

PROPOSED RESIDENTIAL DEVELOPMENT GEOTECHNICAL INVESTIGATION REPORT

24 Epacris Avenue, Forestville

22 July 2025

Prepared by: Elite Geosciences Pty Ltd

Project Number: 2025152

Document History

Version	Effective Date	Description of Revision	Prepared by	Approved by
0	16/06/2025	Final	TH	TH
1	22/07/2025	Final	AS	TH

The conclusions in the Report titled Proposed Residential Redevelopment Geotechnical Investigation Report are Elite Geosciences (EG)'s professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which EG was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

EG has assumed all information received from Client and third parties in the preparation of the Report to be correct. While EG has exercised a customary level of judgment or due diligence in the use of such information, EG assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with EG's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, EG disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

. 11

Prepared and Approved by:	yman
	Signature
	Terence Huang
	Printed Name
	Director Principal Geotechnical Engineer
	BEng (Hons) & MEngSC (Geo), MIEAUST, CPEng, NER 3243905
	NSW PDP0001079, DEP0003150, PRE0001948
	Qualifications

Table of Contents

1	INTRODUCTION	1
1.1	Proposed Development	1
2	FINDINGS OF INVESTIGATION	1
2.1	Geological Condition	1
2.2	Fieldwork	
2.3	Site Description	2
2.4	Surface Condition	
2.5	Soil Absorption	2
3	COMMENTS AND RECOMMENDATIONS	3
3.1	General	3
3.2	Excavation Condition	3
3.3	Site Classification and Subgrade Preparation	3
3.4	Temporary Batter Slopes	3
3.5	Structural Footings	
4	LIMITATION	4

Project Number: 2025152

Appendix A – Site Plan

Appendix B – Borehole Logs

1 Introduction

As requested, a principal geotechnical engineer from Elite Geosciences (EG) attended site on 11th June 2025. The purpose of this investigation was to assess the site's surface and subsurface conditions in order to provide recommendations from a geotechnical viewpoint for the design and construction of the proposed residential redevelopment on the existing property. The results of the investigation are detailed below.

1.1 Proposed Development

At the time of preparing this report, we understand that the proposed redevelopment includes:

 Demolition of the existing house and construction of a new double storey duplex with a swimming pool at the rear. No basement is proposed. Pool will incur excavation of up to 1.8m depth bgl.

2 Findings of Investigation

2.1 Geological Condition

Reference to the Geological Map of Sydney (1:100,000) indicates that the site is underlain by Hawkesbury Sandstone, which comprises medium to coarse grained quartz sandstone, very minor shale and laminite lenses.

2.2 Fieldwork

Fieldwork for the geotechnical investigation was carried out on 11th June 2025 and comprised the following:

- A detailed walkover inspection of the site and surrounds.
- Drilling of a total of four (4) boreholes (BH1 and BH4) within the footprint of the proposed development, using manual hand auger equipment taken to refusal depths of up to 1m.
- In-situ testing using a Dynamic Cone Penetrometer (DCP) was conducted next to each borehole. DCP tests were undertaken to refusal depths of up to 2.4m depth in order to determine the underlain soil density and depths of weathered sandstone bedrock.
- Permeability tests at selected boreholes (BH3 and BH4) to assess the soil absorption rate.

The approximate borehole and DCP test locations are shown on the enclosed Borehole and DCP Test Location Plan referenced Figure 1 in Appendix A.

2.3 Site Description

The following site observation were made:

- The site is rectangular in shape and is currently occupied by a two storey house at the southern half of the site.
- The site is bounded by Epacris Ave to the south, and residential properties to the other sides.
- Site dips down north-west at about 8-12 degrees.

2.4 Surface Condition

Based on the observations from the geotechnical investigation, the sub surface profile within the footprint of the proposed development can be generalised as follows:

- Topsoil and Fill Silty Clay, low to medium plasticity, dark brown to brown, with gravel and sand, up to 0.2m thick, overlying,
- Residual Sandy Clay, medium plasticity, brown and pale grey, with gravel, overlying weathered sandstone at about 2.4m depth bgl at the backyard.

The encountered subsurface materials and their relative strengths have been recorded and logged as Engineering Log of Boreholes and on a Penetration Resistance of Soil Test Sheet. These have been enclosed in Appendix B.

Groundwater table or seepage was not encountered in any of the boreholes during drilling to shallow depths of not more than about 1m below existing ground surface levels. It should be noted however, that variations in ground water seepage flows may occur due to variations in rainfall duration and intensity. It is anticipated the proposed pool excavation and earthwork may not intersect with the groundwater table. However, it is possible that minor localised seepage/inflow may occur within interface of soils and rocks and fractures/defects of rock if it encounters an intense and prolonged rainfall during any excavation.

2.5 Soil Absorption

After the completion of the auguring in BH3 and BH4, permeability tests were carried out to estimate the rate of permeability in the underlain soil. The table below provides the test results in each borehole.

Table 1 - Permeability Test Results

BH ID	Permeability Rate (m/day)	Degree of Permeability	Absorption Capacity (L/m²/s)
вн3	3.2	Low to Medium	0.0090
BH4	2.4	Low to Medium	0.0089

The subject residual materials comprising Silty Clay have a related low to medium rate of permeability rate of between 2.4-3.2 m/day which is considered suitable for an infiltration system at the proposed backyard location. With reference to the Water NSW spec, the site can be classified as Heavy Clay of Massive. The infiltration system and area (where required) should be designed by a qualified civil engineer.

3 Comments and Recommendations

3.1 General

It is understood that the proposed development comprises construction of a new double storey duplex with a swimming pool at the rear. No basement is proposed. Pool will incur excavation of up to 1.8m depth bgl.

3.2 Excavation Condition

We expect overburden soils comprising topsoil, natural residual and highly weathered sandstone (up to 3m depth) to be readily excavated by conventional earthworks equipment such as excavators. Ripping or hammering will not be required. Therefore, the induced vibration and noise impact to the adjoining properties will be minimal.

3.3 Site Classification and Subgrade Preparation

Based on the results of this investigation, we consider that the subsurface conditions comprise topsoil overlying medium plasticity residual clay materials. A site classification of "Class M – Moderately reactive clay or silt site, which may experience moderate ground movement from moisture change" can be adopted (if applicable) for footings constructed in accordance with AS2870-2011.

The following site preparation measures are recommended:

- Remove all topsoil fill, foundations/ slabs and deleterious materials (including roots/vegetation);
- Proof roll and compact the exposed subgrade to at least 98% MMDD at +/- 2% OMC. Where
 the proof roll reveals soft-spots these should be excavated and replaced with approved
 engineering fill;

3.4 Temporary Batter Slopes

Temporary batter slopes may be appropriate for the proposed excavation provided the batters do not encroach into the zone of influence of the existing adjacent structures. Temporary batter slopes, where applicable, may be adopted during excavation of the soils. Permanent batter slopes are not recommended. For unsupported cuts in topsoil, fill and overburden soils, the recommended temporary batter slopes are presented in the following Table 1.

TABLE 1
RECOMMENDED TEMPORARY BATTER SLOPES FOR UNSUPPORTED CUTS
(Not exceeding 3.0m in height)

Material	Temporary (Horizontal : Vertical)			
	Exposed	Protected		
Topsoil, fill and overburden soils	1.25 :1	1 :1		
Weathered Sandstone	Vertical	Vertical		

Proposed Residential Development Geotechnical Investigation Report 24 Epacris Avenue, Forestville

Temporary surface protection against erosion may be provided by covering the batters with plastic sheeting. It should be noted however, that the plastic sheeting should extend at least 1.5m behind the crest of the cut face.

3.5 Structural Footings

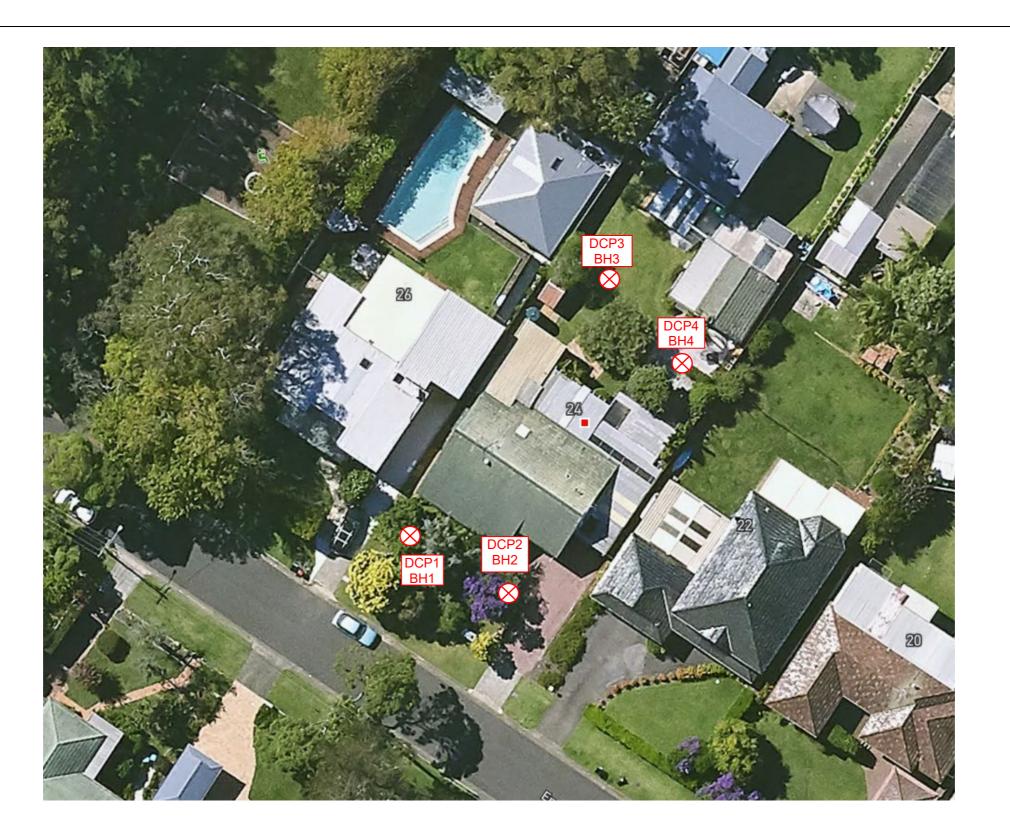
Pier footings are recommended to socket min. 0.3m into the underlain weathered sandstone which could be designed for a serviceability end bearing capacity of 700kPa. Based on the DCP test results, weathered sandstone was found at about 2.4m depths bgl.

It is recommended that all footings for the proposed development be founded on uniform bearing materials to minimise the potential for differential settlements.

We recommend that footing inspections be carried out by a Geotechnical Engineer / consultant during footing excavation to confirm appropriate founding materials, that the recommended serviceability bearing pressures could be met and to ensure that all soft and wet materials have been removed from the foundation footprint prior to concrete placement.

4 Limitation

Assessment of the sub-surface profile at the site and the recommendations presented in this report are based on information from four (4) boreholes, drilled at locations considered representative across the site, and DCP testing at four (4) locations. Based on the results of the investigation and subsurface variability, there is a possibility that actual geotechnical conditions across the site could differ from the inferred geotechnical model presented in this report.


This report contains geotechnical parameters to be used as input for the structural design of footings and retaining walls. On-going geotechnical input is required to ensure recommendations provided in this report are followed and that actual ground conditions reflect those indicated in this report.

Project Number: 2025152

Appendix A Site Plans

OCP TEST LOCATION

	TITLE:	24 Epacris Avenue, Forestville – Geotechnical Investigation					
ELITE GEOSCIENCES	PROJECT NO:	TEST DATE:	PREPARED BY:				
	2025152	16/06/2025	тн				

Appendix B Borehole Logs

PENETRATION RESISTANCE OF SOIL TEST FIELD SHEET

ELITE GEOSCIENCES

Project:						-	Project	No.	•		Testii	ng Туре					
Proposed Red	evelopr	nent					202515	2		Dynamic Cone Penetromet		ometer	(DCP))	`	
Client:							Test By	/ :		D	ynamic	Perth Sand Per	etrome	ter (PS	P)		
Aform							AS										
Location:							Date:		•	Locati	on:			Sheet	:		
24 Epacris Ave	enue, F	orestvil	lle				16/06/	/2025	25	Refer t	o Site I	Plan			•	1	
		1		1	1			1								-	
DCP No.	DCP1	DCP2	DCP3	DCP4													
Penetration (mm)	Num	ber of I Pe	Blows netrati) mm	Penetration (mm)	Numl	ber of E Pe	Blows netrati		mm						
100	1	1	1	1		2500											
200	2	1	2	2		2600											
300	2	2	2	3		2700											
400	2	3	3	3		2800											
500	2	3	3	3		2900											
600	8	3	3	4		3000											
700	7	3	4	4		3100											
800	4	3	5	5		3200											
900	4	5	5	6		3300											
1000	7	5	6	6		3400											
1100	6	6	6	7		3500											
1200	6	6	7	6		3600											
1300	5	7	7	7		3700											
1400	6	7	8	7		3800											
1500	6	8	8	6		3900											
1600	6	9	8	7		4000											
1700	7	9	9	8		4100											
1800	7	9	10	8		4200											
1900	8	9	11	9		4300											
2000	9	11	12	10		4400											
2100	11	12	13	11		4500											
2200	12	12	13	12		4600											
2300	13	12	14	13		4700											
2400	R	R	R	R		4800											
		Test	Proced	dure: A	S 1289	.6.3.2											

EXCAVATION - GEOLOGICAL LOG PIT NO: BH1 FILE / JOB NO : 2025152 PROJECT: Proposed House SHEET: 1 OF 1 LOCATION: 24 Epacris Avenue, Forestville **POSITION** SURFACE ELEVATION: EQUIPMENT TYPE: Hand Auger METHOD: Hand Auger DATE EXCAVATED: 11/06/2025 LOGGED BY: TH CHECKED BY: TH **EXCAVATION DIMENSIONS:** DRILLING MATERIAL 100 HAND 200 SPENETRO-300 & METER GROUND WATER LEVELS ASSIFICATION MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY SAMPLES & FIELD TEST GRAPHIC LOG PENETRATION DEPTH (m) SUPPORT MATERIAL DESCRIPTION STRUCTURE & Other Observations SYMBOL Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL (FILL) Sitty CLAY: low to medium plasticity, brown to dark brown, with gravel and sand, minor roots STABLE RESIDUAL SOIL Sandy CLAY: medium plasticity, brown and pale grey, with gravel ٩ 0.5 D St to VSt CI EXCAVATION BH1 TERMINATED AT 1.00 m 1.5 2.0 2.5 3.0 3.5 4.0 5.0 PHOTOGRAPHS NOTES NO NO YES CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION <u>_____</u> - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample St VSt BH Backhoe Bucket - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M - Moist W - Wet 10 Oct., 73 Water Level on Date shown - Loose - Medium Dense - Dense - Very Dense VS Vane Shear; P-Peak, MD D VD SUPPORT water inflow R-Remouded (uncorrected kPa Timbering PBT - Plate Bearing Test water outflow See Explanatory Notes for ELITE GEOSCIENCES PTY LTD details of abbreviations & basis of descriptions.

REV1.3.GLB Log RTA EXCAVATION 80021082.GPJ

EXTERNAL

EXCAVATION - GEOLOGICAL LOG PIT NO : **BH2** FILE / JOB NO : 2025152 PROJECT: Proposed House SHEET: 1 OF 1 LOCATION: 24 Epacris Avenue, Forestville **POSITION** SURFACE ELEVATION: EQUIPMENT TYPE: Hand Auger METHOD: Hand Auger DATE EXCAVATED: 11/06/2025 LOGGED BY: TH CHECKED BY: TH **EXCAVATION DIMENSIONS:** DRILLING MATERIAL 100 HAND 200 SPENETRO-300 & METER GROUND WATER LEVELS ASSIFICATION MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY SAMPLES & FIELD TEST GRAPHIC LOG PENETRATION DEPTH (m) SUPPORT MATERIAL DESCRIPTION STRUCTURE & Other Observations SYMBOL Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL (FILL) Sitty CLAY: low to medium plasticity, brown to dark brown, with gravel and sand, minor roots STABLE RESIDUAL SOIL Sandy CLAY: medium plasticity, brown and pale grey, with gravel ٩ 0.5 D St to VSt CI EXCAVATION BH2 TERMINATED AT 1.00 m 1.5 2.0 2.5 3.0 3.5 4.0 5.0 PHOTOGRAPHS NOTES NO NO YES CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION <u>_____</u> - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample St VSt BH Backhoe Bucket - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M - Moist W - Wet 10 Oct., 73 Water Level on Date shown - Loose - Medium Dense - Dense - Very Dense VS Vane Shear; P-Peak, MD D VD SUPPORT water inflow R-Remouded (uncorrected kPa Timbering PBT - Plate Bearing Test water outflow See Explanatory Notes for ELITE GEOSCIENCES PTY LTD details of abbreviations & basis of descriptions.

REV1.3.GLB Log RTA EXCAVATION 80021082.GPJ

EXTERNAL

EXCAVATION - GEOLOGICAL LOG PIT NO : **BH3** FILE / JOB NO : 2025152 PROJECT: Proposed House SHEET: 1 OF 1 LOCATION: 24 Epacris Avenue, Forestville **POSITION** SURFACE ELEVATION: EQUIPMENT TYPE: Hand Auger METHOD: Hand Auger DATE EXCAVATED: 11/06/2025 LOGGED BY: TH CHECKED BY: TH **EXCAVATION DIMENSIONS:** DRILLING MATERIAL 100 HAND 200 SPENETRO-300 & METER GROUND WATER LEVELS ASSIFICATION MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY SAMPLES & FIELD TEST GRAPHIC LOG PENETRATION DEPTH (m) SUPPORT MATERIAL DESCRIPTION STRUCTURE & Other Observations SYMBOL Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL (FILL) Sitty CLAY: low to medium plasticity, brown to dark brown, with gravel and sand, minor roots STABLE RESIDUAL SOIL Sandy CLAY: medium plasticity, brown and pale grey, with gravel ٩ 0.5 D St to VSt CI EXCAVATION BH3 TERMINATED AT 1.00 m 1.5 2.0 2.5 3.0 3.5 4.0 5.0 PHOTOGRAPHS NOTES NO NO YES CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION <u>_____</u> - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample St VSt BH Backhoe Bucket - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M - Moist W - Wet 10 Oct., 73 Water Level on Date shown - Loose - Medium Dense - Dense - Very Dense VS Vane Shear; P-Peak, MD D VD SUPPORT water inflow R-Remouded (uncorrected kPa Timbering PBT - Plate Bearing Test water outflow See Explanatory Notes for ELITE GEOSCIENCES PTY LTD details of abbreviations & basis of descriptions.

REV1.3.GLB Log RTA EXCAVATION 80021082.GPJ

EXTERNAL

EXCAVATION - GEOLOGICAL LOG PIT NO : **BH4** FILE / JOB NO : 2025152 PROJECT: Proposed House SHEET: 1 OF 1 LOCATION: 24 Epacris Avenue, Forestville **POSITION** SURFACE ELEVATION: EQUIPMENT TYPE: Hand Auger METHOD: Hand Auger DATE EXCAVATED: 11/06/2025 LOGGED BY: TH CHECKED BY: TH **EXCAVATION DIMENSIONS:** DRILLING MATERIAL 100 HAND 200 SPENETRO-300 & METER GROUND WATER LEVELS ASSIFICATION MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY SAMPLES & FIELD TEST GRAPHIC LOG PENETRATION DEPTH (m) SUPPORT MATERIAL DESCRIPTION STRUCTURE & Other Observations SYMBOL Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components 0.0 FILL (FILL) Sitty CLAY: low to medium plasticity, brown to dark brown, with gravel and sand, minor roots STABLE RESIDUAL SOIL Sandy CLAY: medium plasticity, brown and pale grey, with gravel ٩ 0.5 D St to VSt CI EXCAVATION BH4 TERMINATED AT 1.00 m 1.5 2.0 2.5 3.0 3.5 4.0 5.0 PHOTOGRAPHS NOTES NO NO YES CLASSIFICATION SYMBOLS & CONSISTENCY/ PENETRATION SAMPLES & FIELD TESTS METHOD RELATIVE DENSITY SOIL DESCRIPTION <u>_____</u> - Very Soft - Soft - Firm Based on Unified VS U50 - Undisturbed Sample Natural Exposure No Resistance Classification System 50 mm diameter Existing Excavation Disturbed Sample St VSt BH Backhoe Bucket - Stiff MOISTURE - Very Stiff - Hard - Very Loose В **Bulk Disturbed Sample** Bulldozer Blade H VL MC Moisture Content Ripper WATER D - Dry Hand Penetrometer (UCS kPa) M - Moist W - Wet 10 Oct., 73 Water Level on Date shown - Loose - Medium Dense - Dense - Very Dense VS Vane Shear; P-Peak, MD D VD SUPPORT water inflow R-Remouded (uncorrected kPa Timbering PBT - Plate Bearing Test water outflow See Explanatory Notes for ELITE GEOSCIENCES PTY LTD details of abbreviations & basis of descriptions.

REV1.3.GLB Log RTA EXCAVATION 80021082.GPJ

EXTERNAL

Spreadsheet Prepared by: TH

Spre

Job No. : 2025152 Project : Proposed Duplex

Borehole: BH3 Test No. 1

Date: 21/7/2025

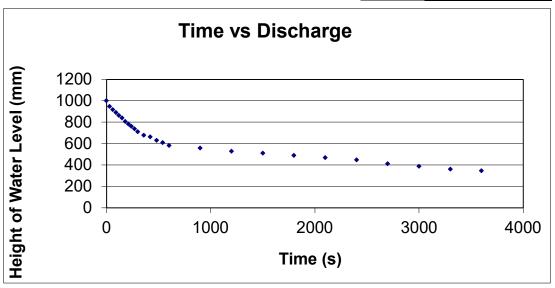
Field Falling Head Permeability Calculation

As per AS1547-1994

Falling Head

Enter the following test result values

Test hole radius	R(m)=	0.068
Test starting depth (top of hole)	H1(m)=	1.000
Test finishing depth	H2(m)=	0.345
Starting time	T1(sec)=	0.00
Finishing time	T2(sec)=	3600.00
	Ttotal(sec)=	3600.00


P = 3.7E-05 m/sec

P= 3.2E+00 m/day

Test hole Diamater (m)	0.1360
Test hole Perimeter (m)	0.4273
Test Hole Cross Sectional Area (m²)	0.0145
Water Level Drop during test (m)	0.6550
Wetted Area (m2)	0.2944
Volume of Water (m³)	0.0095
Test Duration (s)	3600
Absorption Capacity (m³/m²/s)	8.98E-06
Absorption Capacity (L/m²/s)	0.0090
Absorption Capacity (L/m²/d)	775.7329463

Depth of Borehole	1	m
Deptil of Boleliole		ш

Time Elapsed (s) Height of water from top of Hole (mm) 0 0 1000 30 52 948 60 83 917 90 111 889 120 138 862 150 162 838 180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2200 589 411 3000 612 388 3300 638 362 3600 655 345			
30 52 948 60 83 917 90 111 889 120 138 862 150 162 838 180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 638 362		water from top	Water from Base of Bole
60 83 917 90 111 889 120 138 862 150 162 838 180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 638 362	0	0	1000
90 111 889 120 138 862 150 162 838 180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 638 362	30	52	948
120 138 862 150 162 838 180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	60	83	917
150 162 838 180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	90	111	889
180 193 807 210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	120	138	862
210 218 782 240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	150	162	838
240 238 762 270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	180	193	807
270 263 737 300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	210	218	782
300 290 710 360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	240	238	762
360 321 679 420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	270	263	737
420 338 662 480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	300	290	710
480 369 631 540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	360	321	679
540 392 608 600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	420	338	662
600 418 582 900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	480	369	631
900 442 558 1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	540	392	608
1200 472 528 1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	600	418	582
1500 491 509 1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	900	442	558
1800 510 490 2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	1200	472	528
2100 532 468 2400 552 448 2700 589 411 3000 612 388 3300 638 362	1500	491	509
2400 552 448 2700 589 411 3000 612 388 3300 638 362	1800	510	490
2700 589 411 3000 612 388 3300 638 362	2100	532	468
3000 612 388 3300 638 362	2400	552	448
3300 638 362	2700	589	411
	3000	612	388
3600 655 345	3300	638	362
	3600	655	345

Depth of Borehole

3600

Spreadsheet Prepared by:

2025152 Job No.: Proposed Duplex Project :

Borehole: BH4 Test No.

Date: 21/7/2025

Field Falling Head Permeability Calculation

As per AS1547-1994

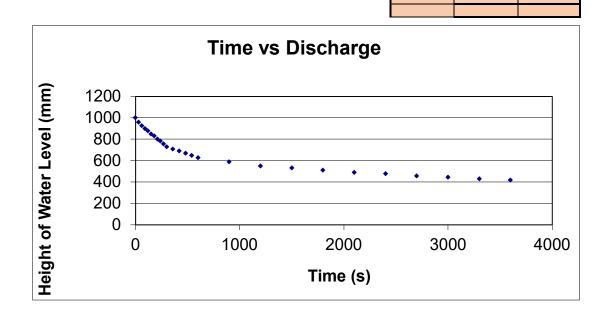
Falling Head

Enter the following test result values

Test hole radius	R(m)=	0.068
Test starting depth (top of hole)	H1(m)=	1.000
Test finishing depth	H2(m)=	0.418
Starting time	T1(sec)=	0.00
Finishing time	T2(sec)=	3600.00
	Ttotal(sec)=	3600.00

P = 2.7E-05 m/sec

2.4E+00 m/day


Test hole Diamater (m)	0.1360
Test hole Perimeter (m)	0.4273
Test Hole Cross Sectional Area (m²)	0.0145
Water Level Drop during test (m)	0.5820
Wetted Area (m2)	0.2632
Volume of Water (m³)	0.0085
Test Duration (s)	3600
Absorption Capacity (m³/m²/s)	8.92E-06
Absorption Capacity (L/m²/s)	0.0089
Absorption Capacity (L/m²/d)	770.961039

Time Elapsed (s)	Height of water from top of Hole (mm)	Height of Water from Base of Bole (mm)
0	0	1000
30	41	959
60	73	927
90	100	900
120	122	878
150	152	848
180	171	829
210	200	800
240	218	782
270	245	755
300	270	730
360	292	708
420	310	690
480	330	670
540	351	649
600	372	628
900	412	588
1200	451	549
1500	470	530
1800	491	509
2100	510	490
2400	523	477
2700	543	457
3000	556	444
3300	570	430

582

418

ΤH

