5 9.7
BH05 0.5-0.6 BH05 1.5-1.6	1.5-1.6	Fill	11/02/2019	S19-Fe14858	640095	-	-	-	-			1	-	-		-	620 0	-	_	-				-		-	+ -	1	1 .	1	1	1	1 .	+ -	+ :	-		14
BH06 0.2-0.5	0.2-0.5	Fill	11/02/2019	S19-Fe14860	640095	-	- 1	-	- 1		- -	-	- 1	-		-	699 0.070	04 0	6.155	0.4924	0 0	0	0	0		-	-	1#3	1#14	1#14	1#9	1#8	1#14	 -	-	-		-
BH07 0.2-0.3	0.2-0.3	Fill	11/02/2019	S19-Fe14859	640095	-	-	-	-	<0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 -	668 0	0	0	0	0 0	0	0	0		-	-	1#14	1#14	1#14	1#9	1#8		-	-	-		11
BH07 0.5-0.6	0.5-0.6	Fill	11/02/2019	S19-Fe14896	640095	-	-	-	-			-	-	-		-	578 0	0	0	0	0 0	0	0	0	. .	-	-	1#14	1#14	1#14	1#9	1#8		-	-	-	1-1	-
BH08_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16941	640386	<0.1	<0.1	-	-			-	-	-		<0.05	658 0	_		-	-	0	-	0		-	-	1#14	1#14	1#14	1#9	1#8		-	-	-		13
BH09_1.5-1.6	1.5-1.6 0.5-0.6	Fill	12/02/2019 12/02/2019	S19-Fe16942 S19-Fe16943	640386 640386	-	-	-	-		_		-	-			582 0 584 0			_		0		0		-	-	1#14	1 ^{#14}	1#14	1#9	1#8		+	-	-		19
BH10_0.5-0.6 BH10_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16943 S19-Fe16944	640386	-	-	-	-	-	-	- <0.1	-	-	<0.1 <0.	-	644 0	_	0	_	0 0	0		0		_	+	1#14	1#14	1 114	1#9	1#8		-	+-	-		8.2
BH10_1.9-2.0	1.9-2.0	Clayey Sand	12/02/2019	S19-Fe16945	640386	-	-	-	-	-	$\overline{}$	+ -	-	-		-		_				_	+	-		_	+	1	1	1	-	1#8	+ +	20	200			_
BH11_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16946	640386	-	-	-	- 1		. .	1 -	- 1	- †		-	800 0	_		-	_	_		_		-	-	1#14	1#14	1#14	1#9	1#8		-				11
BH12_0.2-0.5	0.2-0.5	Fill	12/02/2019	S19-Fe16947	640386	-		-	- 1			-	- 1	-		İ -	617 0	-	_	-	0 0	-	-	0		-		1#14	1#14	1#14	1#9	1#8	1#14			-		15
BH13_1.5-1.6	1.5-0.6	Fill	12/02/2019	S19-Fe16948	640386	-	-	-	-			-	-	-		-	608 0	0	0	0	0 0	0	0	0		-	-	1#14	1#14	1#14	1#9	1#8		-	-	-	-	16
BH15_0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16951	640386	-	-	-	-			-	-	-		-	632 0		_	-		0		0		-	-	1#14		1#14	1#9	1#8		-	-	-	-	9.2
BH15_1.5-1.6	1.5-1.6	Fill	12/02/2019	S19-Fe16952	642747	-	-	-	-	- -	- -	-	-	-		-	681 0	_	_		0 0	-	-	0			-	1#14	1#14	1#14	1#9	1#8		 -		-	+-+	-
QC20190212 QA20190212	BH15_1.5-1.6	Fill	12/02/2019	S19-Fe16949	640386	-	-	-	-	- -	- -	-	-	-+	- -	-	608 0	0	0	0	0 0	0	0	0		-	0.1	1#14	1#14	1"1"	1#9	1#8	1#14	-	-	+	+-+	- 15
HA01 0.0-0.7	BH15_1.5-1.6 0-0.7	Fill	12/02/2019	211475-1 S19-Fe16940	211475 640386	-	-	-	-	-	-	+-	-	-		-	523 0	-	-	0	0 0	0	0) -	-	<0.1	#14	1#14	#14	4#9	1#8	4#7	+ -	+-	-		15
HA01_0.6-0.7	0.6-0.7	Fill	12/02/2019	S19-Fe16939	640386	-	-	-	-	-		+ -	-	-		+	323 0		-			_	$\overline{}$	-		+ -	+	- 1	1	- 1	- 1	+ +		+ -		+		13
HA02 0.2-1AQ	0.2-1.0	Fill	15/02/2019	S19-Fe22270	641092	-	-	-	-		- -	-		-	- -	-	516 0	_	_	-	_	_	-	0		_	-	1#14	1#14	1#14	1#9	1#8	1#14	-	_	-		-
HA02 0.5-0.6	0.5-0.6	Fill	15/02/2019	S19-Fe22268	641092			- 1							<0.5 <0.5		1 - 1 -	-	-	-			- 1							<u> </u>						-	- 1	16
HA03 0.1-0.2	0.1-0.2	Fill	15/02/2019	S19-Fe34162	642427	-	-	-		<0.5 <0	0.1 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	-	1 - 1 -	-	-	-	- -	-	-	-		-	-	1 -	-	-	-	-	-	-		-	-	2.6
TP01 0-1	0-1.0	Fill	12/02/2019	S19-Fe16953	640386	-	- 1	-	-	- -	- -	-	- [-	- -	-	892 0	_		_		0		0		-	<u> </u>	1#14	1#14	1#14	1#9	1#8	1#14	ļ -		-	 -	-
TP01 1-2 AQ	1.0-2.0	Fill	12/02/2019	S19-Fe16954	640386	-	-	-	-	- -	- -	-	-	-	- -	-	712 0	_	_	-	0 0		-	0	- -	-	-	1#14	1#14	1#14	1#9	1#8		+ -	-	-	+	
TP02 0-1 AQ TP03 1-2 AQ	0-1.0 1.0-2.0	Fill Fill	12/02/2019 12/02/2019	S19-Fe16955 S19-Fe16956	640386 640386	-	-	-	-		- -	-	-	-+	- -	+ -	931 0 726 0	_	0	_	0 0	0 0		0		-	+ -	1#14	1#14	1#14	1#9	1 ^{#8}		-	+-	-		-
TP04	Fragment	Fill	21/02/2019	S19-Fe16956 S19-Fe27877	641755	+ -	H		- +	-		+ -	+ - +			+ -	30 0		_	-	-	0		0	1	_	+ -	1*14	1#14	1#14	1"3	1#14	1"14	+ -	+-	+-	+ + + + + + + + + + + + + + + + + + + +	-
TP04 0.2-0.3	0.2-0.3	Fill	12/02/2019	S19-Fe16957	640386	<0.1	<0.1	-	- 1	-		-	-	-	- -	<0.05		+ -	-	- +		-	1 - 1	-		1	+ -	+ +-	+ +-	+ +-	-	+	 	+ -	+ -	+ :	+-+	14
TP04 0-1 AQ	0-1.0	Fill	12/02/2019	S19-Fe16958	640386	-	-	-	-		. -	1 -		-	- -	-	915 0	0	0	0	0 0	0	-	0		-	-	1#14	1#14	1#14	1#9	1#8	1#7	-	-	-		-
TP05 1-2 AQ	1.0-2.0	Fill	12/02/2019	S19-Fe16959	640386	-	-	-	-			-	- 1	- 1	- -	-	727 0	0	0	0	0 0	0	0	0		-		1#14	1#14	1#14	1#9	1#8	1#7	-		-	1 - 1	-
TP06 0.0-0.3	0-0.3	Fill	12/02/2019	S19-Fe17024	640386	-	-	-	-			-	-	-	- -	-	701 0	_	0		0 0			0	-		T -	1#14	1#14	1#14	1#9	1#8	1#14	-		-	-	-
TP06 1-1.9 AQ	1.0-1.9	Fill	12/02/2019	S19-Fe17026	640386	-	-	-	-	- -	- -	-	-	-	- -	-	738 0	_	0		0 0			0			<u> </u>	1#14		1#14	1#9	1#8	1#14	 -	-	-	+	
TP07 0-1 AQ	0-1.0	Fill	12/02/2019	S19-Fe16961	640386	-	-	-	-	- -	- -	1 -	-	-	- -	-	786 0				0 0			0	- -	-	-	1#14	1#14	1#14	1#9	1#8	1#14	+ -	-	-	+	-
TP07 3.4-3.5 TP08	3.4-3.5 Eragmont	Fill	12/02/2019 21/02/2019	S19-Fe16962 S19-Fe27878	640386 641755	-	-	-	-	_		-	-	-	- -	+ -	25 ^	-				_		-	-	1#1:	+ -	1#14	1#14	1#14	1#14	1#14	1#14	+ -	+-	-	+ -	16
1708	Fragment	FIII	21/02/2019	319-F6518/8	641/55	-	-	-	-	- -	- -	1 -	-	-	- -	-	35 0	1 0	U	U	0 0	0	U	U	1	1"		1 1"1"	1 1 1 1	1 1 1 1	1 1 2 4	1-1-	1 1 1 1 1					

					Γ	EPA VIC -	IWRG621	Phenols	OPPs		Poly	chlorina	ited Biph	enyls		Chlorinated Benzene							A	sbestos							Asbestos - 1	Trace Analys	is			0	ther	
					İ						Τ,	T	<u> </u>				\top			T			Т	T														
\$	JBS	& G				Organochlorine Pesticides EPAVic	Other Organochlorine Pesticides EPAVic	otal Phenolics (as Phenol)	otal OPPs	Arodor 1016 Arodor 1221		Aroclor 1242	arodor 1248		or 1	v.as (10ra)) Hexachlorobenzene	Approx. Sample Mass	Asbestos from ACM in Soil	Asbestos from FA & AF in Soil	Mass ACM	Mass Asbestos in ACM	Vass FA Vass Asbestos in FA	Mass AF	Mass Asbestos in AF	Vass Asbestos in FA & AF Asbestos ID in Soil	Asbestos Reported Result	Asbestos Sample Dimensions	otal Asbestos g/kg*	ACM - Comment	AF - Comment	A - Comment	Organic Fibres - Comment	sespirable Fibres - Comment	ynthetic Fibres - Comment	ation Exchange Capacity	:C 1:5 soil:water	J. 1.5 soil:water	6 Clay 6 Moisture 103oC
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg	/kg mg/	kg mg/k	g mg/kg	mg/kg n	ng/kg mg	g/kg mg/kg	g	%w/w	/ %w/w	g	g	g g	g	g	g Comme	ent Comme	nt Comment	g/kg	Comment	Comment	Commen	t Comment	Comment	Comment	meq/100g	μS/cm	ph Units	% %
EQL						0.1		5		0.1 0.			0.1		0.1																				0.05	10	0.1	1 1
NEPC 2013 EIL, EIL																	_							_														
	ban Residential and F																																					
	bestos in Soil - Bonde		iai - HSL A															0.01	_																			
	bestos in Soil - FA & A		Onon Space Co	arco															0.001																			
NEPM 2013 Mgnt	Limits - Residential, P	arkiand and Public	Open Space, Co	arse							+	-	-	_			-			_		_	+	+														
	L A & HSL B for Vapo	ur Intrucion Conc	1 0 to <1m													1 10																						
	SLA & HSL B for Vapo									_	_	+-	+	-+	_		+		-	\rightarrow	-	-	+-	+								_						
	SLA & HSL B for Vapo									_	+	+-	+	-	_		+			\rightarrow	_	_	+	+				_				+						
NEFIVI 2013 3011 11.	E A & TISE B TOT Vapo	our micrusion - Sanc	12 to <4111																																			
Field ID	Depth / Parent	Fill / Natural	Date	SampleCode	Report Number																																	
TP08 0.5-0.6	0.5-0.6	Fill	12/02/2019	S19-Fe16963	640386	-	- 1				T -	Τ.	Τ - Τ	- 1	-		Τ.	-	I . I	- 1	- 1		Τ.	Τ-		T -	Τ.	Ι.	-		-	Τ.	l .		-	. 1		- 9.1
TP08 1-2.5 AQ	1.0-2.5	Fill	12/02/2019	S19-Fe16964	640386		- 1	-	- 1	- -	-	+-	+ - 1	- +	-		714	0	0	0	0	0 0	0	_	0 -	<u> </u>	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP09 1-1.1	1.0-1.1	Fill	13/02/2019	S19-Fe17979	640517	-	-	-	- 1		-	+ -	1 - 1	- 1	-		1 -	-	-	- 1	_		_	_	1 .	-	-	-	-	-	-	-	-	-	-	-	-	- 20
TP09 2_2.5AQ	2.0-2.5	Fill	13/02/2019	S19-Fe17984	640517	-	- 1	-	- 1	- -	-	T -	1 - 1	- 1	-		743	0	0	0	0	0 0	0	0	0 -	T -	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP10 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe17990	640517	-	-	-	- 1		-	-	- 1	-	-		696	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP11 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe17994	640517	-	-	-	-		-	-	- 1	- 1	-		700	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP12 0_0.1	0-0.1	Fill	13/02/2019	S19-Fe17995	640517	<0.2	<0.2	-	-		-	-	- 1	-	-	- <0.05	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	- 8.4
TP12 0.6_0.7	0.6-0.7	Fill	13/02/2019	S19-Fe17996	640517	-	-	-	-		-	-	- 1	-	-		-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	- 23
TP12 0_0.5AQ	0-0.5	Fill	13/02/2019	S19-Fe17999	640517	-	-	-	-		-	-	-	-	-		860	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP13 0.5_1AQ	0.5-1.0	Fill	13/02/2019	S19-Fe18006	640517	-	-	-	-		-	-	-	-	-		846	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	- -
TP14 0.5_0.6	0.5-0.6	Fill	13/02/2019	S19-Fe18009	640517	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	- 6.8
TP14 0.5_1AQ	0.5-1	Fill	13/02/2019	S19-Fe18015	640517	-	-	-	-		-	-	-	-	-		757	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP15 1_2AQ	1.0-2.0	Fill	13/02/2019	S19-Fe18028	640517	-	-	-	-		-	-	-	-	-		685	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP16 0.1_0.2	0.1-0.2	Fill	13/02/2019	S19-Fe18030	640517	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	- 7.6
TP16 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe18033	640517	-	-	-	-		-	-		-	-		743	0	0	0		0 0	0	_		-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP16 2.3_2.4	2.3-2.4	Fill	13/02/2019	S19-Fe18032	640517	-	-	-	-	- -	-	<u> </u>		-	-		ļ :	-		-	_		1	+:-		-	-	-	- 414	- 414	- #14	- 40	- 40	- 414	-	-	-	- 24
TP17 0_1AQ	0-1.0	Fill	13/02/2019	S19-Fe18040 S19-Fe18037	640517 640517	-	-	<u> </u>	-	- -	+-	+-	1 - 1	-	-		798	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
TP17 1_1.1	1.0-1.1 Fragmont	Fill	13/02/2019 21/02/2019	S19-Fe18037 S19-Fe27879	641755	-	-	-		-+-	+-	+-	+-+	-	-	 	14	-	-	-	_	0 0	0			1#5	1#13	 	1#14	1#14	1#14	1#14	1#14	1#14	-	-	-	- 10
TP18 TP18 1.2-1.3	Fragment 1.2-1.3	Fill	14/02/2019	S19-Fe2/8/9 S19-Fe18842	641/55		-	H			+-	+ -	+	-	-		14	0	0	0	0	0 0	- 0	1 0	0 -	1"	1		1"	1"-"	1""	1"	1 1 1	1"	-	-	-	- 9
TP18 1-2 AQ	1.0-2.0	Fill	14/02/2019	S19-Fe18843	640636	-	-	<u> </u>			+-	+-	+ - +	-			757	0	0.0017	-	_	0433 0.01	13 0	1	0.013 -	+ -	+ -	-	1#14	1#14	1#4	1#9	1#8	1#14	-	-	-	- 9
TP19 0-1 AQ	0-1.0	Fill	14/02/2019	S19-Fe18844	640636		-		-		+ -	+ -	+ - 1		-		789	0	0.0017	0	-	0 0	_	-	0.013	+ -	+ -		1#14	1#14	1#14	1#9	1#8	1#14	-			
TP20 0-1 AQ	0-1.0	Fill	14/02/2019	S19-Fe18845	640636	-	-		-		-	+ -	+ - +	-	-		760	-	0.0001	-		0 0				-	-	-	1#14	1#1	1#14	1#9	1#8	1#7	-	-	-	
TP20 2-2.5 AQ	2.0-2.5	Fill	14/02/2019	S19-Fe18846	640636		- 1	<u> </u>	-		-	+ -	+ - 1	- +	-		592	_	0	0	-	0 0	-	0	0 -	-	—	-	1#14	1#14	1#14	1#9	1#8	1#7	-		-	
TP21 0-0.5 AQ	0-0.5	Fill	14/02/2019	S19-Fe18847	640636	-	- 1	-	- 1	- -	-	+-	+ - 1	- 1	-		709	_	0	0	-	0 0	-	_		<u> </u>	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-		
TP22 0.1-0.2	0.1-0.2	Fill	14/02/2019	S19-Fe18848	640636	<0.1	<0.1	-	- 1		T -	+-	1 - 1	-	-	- <0.05	1	-	-	-	-	. .	Ť	1 -		-	-	-	Ť.	-	<u> </u>	<u> </u>	1	-	-	-	-	- 11
TP22 0.4-1 AQ	0.4-1.0	Fill	14/02/2019	S19-Fe18849	640636	-	-	-	-	- -	-	1 -	1 - 1	-	-		812	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
QA1402	TP22 0.4-1 AQ	Fill	TP22 0.4-1 AQ	S19-Fe18852	640636	-	-	-	- 1	- -	-	1 -	1 - 1	-	-		843	0	0	0	_	0 0		_		-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	- -
QC1402	TP22 0.4-1 AQ	Fill	TP22 0.4-1 AQ	211532-1	211532	-	-	-	-	- -	-	1 -	- 1	-	-		1 -	-	-	- 1	-	- -	1 -	1 -	- 0	-	-	<0.1	-	-	-	-	-	-	-	-	-	
TP22 1.2-1.3	1.2-1.3	Clayey Sand	14/02/2019	M19-Ma00602	643150	-	- 1	-	- 1		-	-	1 - 1	-	-		-	-	-	-	-	- -	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
TP23 0.6-0.7	0.6-0.7	Fill	14/02/2019	S19-Fe18851	640636	-	-	-	-		-	1 -		-	-		-	-	-	-	-		1 -	-		-	-	-	-	-	-	-	-	-	-	-	-	- 7.8
TP23 0-0.3 AQ	0-0.3	Fill	14/02/2019	S19-Fe18850	640636	-	-	-	-		-	-	-	-	-		697	0	0	0	0	0 0	0	0	0 -	-	-	-	1#14	1#14	1#14	1#9	1#8	1#14	-	-	-	
																																						_

Table C: Summary Table of ASLP Leachate Results

Project Number: 55792

ANZAST 2018 Fresh Water 95%

EQL

Project Name: Opal Seaside Warriewood DSI

			Metals & I	Metalloids					
Arsenic (Total)	Cadmium	Chromium (Total)	Copper	Lead	Mercury (Inorganic)	Nickel	Zinc	рН (ASLP - off)	рН (Leachate fluid)
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ph Units	ph Units
0.01	0.005	0.01	0.01	0.01	0.001	0.01	0.01	0.1	0.1
	0.002*	0.0084*	0.0126*	0.09078*	0.0006	0.099*	0.072*		


Field ID	Date	SampleCode	Report Number										
HA01_0.6-0.7	12/02/2019	M19-Fe38829	642983	-	-	-	-	0.05	-	-	-	6.7	5.9

Table D : Summary of Groundwater Analytical ResultsProject Number: 55792 Project Name: Opal Seaside Warriewood DSI

										TPHs	(NEPC	1999)				TRHs	(NEPC	2013)					BT	EX		
JBS&G	Arsenic (Total) (Filtered)	Cadmium (Filtered)	Chromium (Total) (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Inorganic) (Filtered)	Nickel (Filtered)	Zinc (Filtered)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Total)	>C10-C16 Fraction	>C16-C34 Fraction	>C34-C40 Fraction	>C10-C40 Fraction (Total)	>C10-C16 less Naphthalene (F2)	C6-C10 Fraction	C6-C10 less BTEX (F1)	Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene (Total)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	0.001	0.0001	0.001	0.001	0.001	0.00005	0.001	0.001	0.01	0.05	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.05	0.01	0.01	0.001	0.001	0.001	0.001	0.002	0.003
3 Fresh Water 95%		0.002*	0.0084*	0.0126*	0.09078*	0.0006	0.099*	0.072*													0.95			0.35		
Groundwater HSL A & HSL B for Vapour Intrusion - Sand 2 to <4m																		1		1	0.8	NL	NL			NL
Groundwater HSL A & HSL B for Vapour Intrusion - Sand 4 to <8m																		1		1	0.8	NL	NL			NL

Field ID	Date	SampleCode	Report Number																										
DP (2017) PSI																													
DPBH11A	28/06/2016	149249-1	DP (2017)	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.00005	<0.001	0.004	<0.01	<0.05	<0.1	<0.1	-	<0.05	<0.1	<0.1	-	<0.05	0.01	<0.01	< 0.001	<0.001	<0.001	<0.001	<0.002	<0.003
DPBH12	28/06/2016	149249-2	DP (2017)	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.00005	<0.001	0.006	<0.01	<0.05	<0.1	<0.1	-	<0.05	<0.1	<0.1	-	<0.05	0.01	<0.01	< 0.001	<0.001	<0.001	<0.001	<0.002	<0.003
JBS&G (2019) DS	SI .																												
BH01/MW01	15/02/2019	S19-Fe20312	640840	0.001	0.0003	0.001	0.028	0.004	<0.0001	0.007	0.07	<0.02	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.05	0.02	<0.02	< 0.001	<0.001	<0.001	<0.001	<0.002	<0.003
DPBH11A	15/02/2019	S19-Fe20313	640840	<0.001	<0.0002	<0.001	0.018	<0.001	<0.0001	0.005	0.053	<0.02	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.05	0.02	<0.02	< 0.001	<0.001	<0.001	<0.001	<0.002	<0.003
QA-W 150219	15/02/2019	S19-Fe20315	640840	<0.001	<0.0002	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.005	<0.02	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1		<0.1	<0.05	0.02	<0.02	< 0.001	<0.001	<0.001	<0.001	<0.002	<0.003
QC-W150219	15/02/2019	211645-1	211645	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.00005	<0.001	<0.001	<0.01	<0.05	<0.1	<0.1	-	<0.05	<0.1	<0.1	-	<0.05	0.01	<0.01	< 0.001	<0.001	<0.001	<0.001	<0.002	-
DPBH12	15/02/2019	S19-Fe20314	640840	<0.001	<0.0002	<0.001	0.003	<0.001	<0.0001	0.003	0.022	<0.02	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.05	0.02	<0.02	<0.001	<0.001	<0.001	<0.001	<0.002	<0.003

								Pol	vevelic Ar	omatic H	ydrocarbo	ne																			Organo	chlorina D	esticides											
\$JBS&G	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ (WHO)	Benzo(b,j)fluoranthene	Benzo(b,j+k)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	menor, s, s, s, c, dipyrene	Naphthalene	Phenanthrene	PAHS (10tal)	Pyrene Total Positive PAHs	4,4-DDE	Aldrin	Aldrin + Dieldrin (Sum of Total)	alpha-BHC	alpha-Chlordane	beta-BHC	Chlordane	QQQ	TOO	Dieldrin	DDT+DDE+DDD (Sum of Total)	delta-BHC	Endos ulfan alpha	Endos ulfan beta	Endosulfan sulphate	Endrin	gamma-Chlordane	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor Epoxide	Lindane	Methoxychlor	НСВ	Toxaphene
	mg/L	mg/L		mg/L			mg/L		mg/L	mg/L							ng/L m	g/L m	g/L mg/									mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			mg/L	mg/L		mg/L	mg/L	mg/L	mg/L
EQL	0.001	0.001	0.001	0.001	0.001		0.001		0.001	0.001	0.001 0	.001 0.	.001 0.	.001 0.0	01 0.	.001 0	.001 0.0	0.0	0.00	1 0.0002	2 0.000	2 0.000	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	2 0.0002
ANZAST 2018 Fresh Water 95%																.016																												
NEPM 2013 Groundwater HSL A & HSL B for Vapour Intrusion - Sand 2 to <4m																NL																												
NEPM 2013 Groundwater HSL A & HSL B for Vapour Intrusion - Sand 4 to <8m																NL																												

Field ID	Date	SampleCode	Report Number																																											
DP (2017) PSI																																														
DPBH11A	28/06/2016	149249-1	DP (2017)	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0005	- <0.	0002 <0.000)1 -	<0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.001 <	0.0001	- <0.00	0 0	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	-	<0.0002	<0.0002	
DPBH12	28/06/2016	149249-2	DP (2017)	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0005	- <0.	0002 <0.000)1 -	<0.0001	<0.0001	<0.0001	<0.0001 <	0.0001	<0.001 <	0.0001	- <0.00	01 0	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	-	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002	- 1	<0.0002	<0.0002	
JBS&G (2019) DS																																														
BH01/MW01	15/02/2019	S19-Fe20312	640840	<0.001	<0.001	<0.001	< 0.001	<0.001	- 4	0.001	- <0.00	1 <0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	0.001 <	0.001 < 0.00	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
DPBH11A	15/02/2019	S19-Fe20313	640840	<0.001	<0.001	<0.001	< 0.001	<0.001	- <	0.001	- <0.00	1 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	0.001 <	0.001 < 0.00	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	- 1	-	-
QA-W 150219	15/02/2019	S19-Fe20315	640840	<0.001	<0.001	<0.001	< 0.001	<0.001	- <	0.001	- <0.00	1 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	0.001 <	0.001 < 0.00	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	- 1	-	-
QC-W150219	15/02/2019	211645-1	211645	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	- <0	.002 <0.00	1 -	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	0.001	- <0.00	1 0#1	-	-	-	-	-	T -	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	- 1	-	-
DPBH12	15/02/2019	S19-Fe20314	640840	<0.001	<0.001	<0.001	<0.001	<0.001	- 4	0.001	- <0.00	1 <0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	0.001 <	0.001 <0.00	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	- 1	-	-

Table D : Summary of Groundwater Analytical ResultsProject Number: 55792 Project Name: Opal Seaside Warriewood DSI

Account to	OPPs			Po	lychlorinat	ed Biphen	yls				Major (Cations				Major	Anions			Other
JBS&G	Total OPPs	Arodor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Arodor 1254	Aroclor 1260	PCBs (Total)	Calcium (Filtered)	Magnesium (Filtered)	Potassium (Filtered)	Sodium (Filtered)	Sulphate (as SO4)	Carbonate Alkalinity (as CO3)	Bicarbonate Alkalinity (as CaCO3)	Carbonate Alkalinity (as CaCO3)	Total Alkalinity (as CaCO3)	Hydroxide Alkalinity (as CaCO3)	Ionic Balance
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	MG/L	mg/L	mg/L	mg/L	mg/L	%
Jr	0.0002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001					1		5	10			
NZAST 2018 Fresh Water 95%					0.0006		0.00003													
EPM 2013 Groundwater HSL A & HSL B for Vapour Intrusion - Sand 2 to <4m																				
EPM 2013 Groundwater HSL A & HSL B for Vapour Intrusion - Sand 4 to <8m																				

Field ID	Date	SampleCode	Report Number																				
DP (2017) PSI																							
DPBH11A	28/06/2016	149249-1	DP (2017)	<0.0002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	170	21	-	-	-	-	510	-	-	-	-
DPBH12	28/06/2016	149249-2	DP (2017)	<0.0002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	140	25	-	-	-	-	460	-	-	-	-
JBS&G (2019) DS																							
BH01/MW01	15/02/2019	S19-Fe20312	640840	-	-	-	-	-	-	-	-	-	20	18	5.2	47	180	-	<20	<10	-	-	-
DPBH11A	15/02/2019	S19-Fe20313	640840	-	-	-	-	-	-	-	-	-	140	18	11	60	<5	-	460	<10	-	-	-
QA-W 150219	15/02/2019	S19-Fe20315	640840	-	-	-	-	-	-	-	-	-	150	19	12	56	<5	-	470	<10	-	-	-
QC-W150219	15/02/2019	211645-1	211645	-	-	-	-	-	-	-	-	-	150	18	11	59	<1	<5	490	-	490	<5	1
DPBH12	15/02/2019	S19-Fe20314	640840	-	-	-	-	-	-	-	-	-	140	19	11	27	<5	-	460	<10	-	-	-

						Metals	& Metalloi	ids			TPHs ((NEPC 199	9)			TRHs (N	EPC 2013)					BTEXN											Polycyclic A	Aromatic F	Hydrocar	rbons							
S J	BS	8. G						(5)					Total)			11	(Total) hthalene (F2)		F1)										a	O (lower bound)*	rEQ (medium bound)*	EQ (upper bound)*	hene	ue.	inthene ene		cene	s as B(a)P TEQ			yrene			sı
				স ব Arsenic (Total)	Cadmium (Mag/kg mg/kg mg/kg Chromium (Total)	Copper	mp/kp	Mercury (Inorgan	Nickel Nickel	/s/am s/s/ce-C9 Fraction	C10-C14 Fraction	c15-C28 Fraction	CZ9-C36 Fraction	AN > C10-C16 Fraction	ay > C16-C34 Fraction	>C34-C40 Fraction	ay/s >C10-C40 Fraction	C6-C10	CG-C10 less BTEX	Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p) Xylene (Total)	Napht	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracen	Benzo(a)pyrene	Benzo(a)pyrene	Benzo(a)pyrene T	Benzo(b,j)fluorani	Benzo(g, h,i)peryle	Senzo(b,)+k)riuora	Chrysene	Dibenz(a,h)anthra	Carcinogenic PAH	Fluoranthene	- me/ke	Indeno(1,2,3-c,d)	Phenanthrene	PAHs (Total)	Total Positive PAP
EQL	I C-Ii-l 18/ /	الحاجيا احدا		2	0.4 1		1	0.1	1 1	20	20		50 50	50				0 20		0.1	0.1	0.1		0.3	3 0.1					0.05 0.				0.1			1 0.1		0.1	0.1	0.1	0.1	0.5	.1
	neral Solid Waste (w tricted Solid Waste			2000	100 400			50 200	1050 4200	2600			4000								1080 4320			180 720						10 23													800	
Field ID	Date / Parent	SampleCode	e Report Number																																									
BH01 0-1M	11/02/2019	S19-Fe1484	9 640095	-		-	-	-	- -	-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
BH02 0.1-0.2 BH02 1-2	11/02/2019	S19-Fe1485 S19-Fe1485		4.6	<0.4 9.6	15	170	<0.1	<5 17	0 <20	<20	<50 <	50 <50	0 <50	<100	<100 <1	- <5	0 <20	- <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 <0.5 -	<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0. 	.5 <0.	.5 <0.5	5 <1.21	. 40.5 -	<0.5	<0.5	<0.5	<0.5 <	0.5 -
BH03 0-0.1 QC20181102	11/02/2019 BH03 0-0.1	S19-Fe1485 S19-Fe1486		4.3	<0.4 8.2 <0.4 7.7			<0.1	<5 23 <5 26	_		67 6 130 8	56 13 31 21	-	_		20 <5 90 <5	i0 <20		<0.1	<0.1 <0.1	<0.1		0.2 <0.				<0.5 1.8	<0.5		.5 0.6 8 3	1.2 3.3	<0.5	<0.5 <0.5	- <0. - 2.6						<0.5	<0.5 6.2		0.5 -
QA20181102 QA20181102	BH03 0-0.1	211362-1	211362		<0.4 7.7	_		<0.1	4 47	_			100 -	<50			50 <5	-		<0.1	<1	<0.5		<2 <1			<0.1	<0.1	<0.1	0.06 <0		-	-		0.2 -	<0.	-			<0.1	<0.1	<0.1		0.1 0.06
BH03 0-1 BH03 2.5-2.6	11/02/2019 11/02/2019	S19-Fe1485 S19-Fe1485		-		+ :	-	-		-		-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		+ :	-	+ :	-	-	-	-	-	
BH04 0-1	11/02/2019	S19-Fe1485	5 640095	_		-	-	-		-	-	-		-	-	-		-	· ·	-	-	-	-			<u> </u>	-	-	-	- -	-	-	-	-	- -	1-	-	-	-	-	-	-	-	
BH05 0.5-0.6 BH05 0-0.1	11/02/2019 11/02/2019	S19-Fe1485 S19-Fe1485		4.8	<0.4 7.1	6.2	100	<0.1	<5 40 	- <20	<20	<50 5	56 56	- <50	<100	<100 <1	- <5	0 <20	- <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	-	-	-	-		+ -	-	-	-		+:	+ -	+ :	+ :	-	-	-	-	
BH05 1.5-1.6 BH06 0.2-0.5	11/02/2019 11/02/2019	S19-Fe1485 S19-Fe1486		- 11	<0.4 8	15	35	<0.1	<5 96	<20	<20	51 6	53 114	4 <50	<100	<100 <1	. <5	0 <20	<20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0.	.5 <0.	.5 <0.5	5 <1.21	^{#10} <0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 -
BH07 0.2-0.3	11/02/2019	S19-Fe1485	9 640095	4.2	<0.4 7.3	<5	22	<0.1	<5 21	L <20	<20	<50 <	50 <50	0 <50	<100	<100 <1	100 <5	0 <20	0 <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0.	5 <0.	.5 <0.5	5 <1.21	^{#10} <0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 -
BH07 0.5-0.6 BH08_0.5-0.6	11/02/2019 12/02/2019	S19-Fe1489 S19-Fe1694		_	<0.4 24	19	38	<0.1	15 46	5 <20	130	460 <	50 590	0 270	340	<100 6	10 27	0 <20	0 <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0.	.5 <0.	.5 <0.5	5 <1.21	#10 O.6	<0.5	<0.5	<0.5	1.3 (.7 -
BH09_1.5-1.6 BH10_0.5-0.6	12/02/2019 12/02/2019	S19-Fe1694 S19-Fe1694		12 6.7	<0.4 21 <0.4 31	-	14 30	<0.1	8.4 28 23 49				50 <50 20 230		<100 190		100 <5 90 <5			<0.1 <0.1	<0.1	<0.1		0.2 <0.				<0.5 <0.5	<0.5	<0.5 <0	_	1.2	<0.5	<0.5	- <0. - 1.7			5 <1.21		<0.5 <0.5	<0.5	<0.5	<0.5 <	0.5 -
BH10_1.5-1.6	12/02/2019	S19-Fe1694	4 640386	-		-	-	-		-	-	- 1		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	- 1	-	-	5 2.415	-	-	-	-	-	
BH10_1.9-2.0 BH11_0.5-0.6	12/02/2019	S19-Fe1694 S19-Fe1694		6.7	0.9 19	28	100	<0.1	8.6 12	0 <20	<20	- <50 <	50 <50	0 <50	<100	<100 <1	 100 <5	0 <20	- <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	-	-	-	-		-	-	-	-		+ -	-	-	-	-	-	-	-	
BH12_0.2-0.5	12/02/2019	S19-Fe1694	7 640386		<0.4 11			<0.1	<5 66				50 <50				100 <5	-		<0.1	<0.1	<0.1	_	0.2 <0.	-		-	-	-	- -	-	-	-	-		1-	-	-	-	-	-	-	-	
BH13_1.5-1.6 BH15_0.5-0.6	12/02/2019 12/02/2019	S19-Fe1694 S19-Fe1695		_	<0.4 15 <0.4 15	_	36 25	<0.1	<5 27 <5 54	_			50 <50 50 <50		<100 <100		100 <5 100 <5	_		<0.1	<0.1	<0.1	_	0.2 <0.			<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0.	.5 <0.	.5 <0.5	5 <1.21	^{#10} <0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 -
BH15_1.5-1.6 QC20190212	12/02/2019 BH15_1.5-1.6	S19-Fe1695 S19-Fe1694		12 6	<0.4 14 <0.4 16	_		<0.1	<5 70 <5 37	_			50 <50 50 <50		<100 <100		100 <5 100 <5			<0.1	<0.1	<0.1	_	0.2 <0. 0.2 <0.		-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
QA20190212	BH15_1.5-1.6	211475-1	211475	4	<0.4 10			<0.1	3 27	_			100 -	<50			50 <5			<0.2	<1	<0.1		0.2 <0.		1	-	-	-		1	-		-			-	+ :	-		-	-		
HA01_0.0-0.7 HA01_0.6-0.7	12/02/2019	S19-Fe1694 S19-Fe1693		2.9	0.6 25	23	810	<0.1	25 56	5 <20	<20	<50 <	50 <50	0 <50	<100	<100 <1		0 <20	0 <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 -	-	-	-		-	-	-	-		+:	-	-	+ -	-	-	-	-	
HA02 0.2-1AQ	15/02/2019	S19-Fe2227		-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
HA02 0.5-0.6 TP01 0-1	15/02/2019 12/02/2019	S19-Fe2226 S19-Fe1695	3 640386	-		1	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-		-	-	-	-		
TP01 1-2 AQ TP02 0-1 AQ	12/02/2019 12/02/2019	S19-Fe1695 S19-Fe1695		-		-	-	-		-		-		-	-	-	- -	-	-	-	-	-	-		-	-	-	-	-	- -	-	-	-	-		+ :	-	-	-	-	-	-	-	
TP03 1-2 AQ	12/02/2019	S19-Fe1695	6 640386	-		-	-	-	- -	-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP04 TP04 0.2-0.3	21/02/2019 12/02/2019	S19-Fe2787 S19-Fe1695		5.3	<0.4 14	35	110	<0.1	5.3 16	0 <20	<20	<50 <	50 <50	0 <50	<100	<100 <1	100 <5	0 <20	0 <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0.	.5 0.5	5 <0.5	5 0.607	·5 ^{#6} 0.8	<0.5	<0.5	<0.5	2.3	1 -
TP04 0-1 AQ TP05 1-2 AQ	12/02/2019 12/02/2019	S19-Fe1695 S19-Fe1695		-		-	-	-		-		-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP06 0.0-0.3	12/02/2019	S19-Fe1702	4 640386			-	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		
TP06 1-1.9 AQ TP07 0-1 AQ	12/02/2019 12/02/2019	S19-Fe1702 S19-Fe1696		+ :		+:	-	-		-	+ : +	-		-	-	-	: :	-	+ :	-	-	-	-		+ :	+ :	-	-	-		+ -	-	-	-		+:	-	+ :	+ :	-	-	-	-	
TP07 3.4-3.5 TP08	12/02/2019 21/02/2019	S19-Fe1696 S19-Fe2787		7.6	<0.4 8.1	10	36	<0.1	6.2 18	0 <20	<20	<50 <	50 <50	0 <50	<100	<100 <1	100 <5	0 <20	<20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0	.5 0.6	1.2	<0.5	<0.5	- <0.	5 <0.	.5 <0.5	5 <1.21	^{#10} <0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 -
TP08 0.5-0.6	12/02/2019	S19-Fe1696	3 640386	6.9	<0.4 6.2	<5	7.6	<0.1	<5 5.5	5 <20	<20	<50 <	50 <50	0 <50	<100	<100 <1	100 <5	0 <20) <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 -	-	-	-		+ -	-		-		+:	<u> </u>	+ :	+:		-	-		
TP08 1-2.5 AQ TP09 1 1.1	12/02/2019	S19-Fe1696 S19-Fe1797		- 13	<0.4 15	12	17	0.2	 <5 31	- L <20	<20	- <50 <	50 <50	0 <50	<100	- <100 <1		0 <20	- <20	<0.1	<0.1	<0.1	<0.1	0.2 <0.	3 <0.5	-	-	-	-	- -	-	-	-	-		+ -	-	-		-	-	-	-	
TP09 2_2.5AQ	13/02/2019	S19-Fe1798		-		-	-	-		-		-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	- -	-	-	-	-	- -	1	-	-	<u> </u>	-	-	-	-	
TP10 0_1AQ TP11 0_1AQ	13/02/2019 13/02/2019	S19-Fe1799 S19-Fe1799		-		+ -	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP12 0.6_0.7 TP12 0_0.1	13/02/2019 13/02/2019	S19-Fe1799 S19-Fe1799			<0.4 10				<5 12 												<0.1						-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP12 0_0.5AQ	13/02/2019	S19-Fe1799	9 640517	-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP13 0.5_1AQ TP14 0.5_0.6	13/02/2019 13/02/2019	S19-Fe1800 S19-Fe1800			<0.4 11				<5 48														<0.1 <				-		-		-	-	-	-		+:	_	+ :	_	-	-	-	-	
TP14 0.5_1AQ TP15 1_2AQ	13/02/2019 13/02/2019	S19-Fe1801 S19-Fe1802																														-	-	-	-	-	-	-	-	-	-	-	-	
TP16 0.1_0.2	13/02/2019	S19-Fe1803	0 640517	14	<0.4 12	5.6	5.5	<0.1	<5 16	<20	<20	<50 <	50 <50	0 <50	<100	<100 <1	100 <5	0 <20	0 <20	<0.1	<0.1	<0.1	<0.1 <	0.2 <0.	3 <0.5	5 -	-	-	-	- -	-	-	-	-		-	-	_	-	-	-	-	-	
TP16 0_1AQ TP16 2.3_2.4	13/02/2019 13/02/2019	S19-Fe1803 S19-Fe1803		19	2.5 20	21	320	0.1	6.8 160	00 <20	<20	<50 <	50 <50	0 <50	<100	<100 <1	100 <5	0 <20) <20	<0.1	<0.1	<0.1	<0.1	0.2 <0.	3 <0.5		-	- 1	-		٠.	-		-					-	-	-	-	-	
TP17 0_1AQ	13/02/2019	S19-Fe1804	0 640517	-		-	-	-		-	- 1	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP17 1_1.1 TP18	13/02/2019 21/02/2019	S19-Fe1803 S19-Fe2787		3.4	<0.4 9.7	- 11	-	- <0.1		0 <20	-	- 4		- 0	-	- 2			-	<0.1	<0.1	<0.1	- <0.1		3 <0.5	-	-	-	-		-	-	-	-		+ -	-	-				-	-	
TP18 1.2-1.3 TP18 1-2 AQ	14/02/2019 14/02/2019	S19-Fe1884 S19-Fe1884			<0.4 11																																							
TP19 0-1 AQ	14/02/2019	S19-Fe1884	4 640636	-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
TP20 0-1 AQ TP20 2-2.5 AQ	14/02/2019 14/02/2019	S19-Fe1884 S19-Fe1884		-		-	-	- 1		-	- 1	-		-	-	-		-	-	-	-	-	-		-	-	-					-	$\overline{}$	-		+:	+ -	+ :	-	-	-	-	-	
TP21 0-0.5 AQ TP22 0.1-0.2	14/02/2019 14/02/2019	S19-Fe1884 S19-Fe1884	7 640636	-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-		-	- -	-	-	-	-		-	-	-	-	-	-	-	-	
TP22 0.4-1 AQ	14/02/2019	S19-Fe1884	9 640636	-	<0.4 <5	-	-	-		-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	- -	-	-	-	-		-	-	-	-	-		-	-	
QA1402 QC1402	14/02/2019 14/02/2019	S19-Fe1885 211532-1																					-											-					-	_	-	-	-	
TP22 1.2-1.3	1.2-1.3 14/02/2019	Clayey Sand S19-Fe1885	d 14/02/2019	<2	<0.4 5.1 <0.4 <5	<5	<5	<0.1	<5 <5	-	- 1	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	- -	-	-	-	-		-	-	-	+:	-	-	-	-	
TP23 0.6-0.7 TP23 0-0.3 AQ	14/02/2019	S19-Fe1885 S19-Fe1885																																					-					

													Organochlo	ine Pesticide	5										F	Polychlorin	ated Biphe	enyls		Chlorinated Benzenes							Asbestos				
		-6																																							
	JBS	अ ट																																							
•						otal						fa																				_	, <u>,</u>								
						Į,						6																				Š	=		_					Ā	
						Ĕ						١			و ا															9	ass	Ξ.	8	}	Ş		4		4	₹ 8	* 99
						ii (S		e				š		- E	g 6		ane	<u>.</u>			ž									z en	<u>Σ</u>	δ	ď.		<u> </u>		Ē		Ē	Ē	Soll 8/k
						e d		P P				5		g	ğ ğ		l of	¥	e ,	_ 4	Đ	흗		19	1221	1242	1248	1254	<u> </u>	oper	ᇤ	E	. E		Ş		s tos		Sto.	stos	stos
				ا سا		ā		음 모	a e			_ #	<u>۶</u>	#	<u> </u>		호	ğ	ğ ğ	를 :	ē ē	× ×	ਵੁੱ 9	5	2 2	1 1	1 5	12 13	Pa	e o c	S.	os	os #	S 3	egs	< │	lsbe	<u>u</u>	spe	spe	l S be
				8	틀	<u>-</u> E	<u> </u>	1 - P - P - P - P - P - P - P - P - P -	P	۰	_E :	통 문	1 ta	98	20 g	£	ĝ	듄	튜	pta	da pra	£	g -	8	8 8	8 8	8	8 8	B C	xact	ĝ	pest	est	ss	ss	SS	ss	ss /	ss	ss /	ta best
				4,	¥	¥	- a	9 a	5	8	8	<u> </u>	- 8	<u> </u>	<u> </u>	<u>=</u>	- E	<u>.</u>	<u> </u>	울 :	로 크	Š	<u> </u>	¥	¥ 4	¥ .	¥.	4 4	2	<u> </u>	Α	. As	s	Σ̈́	Σ	Š	Š	Š	Š	Š	<u> </u>
FOI					mg/kg 0.05			mg/kg mg/			0.05 0				mg/kg mg/ 0.05 0.0								1 0							mg/kg 0.05	g	%w/w	%w/w	g	g	g	g	g	g	g Co	omment g/kg
NSW EPA 2014 G	eneral Solid Waste (wi	rith leached)		0.03	0.03	0.03	0.03	0.0	15 0.1	0.03	0.03	.05 0.0.	0.03		108 10			0.03	0.05	.05 0.	.03 0.03	0.03	1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.	50-0	0.03											
NSW EPA 2014 Re	estricted Solid Waste ((with leached)													432 43														50-0												
Field ID BH01 0-1M	11/02/2019	SampleCode S19-Fe14849	Report Number 640095			Τ.	Τ.	T . T .		Τ.	T . T		Τ.	. I		Τ.	T . T			.		Τ.	T . T	.						_	824	0	0	0	0	0	0	0	0	0	
BH02 0.1-0.2	11/02/2019	S19-Fe14850	640095	-	-		+ :		+:	+:	+ : +	: :	+ :	1 : 1		+:	+ : +	-	-	-		+ :	+ : +	-			+ :		+ -	-	- 024	-	-	-	-	-	-	-	-	-	
BH02 1-2	11/02/2019	S19-Fe14851	640095	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-			-	735	0	0	0	0	0	0	0	0	0	
BH03 0-0.1	11/02/2019	S19-Fe14852	640095	<0.05	<0.05						-	0.05 <0.0			<0.05 <0.					-	0.05 <0.05			_	-	0.1 <0.1			.1 <0.1	<0.05	-	-	-	-	-	-	-	-	-	-	
QC20181102	BH03 0-0.1	S19-Fe14861	640095		<0.05							0.05 <0.0			<0.05 <0.0						0.05 <0.05			-		0.1 <0.1		<0.1 <0	.1 <0.1	<0.05	-	-		-	-	-	-	-		-	
QA20181102 BH03 0-1	BH03 0-0.1 11/02/2019	211362-1 S19-Fe14854	211362 640095	- 0.1	<0.1	<0.2#10	- 10.1	<0.1 <0.		<0.1	<0.1 <	0.1 <0.1	l <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	- "	0.1 <	0.1 <0.1	<0.1	+ - + -	<0.1	<0.1 <0	0.1 <0.1	<0.1		.1 <0.1	<0.1	598	0	0	0	0	0	0	0	0	0	
BH03 2.5-2.6	11/02/2019	S19-Fe14853	640095	-	-	-	-	1 - 1 -	T -	-			-	- 1		T -	1 - 1	- 1	-	-		-	1 - 1	-		. -	-		- 1	-	-	-		-	-	-	-	-	\div	-	
BH04 0-1	11/02/2019	S19-Fe14855	640095	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	619	0	0		-		0	0	-	0	
BH05 0.5-0.6	11/02/2019	S19-Fe14857	640095			- 0.07				1 -0.05							-							-			-				620	0	0	0	0	0	0	0	0	0	- -
BH05 0-0.1 BH05 1.5-1.6	11/02/2019 11/02/2019	S19-Fe14856 S19-Fe14858	640095 640095	<0.05	<0.05	0.07	<0.05	- <0.0	05 <0.	1 <0.05	<0.05 0	.07 <0.0	5 <0.05	<0.05	<0.05 <0.0	5 <0.05	+ : +	<0.05 <	:0.05 <0	0.05 <0	0.05 <0.05	<0.05	41	-			+ :			<0.05	-			-	-	-	-	-	\div	-	- -
BH06 0.2-0.5	11/02/2019	S19-Fe14860	640095	-	-	-	-	1 - 1 -	-	-			-	- 1		-	1 - 1	-	-	-		-	1 - 1	- 1			-			-	699	0.0704	0	6.155 0.4	1924	0	0	0	0	0	
BH07 0.2-0.3	11/02/2019	S19-Fe14859	640095	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	- <	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0	.1 <0.1	-	668	0	0	0	0	0	0	0	0	0	
BH07 0.5-0.6	11/02/2019	S19-Fe14896	640095	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	578	0	0			0	0	0		0	
BH08_0.5-0.6 BH09 1.5-1.6	12/02/2019	S19-Fe16941 S19-Fe16942	640386 640386	<0.05	<0.05	<0.05	<0.05	- <0.0	05 <0.	1 <0.05	<0.05 <0	0.05 <0.0	5 <0.05	<0.05	<0.05 <0.0	5 <0.05	1 - 1	<0.05 <	:0.05 <0	0.05 <0	0.05 <0.05	<0.05	<1	-			-			<0.05	658 582	0	0		0	0	0	0	_	0	
BH10_0.5-0.6	12/02/2019	S19-Fe16943	640386	-	-	-	-		-	+ -	-		-	-		+ -	1 - 1	-	-	-		-	- 4	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0	.1 <0.1	-	584	0	0		-		0	0	_	0	
BH10_1.5-1.6	12/02/2019	S19-Fe16944	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	644	0	0			0	0	0	0	0	
BH10_1.9-2.0	12/02/2019	S19-Fe16945	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	-	-	-	-	-	-	-	-	-	-	
BH11_0.5-0.6	12/02/2019 12/02/2019	S19-Fe16946 S19-Fe16947	640386 640386	-	-	-	-	 	 -	-	 • 		+ -		- -	+ -	+ - +	-	-	-	- -	+ -	+ - +	-	- -	- -	-	· ·	-	-	800 617	0	0		-	-	0	0		0	- -
BH12_0.2-0.5 BH13_1.5-1.6	12/02/2019	S19-Fe16948	640386	-	-	H :-	+	+	+:	+ :	+ : +	: :	+ -	+ - +		+ :	+ - +	-	-	-		+:	+ : +	-			+ -		+ -	-	608	0	0	-	-		0	0		0	
BH15_0.5-0.6	12/02/2019	S19-Fe16951	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	632	0	0	0	0		0	0		0	
BH15_1.5-1.6	12/02/2019	S19-Fe16952	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	681	0	0				0	0		0	
QC20190212 QA20190212	BH15_1.5-1.6 BH15_1.5-1.6	S19-Fe16949 211475-1	640386 211475	-	-	-	+ -	1 : 1 :	+ :	+ :	+ : +		+ -			+ :	+ - +	-	-	-		+ :	+ : +	-			-			-	608	- 0	- 0	0	0	0	0	0	0	0	0 <0.1
HA01_0.0-0.7	12/02/2019	S19-Fe16940	640386	-	-	-	-	1 - 1 -	<u> </u>	-	T - T		T -	- 1		T -	1 - 1	-	-	-		-	1 - 1	-			-		1	-	523	0	0	0	0	0	0	0	0	0	
HA01_0.6-0.7	12/02/2019	S19-Fe16939	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	-	-		-	-	-	-	-	-	-	
HA02 0.2-1AQ	15/02/2019	S19-Fe22270	641092 641092	-	-	-	-		-	-			-		- -	-		-	-	-	- -	-	•			 0.5 <0.5	<0.5		.5 <0.5	-	516	0	0	0	0	0	0	0	0	0	
HA02 0.5-0.6 TP01 0-1	15/02/2019 12/02/2019	S19-Fe22268 S19-Fe16953	641092	-	-	-	+ -		+ :	+ :			+ :			+ :	+ - +	-	-	-		+ :	- 4	<0.5	<0.1 <0	0.5 <0.5	- <0.5	<0.5 <0	.5 <0.5	-	892	0	- 0	0	0	0	0	0	0	0	
TP01 1-2 AQ	12/02/2019	S19-Fe16954	640386	-	-	-	-	1 - 1 -	T -	-			-	- 1		T -	1 - 1	-	-	-		-	1 - 1	-		. -	-		- 1	-	712	0	0			0	0	0		0	
TP02 0-1 AQ	12/02/2019	S19-Fe16955	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	931	0	0		_	_	0	0		0	
TP03 1-2 AQ TP04	12/02/2019 21/02/2019	S19-Fe16956 S19-Fe27877	640386 641755	-	-	-	-	<u> </u>	-	-	<u> </u>		+ -	-		+ -	 - 	-	-	-		+ -	+ -	-	- -	- -	-		-	-	726 30	0	0		_	-	0	0		0	
TP04 0.2-0.3	12/02/2019	S19-Fe16957	640386	<0.05	<0.05	<0.05	<0.05	- <0.0	05 <0.	1 <0.05	<0.05 <0	0.05 <0.0	5 <0.05	<0.05	<0.05 <0.	5 <0.05	+ : +	<0.05 <	:0.05 <0	0.05 <0	0.05 <0.05	<0.05	<1	-			+ :		+ -	<0.05	-	-	-	-	-	-	-	-	-	-	
TP04 0-1 AQ	12/02/2019	S19-Fe16958	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-			-	915	0	0	0	0	0	0	0	0	0	
TP05 1-2 AQ	12/02/2019	S19-Fe16959	640386	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	727	0	0		_		0	0		0	
TP06 0.0-0.3 TP06 1-1.9 AQ	12/02/2019	S19-Fe17024 S19-Fe17026	640386 640386	-	-	-	-		 -	+ -		- -	-		- -	+ -	 • 	-	-	-	- -	+ -	+ - +	-	- -	- -	-		-	-	701 738	0	0		0		0	0	_	0	
TP07 0-1 AQ	12/02/2019	S19-Fe16961	640386	-	-	H	+:		+ :	+ :			+ :			+ :	+ : +	-	-	-		+ :	+ : +	-			1			-	786	0	0					0	_	0	- -
TP07 3.4-3.5	12/02/2019	S19-Fe16962	640386	-	-	-	-		-	-	- 1		-	- 1		-	1 - 1	-	-	-		-		-			-		- 1	-	-	-	-	-	-	-	-	-	-	-	
TP08	21/02/2019	S19-Fe27878	641755	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	35	0	0	0	0	0	0	0	0	0	
TP08 0.5-0.6 TP08 1-2.5 AQ	12/02/2019	S19-Fe16963 S19-Fe16964	640386 640386	-	-	-	-		-	-			+ -		- -	+ -	 	-	-	-	- -	+ -	+ - +	-	- -	- -	-	· · ·	-	-	714	- 0	- 0	0	0	0	0	0	0	0	
TP09 1 1.1	13/02/2019	S19-Fe17979	640517	-	-	H	+-	+	+ :	+ :	+ : +	: :	+ :			+ :	+ - +	-	-	-		+ :	+ : +	-			+ -		+ -	-	-	-	-	-	-	-	-	-	-	-	
TP09 2_2.5AQ	13/02/2019	S19-Fe17984	640517	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	743	0	0	0	0	0	0	0	0	0	
TP10 0_1AQ	13/02/2019	S19-Fe17990	640517	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	696	0	0				0	0		0	
TP11 0_1AQ TP12 0.6_0.7	13/02/2019 13/02/2019	S19-Fe17994 S19-Fe17996	640517 640517	-	-	-	-		 -	-			+ -			+ -	-	-	-	-		+ -	+ - +	-	- -	- -	-	· ·	-	-	700	0	0	0	0	0	0	0	0	0	- -
TP12 0_0.1	13/02/2019	S19-Fe17995	640517	<0.05	<0.05			- <0.0														<0.2	<1	-			+ -		+ -	<0.05	-	-		-	-	-	-	-	\div	-	
TP12 0_0.5AQ	13/02/2019	S19-Fe17999	640517	-	-	-	-		-	-	-		-	-		-	- 1	-	-	-		-	-	-		- -	-		- 1	-	860	0	0	0		0	0	0	0	0	
TP13 0.5_1AQ	13/02/2019	S19-Fe18006	640517	-	-	-	-		-	-			-	-		-	-	-	-	-		-	-	-			-		-	-	846	0							0	0	
TP14 0.5_0.6	13/02/2019	S19-Fe18009	640517	-			-		-									-			- -			-	- -		-	- -	-	-				-							- -
TP14 0.5_1AQ TP15 1_2AQ	13/02/2019	S19-Fe18015 S19-Fe18028	640517 640517																											-									0		
TP16 0.1_0.2	13/02/2019	S19-Fe18030	640517					1 - 1 -											-					-					1	-				-							
TP16 0_1AQ	13/02/2019	S19-Fe18033	640517	-	-	-	-		-	-			-	_					-			_					-		-	-				0		0	0	0	0	0	
TP16 2.3_2.4	13/02/2019	S19-Fe18032	640517	-	-	-	-		_	-						-	-			-		-	-	-			-			-				-		-		-		-	- -
TP17 0_1AQ TP17 1_1.1	13/02/2019	S19-Fe18040 S19-Fe18037	640517 640517	-	-	-	+ -									+ :			-	-		-	+ : +	-			-		-	-				-		-				0	
TP18	21/02/2019	S19-Fe27879	641755	-																				-	-	-			1	-									0		
TP18 1.2-1.3		S19-Fe18842	640636																										-	-	-	-	-	-	-	-	-	-	-		
TP18 1-2 AQ		S19-Fe18843	640636																										1 - 1	-				0						0.013	- -
TP19 0-1 AQ TP20 0-1 AQ	14/02/2019 14/02/2019	S19-Fe18844 S19-Fe18845	640636 640636																										+ - +	-									0 0.0011 0.0		
TP20 2-2.5 AQ	14/02/2019	S19-Fe18846	640636					1 : :															+ : +			. -	1		1 : 1	-	592	0	0.0001	0	0	0	0	0		0	
TP21 0-0.5 AQ	14/02/2019	S19-Fe18847	640636	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-	- -	- -	-	- -	- 1	-			0	0						0	
TP22 0.1-0.2	14/02/2019	S19-Fe18848	640636		<0.05	<0.05	<0.05	- <0.0	05 <0.	1 <0.05	<0.05 <0	0.05 <0.0	5 <0.05	<0.05	<0.05 <0.	5 <0.05	-	<0.05 <	:0.05 <0	0.05 <0	0.05 <0.05			- T	- -		-		1 - 1	<0.05	-	-	-	-	-	-	-	-		-	- -
TP22 0.4-1 AQ QA1402	14/02/2019 14/02/2019	S19-Fe18849 S19-Fe18852	640636 640636													-						_		-		_	1 -	 	+ - +	-				0					0	0	
QC1402	14/02/2019	211532-1	211532																					-	-				+	-				-							0 <0.1
TP22 1.2-1.3	1.2-1.3	Clayey Sand	14/02/2019	-	-	-	-		-	-	-		-	-		-	-	-	-	-		-	-	-			-		-	-	-	-	-	-	-	-	-	-	-	-	
TP23 0.6-0.7	14/02/2019	S19-Fe18851	640636																											-				-		-					
TP23 0-0.3 AQ	14/02/2019	S19-Fe18850	640636	-		-	-				-	- -		-	- -		-	-	-	-	- -	-	-	-	- -	- -	1 -	-	-	-	697	U	U	0	U	U	0	0	0	U	

Table F : Summary of TCLP Leachate Results for Waste Classification Project Number: 55792

Project Name: Opal Seaside Warriewood DSI

A			N	letals & N	/letalloid	;			BTEXN							Polyc	yclic Arom	atic Hydro	carbons								Ionic B	alance	
JBS&G	Arsenic (Total)	Cadmium	Chromium (Total)	Copper	Lead	Mercury (Inorganic)	Nickel	Zinc	Naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b,j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	PAHs (Total)	Pyrene	рН (TCLP - HCl addition)	рН (TCLP - initial)	рН (TCLP - off)	рН (Leachate fluid)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ph Units	ph Units	ph Units	ph Units
_	0.01	0.005	0.01	0.01	0.01	0.001	0.01	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.1	0.1	0.1	0.1
V EPA 2014 General Solid Waste (leached)	5	1			5	0.2	2							0.04															

Field ID	Date	SampleCode	Report Number																													
BH07 0.2-0.3	11/02/2019	S19-Fe15222	640095	<0.01	<0.005	<0.01	<0.01	0.01	<0.001	<0.01	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.001	1.9	6.5	5	5.1
BH10_0.5-0.6	12/02/2019	S19-Fe16967	640386	<0.01	<0.005	<0.01	<0.01	<0.01	<0.001	<0.01	0.06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	2.2	7.5	6.4	5.1
HA01_0.6-0.7	12/02/2019	M19-Fe38322	642983	-	-	-	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	6	5.1	5

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
А	1 x Electronic	Emmanuel Ghali Via email: <u>eghali@midsongroup.com.au</u>	19/03/2019
А	1 x Electronic	John Cole-Clark Via email: John.Cole-Clark@opalagedcare.com.au	19/03/2019
0	1 x Electronic	Emmanuel Ghali Via email: <u>eghali@midsongroup.com.au</u>	03/09/2019
0	1 x Electronic	John Cole-Clark Via email: John.Cole-Clark@opalagedcare.com.au	03/09/2019

Document Status

Rev No.	Author	Reviewer	Approved for Issue		
Rev No.	Author	Name	Name	Signature	Date
А	Kiu Yeung	Greg Brickle	For clients and Auditor's review	For clients and Auditor's review	For clients and Auditor's review
0	Kiu Yeung	Greg Brickle	Greg Brickle	G.Brichle.	03/09/2019

